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Abstract

When domain knowledge is limited and experimentation is restricted by ethical,1

financial, or time constraints, practitioners turn to observational causal discovery2

methods to recover the causal structure, exploiting the statistical properties of their3

data. Because causal discovery without further assumptions is an ill-posed problem,4

each algorithm comes with its own set of usually untestable assumptions, some5

of which are hard to meet in real datasets. Motivated by these considerations, this6

paper extensively benchmarks the empirical performance of recent causal discovery7

methods on observational iid data generated under different background conditions,8

allowing for violations of the critical assumptions required by each selected ap-9

proach. Our experimental findings show that score matching-based methods demon-10

strate surprising performance in the false positive and false negative rate of the11

inferred graph in these challenging scenarios, and we provide theoretical insights12

into their performance. This work is also the first effort to benchmark the stability of13

causal discovery algorithms with respect to the values of their hyperparameters. Fi-14

nally, we hope this paper will set a new standard for the evaluation of causal discov-15

ery methods and can serve as an accessible entry point for practitioners interested16

in the field, highlighting the empirical implications of different algorithm choices.17

1 Introduction18

The ability to infer causal relationships from observational data, instead of simple statistical asso-19

ciations, is crucial to answer interventional and counterfactual queries without direct manipulation20

of a system [1, 2, 3, 4]. The challenge of drawing causal conclusions from pure observations lies21

in the modeling assumptions on the data, which are often impossible to verify. Methods based on22

conditional independence testing (e.g. PC, FCI and their variations [4, 5, 6]) require faithfulness of23

the distribution [1, 2, 4, 7] to the causal graph, which formalizes the intuition that causal relations24

manifest themselves in the form of statistical dependencies among the variables. The assumption25

of causal sufficiency (i.e. the absence of unobserved confounders [8]) is a common requirement for26

causal discovery [4, 6, 9, 10, 11, 12], which allows interpreting associations in the data as causal27

relationships. These strong conditions are arguably necessary but nevertheless hard or impossible to28

verify, and posit an entry barrier to the unobscured application of causal analysis in general settings.29

In addition to that, structure identifiability results define limitations on the parts of the causal graph30

that can be inferred from pure observations [1, 10, 13]. Traditional causal discovery methods (e.g.31

PC, FCI, GES [4, 9]) are limited to the inference of the Markov Equivalence Class of the ground truth32

graph [14], while additional assumptions on the structural equations generating effects from the cause33

ensure identifiability of a unique Directed Acyclic Graph (DAG) from observational data. In partic-34

ular, restrictions on the class of functions generating the data (linear or not) and on the distribution35

of the noise terms (i.e. additive noise models assumed in LINGAM and more) characterizing their36

non-deterministic relationships are necessary in order to infer causal directions [10, 11, 12, 13]. Re-37
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quirements on the data collection process are also needed: although an error-free measurement model38

is commonly assumed, it has been a recent subject of interest that measurement error in the observed39

values of the variables can greatly change the output of various causal discovery methods [15, 16].40

Real data hardly satisfy all of these assumptions at once, and it is often the case that these are impos-41

sible to verify, which calls for algorithms that demonstrate a certain degree of robustness with respect42

to violations of the model hypothesis. Previous work from Heinze-Deml et al. [17] investigates the43

boundaries of robust graph inference under model misspecifications, on Structural Causal Models44

(SCM) with linear functional mechanisms. Mooij et al. [18] benchmark considers the case of additive45

noise models with nonlinear mechanisms, but only for datasets with two variables. Singh et al. [19]46

presents an empirical evaluation limited to methods whose output is a Markov Equivalence Class.47

Glymour et al. [14] review some of the existing approaches with particular attention to their required48

assumptions, but without experimental support to their analysis. Our paper presents an extensive em-49

pirical study that evaluates the performance of classical and recent causal discovery methods on obser-50

vational datasets generated from iid distributions under diverse background conditions. Notably, the51

effects of these conditions on most of the methods included in our benchmark have not been previously52

investigated. We compare causal discovery algorithms from the constraint and score-based literature,53

as well as methods based on restricted functional causal models of the family of additive nonlinear54

models [11, 13, 20]. These include a recent class of methods deriving connections between the score55

matching [21, 22] with the structure of the causal graph [23, 24, 25]. Algorithms that focus on sequen-56

tial data [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] are beyond the scope of this paper’s benchmark-57

ing. Finally, we propose an experimental analysis of the stability of the benchmarked approaches with58

respect to the choices of their hyperparameters, which is the first effort of this type in the literature.59

We summarise the contributions of our paper as follows:60

• We investigate the performance of current causal discovery methods in a large scale experimental61

study on datasets generated under different background conditions with violations of the required62

background assumptions. Our experimental protocol consists of more than 2M experiments with63

11 different causal discovery methods on more than 60000 datasets synthetically generated.64

• We release the code for the generation of the synthetic data and a Python implementation of six65

causal discovery algorithms with a shared API. With this contribution, we aim at facilitating the66

benchmarking of future work in causal discovery on challenging scenarios, and the comparison67

with the most prominent existing baselines.68

• We analyze our experimental results, and present theoretical insights on why score matching-based69

approaches show better robustness in the setting where assumptions on the data may be violated,70

compared to the other methods. Based on our empirical evidence, we suggest a new research71

direction focused on understanding the role of the statistical estimation algorithms applied for72

causal inference, and the connection of their inductive biases with good empirical performance.73

2 The causal model74

In this section, we define the problem of causal discovery, with a brief introduction to the formalism75

of Structural Causal Models (SCMs). Then we provide an overview of SCMs for which sufficient76

conditions for the identifiability of the causal graph from observational data are known.77

2.1 Problem definition78

A Structural Causal ModelM is defined by the set of endogenous variables X ∈ Rd, vertices of the79

causal graph G that we want to identify, the exogenous noise terms U ∈ Rd distributed according80

to pU, as well as the functional mechanisms F = (f1, . . . , fd), assigning the value of the variables81

X1, . . . , Xd as a deterministic function of their causes and of some random disturbance.82

Each variable Xi is defined by a structural equation:83

Xi := fi(PAi, Ui), ∀i = 1, . . . , d, (1)
where PAi ⊂ X is the set of parents of Xi in the causal graph G, and denotes the set of direct causes84

of Xi. Under this model, the recursive application of Equation (1) entails a joint distribution pX,85

such that the Markov factorization holds:86

pX(X) =

d∏
i=1

pi(Xi|PAi), (2)
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The goal of causal discovery is to infer the causal graph underlying X from a set of n observations87

sampled from pX.88

2.2 Identifiable models89

In order to identify the causal graph of X ∈ Rd from purely observational data, further assumptions90

on the functional mechanisms in F and on the joint distribution pU of model (1) are needed.91

Intuitively, having one condition between nonlinearity of the causal mechanisms and non-Gaussianity92

of the noise terms is necessary to ensure the identifiability of the causal structure. Additionally, we93

consider causal sufficiency (Appendix A.3) of the model to be satisfied, unless differently specified.94

Linear Non-Gaussian Model (LINGAM). A linear SCM is defined by the system of structural95

equations96

X = BX+U. (3)
B ∈ Rd×d is the matrix of the coefficients that define Xi as a linear combination of its parents and97

the disturbance Ui. Under the assumption of non-Gaussian distribution of the noise terms, the model98

is identifiable. This SCM is known as the LiNGAM (Linear Non-Gaussian Acyclic Model) [12].99

Additive Noise Model. An Additive Noise Model (ANM) [11, 13] is defined by Equation (1) when100

it represents the causal effects with nonlinear functional mechanisms and additive noise terms:101

Xi := fi(PAi) + Ui, ∀i = 1, . . . , d, (4)

with fi nonlinear. Additional conditions on the class F of functional mechanisms and on the joint102

distribution of the noise terms are needed to ensure identifiability [13]. In the remainder of the paper,103

we assume these to hold when referring to ANMs.104

Post NonLinear Model. The most general model for which sufficient conditions for the identifiability105

of the graph are known is the Post NonLinear model (PNL) [10]. In this setting the structural equation106

(1) can be written as:107

Xi := gi(fi(PAi) + Ui), ∀i = 1, . . . , d, (5)
where both gi and fi are nonlinear functions and gi is invertible. As for ANMs, we consider108

identifiability conditions defined in Zhang and Hyvärinen [10] to be satisfied in the rest of the paper.109

3 Experimental design110

In this section, we describe the experimental design choices regarding the generation of the synthetic111

datasets, the evaluated methods, and the selected metrics.112

3.1 Datasets113

The challenge of causal structure learning lies in the modeling assumptions of the data, which are114

often untestable. Our aim is to investigate the performance of existing causal discovery methods in115

the setting where these assumptions are violated. To this end, we generate synthetic datasets under116

diverse background conditions, defined by modeling assumptions that do not match the working117

hypothesis of the evaluated methods.118

Vanilla model. First, we specify an additive noise model with variables generated according to the119

structural equation (4). The exogenous terms follow a Gaussian distribution Ui ∼ N (0, σi) with120

variance σi ∼ U(0.5, 1.0) uniformly sampled. We generate the nonlinear mechanisms fi by sampling121

Gaussian processes with a unit bandwidth RBF kernel (Appendix B.1). We refer to this model as122

the vanilla scenario, as it is at one time both identifiable and compliant with the assumptions of the123

majority of the benchmarked methods (see Table 1).124

3.1.1 Misspecified scenarios125

We define additional scenarios such that each specified model targets a specific assumption violation126

with respect to the vanilla conditions.127

Confounded model. Let Z ∈ Rd be a set of latent common causes. For each pair of distinct nodes128

Xi and Xj , we sample a Bernoulli random variable Cij ∼ Bernoulli(ρ) such that Cij = 1 implies129

a confounding effect between Xi and Xj . The index k of the confounder Zk is assigned at random.130

The parameter ρ ∈ {0.1, 0.2} determines the amount of confounded pairs in the graph.131
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PC FCI
GES

Dire
ctL

iN
GAM

RESIT

CAM
SCORE

DAS
NoG

AM

Diff
AN

GraN
-D

AG

Gaussian noise ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Non-Gaussian noise∗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗
Linear mechanisms ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Nonlinear mechanisms ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Unfaithful distribution ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Confounding effects ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
Measure errors ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Output CPDAG PAG CPDAG DAG DAG DAG DAG DAG DAG DAG DAG

∗ GraN-DAG and GES optimize the Gaussian likelihood.

Table 1: Summary of the methods assumptions and their output graph. The content of the cells
denotes whether the method supports (✓) or not (✗) the condition specified in the corresponding row.

Measurement error model. Measurement errors in the process that generates the data are regarded132

as a source of mistakes for the inference of the causal graph [15, 16]. In order to account for potential133

errors induced by the measurements, we specify a model in which the observed variables are:134

X̃i := Xi + ϵi,∀i = 1, . . . , d, (6)

a noisy version of the Xi’s generated by the ANM of Equation (4). The ϵi disturbances are indepen-135

dent Gaussian random variables centered at zero, whose variance is parametrized by the inverse signal136

to noise ratio γi :=
Var(ϵi)
Var(Xi)

. Given that the total variance of X̃i is Var(X̃i) = Var(Xi)+Var(ϵi), γi137

controls the amount of variance in the observations that is explained by the error in the measurement.138

Each dataset with measurement error is parametrized with γ ∈ {0.2, 0.4, 0.6, 0.8}, shared by all the ϵi.139

Unfaithful model. To model violations of the faithfulness assumption (Appendix A.2), we tune140

the causal mechanisms of Equation (4) such that we induce direct cancellation of causal effects141

between some variables. In particular, for each triplet Xi → Xk ← Xj ← Xi in the graph,142

causal mechanisms are adjusted such that cancellation of the causal effect Xi → Xk occurs (for143

implementation details, see Appendix B.4). This is a partial model of unfaithfulness, as it only144

covers a limited subset of the scenarios under which unfaithful path canceling might occur, and145

must be viewed in the light that there is no established procedure to enforce unfaithful conditional146

independencies in the case of ANM with nonlinear relationships.147

Autoregressive model. In order to simulate violations of the iid distribution of the data, we model148

observations as a stochastic process where each sample is indexed by time. In particular, we define149

the structural equations generating the data as:150

Xi(t) := αXi(t− 1) + fi(PAi(t)) + Ui, t = 1, 2, 3, . . . α ∈ R. (7)

Autoregressive effects are modeled with a time lag l = 1, whereas at t = 0 we define Xi(0) with151

Equation (4). The ground truth is the graph whose edges represent the connections between parents152

PAi(0) and their direct effect Xi(0).153

Post NonLinear model. We replace nonlinear causal mechanisms of the additive noise models (4)154

with the structural equations defined in the PNL model (5). We select the post nonlinear function gi155

such that gi(x) = x3, x ∈ R,∀i = 1, . . . , d.156

LiNGAM model. We define a model with the linear system of structural equations (3). The157

non-Gaussian distribution of the noise terms is defined as a nonlinear transformation of a standard158

normal random variable (see Appendix B.2), and the linear mechanisms are simulated by sampling159

the weighting coefficients of the parents of a node in the interval [−1,−0.05] ∪ [0.05, 1].160

3.1.2 Data generation161

For each specified model, we generate datasets that differ under the following characteristics: num-162

ber of nodes d ∈ {5, 10, 20, 50}, number of samples n ∈ {100, 1000} and density of edges p ∈163

{sparse, dense}. We sample the ground truth causal structures according to different algorithms for164
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random graph generation. In line with previous causal discovery literature [23, 24, 25, 38, 39] we gen-165

erate Erdos-Renyi (ER) [40] and Scale-free (SF) graphs [41]. Furthermore, we consider Gaussian Ran-166

dom Partitions (GRP) [42] and Fully Connected graphs (FC) (see Appendix B.3). By considering all167

the combinations of the number of nodes, number of samples, admitted edge densities, and algorithms168

for structure generation, we define a cartesian product with all the graphs configurations of interest.169

For each of such configurations and for each modeling scenario, we generate a datasetD and its ground170

truth G with 20 different random seeds. Details on the generated data can be found in Appendix B.5.171

3.2 Methods172

We consider 11 different algorithms and a random baseline spanning across the main families173

of causal discovery approaches: constraint and score-based methods, and methods defined under174

restrictions on the structural causal equations. In the main text, we provide a detailed overview175

of the methods most relevant for the discussion of our key experimental findings. The remaining176

approaches are described in further detail in the Appendix C. Table 1 summarizes the algorithms’177

assumptions and the output object of their inference procedure.178

Method outputs. Causal discovery algorithms output different graphical objects based on their179

underlying assumptions. If identifiability is not implied by the model requirements but faithfulness of180

the distribution is satisfied, one can instead recover the Markov equivalence class of the ground truth181

graph, that is, the set of DAGs sharing the same conditional independencies. This is represented by182

a complete partially directed acyclic graph (CPDAG), where undirected edges Xi −− Xj are meant183

to encode conditional dependence between the variables, but uncertainty in the edge orientation.184

If a method can identify a directed acyclic graph G = (X, E), one can define a partial ordering of185

the nodes π = {Xπ1
, . . . , Xπd

}, πi ∈ {1, . . . , d}, such that whenever we have Xπi
→ Xπj

∈ E ,186

then Xπi
≺ Xπj

(Xπj
is a successor of Xπi

in the ordering) [43]. The permutation π is known as187

the topological order of G, and allows to disambiguate the direction of the edges in the graph. A188

topological order can be encoded in a fully connected DAG with edges Eπ = {Xπi → Xπj : Xπi ≺189

Xπj
,∀i, j = 1, . . . , d}, obtained connecting all nodes in the ordering π with their successors.190

Methods summary. A summary of all the methods included in the benchmark and their required191

assumptions is presented in Table 1. PC [4] and GES [9] are limited to identifying the Markov192

equivalence class of the DAG. DirectLiNGAM [44] is designed for inference on data generated by a193

linear non-Gaussian model whereas SCORE [23], NoGAM [25], DiffAN [45], DAS [24], RESIT [13],194

GraN-DAG [38] and CAM [46], are meant for inference on additive noise models: these methods195

perform inference in a two steps procedure, first identifying a topological ordering of the graph, and196

then selecting edges between those admitted by the inferred causal order. To enable fair comparison in197

our experiments, all methods (with the exception of DirectLiNGAM) are implemented with the same198

algorithm for edge detection, consisting of variable selection with sparse regression. This pruning199

strategy is known as CAM-pruning, being originally proposed in CAM paper [46]. A detailed discus-200

sion of all the methods in the benchmark is presented in Appendix C. In the Appendix L we consider201

experiments on FCI [4], which are not reported in the main text since we did not find metrics for a202

straightforward comparison of its output partial ancestral graph (PAG [47]) with CPDAGs and DAGs.203

Selected metrics To evaluate the output graphs we use the false positive and false negative rates, and204

the F1 score (details in the Appendix D). In the case of directed edges inferred with reversed direction,205

we count this error as a false negative. For methods that output a CPDAG with undirected edges, we206

evaluate them favorably by assuming correct orientation whenever possible, similar to Zheng et al. [39,207

48]. For the methods whose output also includes an estimate π̂ of the topological order, we define the208

false negative rate of the fully connected DAG with edges Eπ̂ = {Xπ̂i
→ Xπ̂j

: Xπ̂i
≺ Xπ̂j

,∀i, j =209

1, . . . , d}, denoted as FNR-π̂. If π̂ is correct with respect to the ground truth graph, then FNR-π̂ = 0.210

This choice of metrics reflects the implementation of most of the algorithms involved in the benchmark,211

which separates the topological ordering step from the actual edge selection. In particular, given that212

the majority of the methods share the same pruning procedure after the inference of the order, we213

expect that differences in the performance will be mostly observed in the FNR-π̂ score.214

3.2.1 Deepdive on SCORE, NoGAM and DiffAN215

In this section, we review a recent class of causal discovery algorithms, that derive constraints on the216

score function∇ log p(X) that uniquely identify the directed causal graph of an additive noise model.217

Identifiability assumptions provide sufficient conditions to map a joint distribution pX to the unique218

causal DAG G induced by the underlying SCM. Applying the logarithm to the Markov factorization of219
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the distribution of Equation (2), we observe that log pX(X) =
∑d

i log p(Xi | PAi). By inspection of220

the gradient vector∇ log pX(X), it is possible to derive constraints mapping the score function to the221

causal graph of an ANM. Given a node Xi in the graph, its corresponding score entry is defined as:222

si(X) := ∂Xi
log pX(X) = ∂Xi

log pi(Xi | PAi) +
∑

k∈CHi

∂Xi
log pk(Xk | PAk). (8)

Instead, the rate of change of the log-likelihood over a leaf node Xl with set of children CHl = ∅ is:223

sl(X) := ∂Xl
log pX(X) = ∂Xl

log pl(Xl|PAl). (9)

We see that, for a leaf node, the summation over the set of children of Equation (8) vanishes.224

Intuitively, being able to capture this asymmetry in the score entries enables the identification of225

the topological order of the causal graph.226

SCORE. The SCORE algorithm [23] identifies the topological order of ANMs with Gaussian noise227

terms by iteratively finding leaf nodes as the argmini Var[∂Xi
si(X)], given that the following holds:228

Var
[
∂Xi

si(X)
]
= 0⇐⇒ Xi is a leaf, ∀i = 1, . . . , d. (10)

NoGAM. The NoGAM [24] algorithm generalizes the ideas of SCORE on additive noise models229

with an arbitrary distribution of the noise terms. After some manipulations, it can be shown that for a230

leaf node Xl the score entry of Equation (9) satisfies231

sl(X) = ∂Ul
log pl(Ul), (11)

such that one could learn a consistent estimator of sl taking as input the exogenous variable Ul. For an232

ANM, the authors of NoGAM show that the noise term of a leaf is equivalent to the residual defined as:233

Ri := Xi −E [Xi | X \ {Xi}] ,∀i = 1, . . . , d. (12)

Then, by replacing Ul with Rl in Equation (11), it is possible to find a consistent approximator of234

the score of a leaf using Rl as the predictor. Formally:235

E
[
(E [si(X) | Ri]− si(X))

2
]
= 0⇐⇒ Xi is a leaf, (13)

which identifies a leaf node as the argmin of the vector of the mean squared errors of the regression236

of the score entries si(X) on the corresponding residuals Ri, for all i = 1, . . . , d.237

Connection of NoGAM with the post nonlinear model. It is interesting to notice that, similarly to238

Equation (11) for additive noise models, the score of a leaf Xl generated by a PNL model can be239

defined as a function of the disturbance Ul.240

Proposition 1. Let X ∈ Rd be generated according to the post nonlinear model (5). Then, the score241

function of a leaf node Xl satisfies sl(X) = ∂l log pl(g(Ul)).242

This result suggests a connection with the NoGAM sorting criterion: indeed, one could hope to iden-243

tify leaf nodes in the graph by consistent estimation of the score of a leaf from residuals equivalent to244

the noise terms. A more detailed discussion with the proof of Proposition 1 is presented in Appendix E.245

DiffAN. DiffAN [45] method finds the topological ordering of a DAG exploiting the same criterion of246

Equation (10) of SCORE: the difference is in that it estimates the score function with probabilistic dif-247

fusion models, whereas SCORE, NoGAM, and DAS [24] rely on score matching estimation [21, 22].248

4 Key experimental results and analysis249

In this section we present our experimental findings on datasets generated according to the250

misspecified models of Section 3.1.1, with theoretical insights into the performance of score251

matching-based approaches. We draw our conclusions by comparing the methods’ performance252

against their accuracy in the vanilla scenario and against a random baseline 1 (defined in Appendix253

C.10). The results are discussed on datasets of size 1000 for Erdos-Renyi dense graphs with 20 nodes254

(ER-20 dense), and can be generalized to different size and sparsity configurations. Due to space255

1We use the https://github.com/cdt15/lingam implementations of RESIT and DirectLiNGAM, and
the DoDiscover implementations of PC, GES, and FCI. For the remaining methods, we consider the GitHub
official repositories of their papers and custom implementations.
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Figure 1: Experimental results on the misspecified scenarios. For each method, we also display the violin plot
of its performance on the vanilla scenario with transparent color. F1 score (the higher the better) and FNR-π̂ (the
lower the better) are evaluated over 20 seeds on Erdos-Renyi dense graphs with 20 nodes (ER-20 dense). FNR-π̂
is not computed for GES and PC, methods whose output is a CPDAG. Note that DirectLiNGAM performance is
reported in Appendix I.2, on data under non-Gaussian distribution of the noise terms.

constraints, we include the plots only for the F1 score and FNR-π̂, whereas the false negative and256

false positive rates are discussed in Appendix I. In order to provide statistical significance to our257

conclusions, we repeat the experiments on each scenario over 20 datasets generated with different258

random seeds. To enable a fair comparison between the methods, we fix their hyperparameters259

to their optimal value with respect to each specific dataset, in the case where these can not be260

tuned without having access to the ground truth (see Appendix G for a discussion on the tuning of261

GraNDAG and DiffAN learning hyperparameters). In the Appendix H we analyze the stability of262

the benchmarked methods with respect to different values of their hyperparameters.263

4.1 Can current methods infer causality when assumptions on the data are violated?264

Our experimental findings suggest that score matching-based algorithms can robustly infer part of the265

causal information even in the case of misspecified ground truth data generation.266

Post nonlinear model. Figure 1a (right) illustrates the accuracy of topological order estimates on267

post nonlinear model data. Among the selected methods, NoGAM shows better ability to generalize268

its performance to this scenario, with FNR-π̂ error rate significantly lower than the random baseline.269

Interestingly, we can interpret this observation in the light of Proposition 1, which defines the score270

of a leaf in the PNL model: our result indeed suggests that, similarly to the case of an additive noise271

model, it is possible to learn a consistent approximator of the score of a leaf Xl from the exogenous272

variable Ul of a post nonlinear model. Notably, we also observe that RESIT order accuracy is273

better in the PNL scenario than in the vanilla case: Zhang and Hyvärinen [10] show that testing for274

independent residuals identifies the direction of causal relationships also under the PNL model.275
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LiNGAM model. Figure 1b (right) shows that NoGAM can infer the causal order with remarkable276

accuracy in the case of ground truth data generated by a linear non-gaussian additive model. Together277

with our observations on the post nonlinear model, our empirical evidence corroborate the idea278

that the NoGAM algorithm is surprisingly robust with respect to the misspecification of the causal279

mechanisms. Notably, none of the other methods can infer the ordering with accuracy significantly280

better than the random baseline. This could lead to decreased performance in the realistic setting281

of mixed linear and nonlinear mechanisms. However, F1 score in Figure 1b (left) shows that282

CAM-pruning is still able to correctly infer edges in the graph when these are admitted by the283

identified causal order. We note that, given that we observed high varsortability2[49] for this model,284

we display results on data standardized by removing their empirical variance.285

Confounded model. Spurious correlations, that occur when the causal sufficiency is violated, can286

not be handled by statistical tests for edge selection, as shown by the F1 score of Figure 1c (left)287

(the amount of confounders is parametrized by ρ = 0.2). In this case, we are also interested to see288

whether the presence of latent confounders can disrupt the inference of the topological ordering when289

the observed variables have a non-spurious connection in the causal graph. Figure 1c (right) indicates290

that the score matching-based approaches SCORE, DAS, and NoGAM can still be exploited to find a291

reliable ordering, while other methods fail to do so.292

Measurement error. Given data generated under the model of Equation (6), we observe convergence293

in distribution p(X̃i | PAi)
d−→ p(Xi | PAi) for γ → 0. We are then interested in the boundaries294

of robust performance of each method with respect to increasing values of γ. Figure (1d) (right)295

illustrates FNR-π̂ on datasets with γ = 0.8 such that ~35% of the observed variance of each variable296

is due to noise in the measurements. Under these conditions, we see that score matching-based297

approaches display robustness in the inference of the order where all the other methods capability is298

comparable to that of the random baseline with statistical significance. This is also reflected in Figure299

(1d) (left), where SCORE, DAS, and NoGAM are the only algorithms whose F1 score (slightly)300

improves compared to the random baseline.301

Unfaithful model. Figure 1e (right) shows that the ordering procedure of several methods, in302

particular SCORE, DAS, NoGAM, and GraN-DAG, seems unaffected by direct cancellation of303

causal effects, in fact displaying a surprising decrease in the FNR-π̂ performance with respect to304

the vanilla scenario. To understand these results, we note that under the occurrence of causal effect305

cancellations in the ground truth graph G, the unfaithful model defined in Section 3.1.1 generates306

observations of X according to a graph G̃ whose causal order agrees with that of the ground truth: it307

is indeed immediate to see that the causal order of Xi → Xk ← Xj ← Xi also holds for the triplet308

Xi → Xj → Xk. Moreover, the set of edges of the graph G̃ is sparser than that of the ground truth,309

due to the cancellation of causal effects. Thus, given that inference on sparser graphs is generally310

easier, it can positively affect the empirical performance, in line with our observations.311

Implications. Our experimental findings show that most of the benchmarked methods significantly312

decrease their performance on the misspecified models. This is particularly problematic since the313

violations considered in this work are realistic and met on many real-world data. On the other hand,314

we observe surprising robustness in the inference of score matching-based methods.315

4.1.1 Discussion on score matching robustness316

Our empirical findings indicate that score matching-based methods are surprisingly capable of partial317

recovery of the graph structure in several of the misspecified scenarios. We connect this robust318

performance to the decomposition properties of the score function defined in Equations (8) and (9).319

In particular, we argue that the common factor that enables leaf node identification in NoGAM and320

SCORE is that the score entry of a leaf is characterized by a smaller magnitude, compared to the321

score associated with a node that has children in the graph. To explain what we mean by this, we322

define a simple condition under which it is possible to identify leaf nodes and the causal order of the323

graph from the variance of the entries of the score function.324

Definition 1. Let X ∈ Rd be a random vector defined by a structural causal modelM (1). Let Xl325

be a leaf node of the causal graph G. We say that Xl is score-identifiable if l = argmini Var[si(X)].326

2Varsortability of a dataset denotes partial agreement between the ordering induced by the values of marginal
variance of the observed variables and the causal ordering of the underlying graphical model.
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Moreover, we say that the model is score-sortable if the recursive identification of score-identifiable327

leaf nodes in the causal graph and in the subgraphs defined by removing a leaf from the set of328

vertices up to a source node, yields a correct causal order. SCORE, NoGAM, and DAS present329

results for consistent inference of the structure of an identifiable graph from properties of the score330

function and its second order partial derivatives. However, when these conditions are not satisfied,331

exploitation of score-sortability can heuristically estimate a causal ordering that partially agrees with332

the causal structure. Intuitively, the variance of the score of a non-leaf node si(X) of Equation (8) is333

proportional to the number of children in the summation. In particular, the total variance of si(X) is334

the sum of the marginal variances of the two terms on the RHS of Equation (8), plus their covariance.335

Errors in the ordering defined with score-sortability are induced only if the variance associated with336

the score of a non-leaf node can be smaller than the one relative to every leaf of the graph.337

Proposition 2. Let X ∈ Rd be a random vector whose elements Xi are defined by a structural
equation model M (1) that satisfies score-sortabilty. Then, for each subgraph of G defined by
recursively removing a leaf from the set of vertices up to a source node, there exists a leaf Xl such
that ∀i index of a node:

Var[∂l log pl(Xl | PAl)] ≤ Var[∂i log pi(Xi | PAi)] +
∑

k∈CHi

Var[∂k log pk(Xk | PAk)] + C,

with C ∈ R accounting for the covariance term.338

(See Appendix F for the proof.) Lemma 1 of SCORE defines a similar criterion of sortability of339

the causal variables on the variance of the second order partial derivatives of the log-likelihood,340

which is always satisfied when X ∈ Rd is generated by an ANM with Gaussian distribution of341

the noise terms. We can extend these considerations to the NoGAM algorithm, which identifies342

leaf nodes by minimizing the mean squared error of the predictions of the score entries from the343

residual estimators of the noise terms, as defined in Equation (13). If we consider an uninformative344

predictor of the score function that maps every input residual to a constant value zero, the NoGAM345

algorithm is equivalent to a simple score-sortability heuristic criterion, identifying leaf nodes as the346

argmini E[s2i (X)]. In Appendix I.3 we corroborate our considerations by comparing the empirical347

performance of a score-sortability baseline with SCORE and NoGAM.348

Implications. Score matching-based approaches SCORE, DAS, and NoGAM show empirical robust-349

ness in several scenarios included in our benchmark. We impute these results to the structure of the350

score function discussed in Section (3.2.1), and to the algorithmic design choices of these methods that351

exploit different magnitude in the score of a leaf compared to other nodes with children in the graph.352

4.2 Is the choice of statistical estimators neutral?353

In the previous section, we motivated the empirical observations on the robustness of methods based on354

the score function. Given that the DiffAN algorithm differs from SCORE only in the score estimation355

procedure (where the former applies probabilistic diffusion models in place of the score matching), we356

can explain the gap in performance of DiffAN with the other approaches based on the score as an effect357

of the different statistical estimation technique. From this observation, we suggest that score matching358

plays a crucial role in connecting the gradient of the log-likelihood with effective causal inference.359

Implications. The choice of modular statistical estimator for causal inference procedures is not360

neutral. We argue that inductive bias in statistical estimators may be connected with good empirical361

performance, and we think that this potential connection should be further investigated in future works.362

5 Conclusion363

In this work we perform a large scale empirical study on eleven causal discovery methods that364

provides empirical evidence on the limits of reliable causal inference when the available data violate365

critical algorithmic assumptions. Our experimental findings highlight that score matching-based366

approaches can robustly infer the causal order from data generated by misspecified models. It would367

be important to have procedures for edge detection that display the same properties of robustness368

in diverse scenarios, and to have a better theoretical understanding of failure modes of CAM-pruning369

variable selection, given its broad use for causal discovery. Finally, we remark that this benchmarking370

is limited to the case of observational iid samples, and it would be of great practical interest to have371

equivalent empirical insights on the robustness of methods for causal discovery on sequential data372

in the setting of time series or passively observed interventions.373
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A Assumptions connecting causal and statistical properties of the data527

In this section, we describe in detail several crucial assumptions for causal discovery.528

A.1 Global Markov Property529

Causal discovery from pure observations requires assumptions that connect the joint distribution530

of the data with their underlying causal structure. The Markov factorization of the distribution (2)531

allows interpreting conditional independencies of the graph G induced by the modelM as conditional532

independencies of the joint distribution pX. This is known as the Global Markov Property of the533

distribution pX with respect to the graph G.534

Definition 2. A distribution pX satisfies the Global Markov Property with respect to a DAG G if:535

XA |= GXB | XS ⇒ XA |= pX
XB | XS , (14)

with XA,XB ,XS disjoint subsets of X, |= G denoting d-separation in the graph G, and |= pX
536

denoting independency in the joint distribution pX.537

A.2 Causal faithfulness538

A distribution pX that satisfies the Global Markov Property, decomposes according to the Markov539

factorization of Equation (2) [50]. If the inverse holds, then we can consider the conditional inde-540

pendencies observed in the distribution pX to be valid conditional independencies in the graph G:541

XA |= pX
XB | XS ⇒ XA |= GXB | XS . (15)

If (15) is satisfied, we say that pX is faithful to the causal graph.542

A.3 Causal sufficiency543

Another fundamental assumption is the absence of unmeasured common causes in the graph. Re-544

ichenbach principle [8] defines a connection between statistical and causal associations. The principle545

states that given statistical association between two variables X ,Y , then there exists a variable Z546

that causally influences both explaining all the dependence such that conditioning on Z makes them547

independent. Causal sufficiency assumes that Z coincides with one between X and Y : resorting to548

the model of Equation (1), this means that for each pair Xi,Xj there are no latent common causes.549

Under the assumption of causal sufficiency of the graph and faithful distribution, we can use condi-550

tional independence testing to infer the Markov Equivalence Class of the causal graph G from the data.551

B Details on the synthetic data generation552

B.1 Nonlinear causal mechanisms553

In order to simulate nonlinear causal mechanisms of an additive noise model, we sample functions554

from a Gaussian process, such that ∀i = 1, . . . , d, fi(XPAi
) = N (0,K(XPAi

, XPAi
)), a mul-555

tivariate normal distribution centered at zero and with covariance matrix as the Gaussian kernel556

K(XPAi
, XPAi

), where XPAi
are the observations of the parents of the node Xi.557

B.2 Non-Gaussian distribution of the noise terms558

We generate data with non-Gaussian noise terms as follows: for each node i ∈ {1, . . . , d}, we559

model noise terms following a Gaussian distribution Ui ∼ N (0, σi) with variance σi ∼ U(0.5, 1.0).560

Those noise terms are then transformed via a random nonlinear function t, s.t. Ũi = t(Ui). In our561

experiments, we sampled three different functions t, modeled as multilayer perceptrons (MLPs)562

with 100 nodes in the single hidden layer, sigmoid activation functions, and weights sampled from563

U(−α, α), α ∈ [0.5, 1.5, 3.0], respectively (c.f. Fig. 2).564
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Figure 2: Gaussian noise (left) transformed via random nonlinear functions (center) to non-Gaussian iid noise
(right). Weights of the MLP are sampled from either (a) U(−0.5, 0.5), (b) U(−1.5, 1.5), or (c) U(−3.0, 3.0).

B.3 Algorithms for random graphs simulation565

We use four random graph generation algorithms for sampling the ground truth causal structure566

of each dataset. In particular, we consider the Erdos-Renyi (ER) model, which allows specifying567

the number of nodes d and the average number of connections per node m (or, alternatively, the568

probability p of connecting each pair of nodes). In ER graphs, pair of nodes have the same probability569

of being connected. Scale-free graphs are generated under a preferential attachment procedure [41],570

such that nodes with a higher degree are more likely to be connected with a new node, allowing571

for the presence of hubs (i.e. high degree nodes) in the graphs. The Gaussian Random Partition572

model (GRP) [42] is created by connecting k subgraphs (i.e. partitions) generated by an ER model. A573

parameter pin specifies the probability of connecting a pair of nodes in the same partition, while pout574

defines the probability of connections among distinct partitions. Clusters appear when pin >> pout575

(e.g. in our experiments we consider pin = 0.4, pout = 0.05). Finally, we consider Fully Connected576

graphs, generated by sampling a topological order π and connecting all nodes in the graph to their577

successors with a directed edge. Given a ground truth fully connected graph, the accuracy of the578

inference procedure is maximally sensitive to errors in the order.579

B.4 Modeling of unfaithful distributions580

Given a ground truth causal graph, we model an unfaithful distribution of the data by enforcing581

the cancellation of directed causal effects between pairs of nodes. In practice, we identify the fully582

connected triplets of nodes Xi → Xk ← Xj ← Xi in the ground truth, and we adjust the causal583

mechanisms such that the direct effect of Xi on Xk cancels out. In order to clarify the implementation584

details of our model, we consider a graph G with vertices X1, X2, X3 and with the set of edges585

corresponding to the fully connected graph with trivial topological order π = {X1, X2, X3}. We586
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5 nodes 10 nodes 20 nodes 50 nodes

Sparse p = 0.1∗ m = 1 m = 1 m = 2
Dense p = 0.4∗ m = 2 m = 4 m = 8

∗ Graphs are re-sampled such that they have at least 2 edges.

Table 2: Density schema for Erdos-Renyi graphs. The parameter p denotes the probability of an
edge between each pair of nodes in the graph, and m denotes the average number of edges for each
node in the graph. We scale the parameter m with the number of nodes, such that the relative density
(sparsity) is similar for all graph dimensions.

allow for mixed linear and nonlinear edges with liner effect on the nodes, such the set of structural587

equations is defined as:588

X1 := U1,

X2 := f(X1) + U2,

X3 := f(X1)−X2 + U3,

(16)

with f nonlinear function. This definition of the mechanisms on X3 cancels out f(X1) in the589

structural equation. In the case of large graphs with the number of nodes d ∈ {5, 10, 20, 50} that we590

use in our experiments, we verify the unfaithful independencies in the data via kernel-based test of591

conditional independence [51], in correspondence of the pairs of nodes whose causal effect cancels592

out. We use a threshold of 0.05 for the conditional independence testing.593

B.5 Dataset configurations594

In this section, we extend the discussion of Section 3.1.2 which presents an overview of the parameters595

that define the different configurations for the generation of the synthetic datasets of our benchmark.596

We sample the ground truth structures according to four different algorithms for random graph597

generation, and according to different specifications of density, number of nodes, and distribution of598

the noise terms. In the case of Erdos-Renyi (ER) generated graphs, we define the density of the edges599

relative to the number of nodes, according to the schema defined in Table 2. For the Scale-free (SF)600

model, we define the edge density in the graphs according to the same values of Table 2, but we do not601

generate SF graphs of 5 nodes. Similarly, we generate fully connected (FC) and Gaussian Random602

Partition (GRP) graphs only for {10, 20, 50} nodes. FC generation does not require specifying any603

parameter for the density. In the case of GRP graphs, we use pin = 0.4 as the probability of edges604

between a pair of nodes inside the same cluster, and pout = 0.1 as the probability of edges between a605

pair of nodes belonging to different clusters.606

For each of the graph configurations, we sample a ground truth and a dataset of observations generated607

according to one of the following scenarios (described in detail in Section 3.1.1):608

• Vanilla additive noise model.609

• PNL model, with invertible post nonlinear function g(x) = x3 for each speficied structural610

equation.611

• LiNGAM model, where the number of structural equations with linear mechanisms is612

parametrized by δ ∈ {0.33, 0.66, 1.0}. The first two values of δ allow modeling mixed613

linear and nonlinear causal mechanisms, with respectively 33% and 66% of the structural614

equations being linear. Unless differently specified, we consider δ = 1 when referring to the615

LiNGAM model.616

• Confounded model, where the number of confounded pairs is parametrized by ρ ∈617

{0.1, 0.2}, denoting the probability of two nodes having a common cause. Unless dif-618

ferently specified, we consider ρ = 0.2 when referring to the confounded model.619

• Measurement error model, where the amount of variance explained by the additive error620

is parametrized by γ ∈ {0.2, 0.4, 0.6, 0.8}, denoting the inverse signal to noise ratio γ :=621
Var[ϵi]
Var[Xi]

, with Xi and ϵi defined in the structural equation (6). Unless differently specified,622

we consider γ = 0.8 when referring to the measurement error model.623
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• Unfaithful model, as discussed in the Appendix B.4.624

• Autoregressive model, defined according to the structural equation (7) in order to simluate625

non-iid samples in the data.626

For each scenario, and for each parametrization that it admits, we generate a ground truth G according627

to each of the graph configurations specified at the beginning of the section, and a corresponding628

pair of datasets D of size 100 and 1000. The dataset generation is repeated under four possible629

distributions of the noise terms. In particular, each dataset has exogenous variables that are either630

normally distributed, or following a randomly generated non-Gaussian distribution, as discussed in631

Appendix B.2. Finally, in order to ensure statistically significant results, for each pair of graph and632

dataset configurations we generate G,D according to 20 different random seeds.633

C Benchmark methods634

C.1 CAM635

CAM algorithm [46] infers a causal graph from data generated by an additive Gaussian noise model.636

First, it infers the topological ordering by finding the permutation of the graph nodes corresponding637

to the fully connected graph that maximizes the log-likelihood of the data. After inference of the638

topological ordering, a pruning step is done by variable selection with regression. In particular, for639

each variable Xj CAM fits a generalized additive model using as covariates all the predecessor of Xj640

in the ordering, and performs hypothesis testing to select relevant parent variables. This is known as641

the CAM-pruning algorithm. For graphs with size strictly larger than 20 nodes, the authors of CAM642

propose an additional preliminary edge selection step, known as Preliminary Neighbours Search643

(PNS): given an order π, variable selection is performed by fitting for each j = 1, . . . , d an additive644

model of Xj versus all the other variables {Xi : Xj ≻ Xi in π}, and choosing the K most important645

predictor variables as possible parents of Xj . This preliminary search step allows scaling CAM646

pruning to graphs of large dimensions. In our experiments, CAM-pruning is implemented with the647

preliminary neighbours search only for graphs of size 50, with K = 20.648

C.2 RESIT649

In RESIT (regression with subsequent independence test) [13] the authors exploit the independence650

of the noise terms under causal sufficiency to identify the topological order of the graph. For each651

variable Xi, they define the residuals Ri = Xi −E [Xi | X \ {Xi}], such that for a leaf node Xl it652

holds that Rl = Ul −E[Ul]. The method is based on the property that under causal sufficiency, the653

noise variables are independent of all the preceding variables: after estimating the residuals from the654

data, it identifies a leaf in the graph by finding the residual Rl that is unconditionally independent of655

any node Xi,∀i ̸= l in the graph. Once an order is given, they select a subset of the edges admitted by656

the fully connected graph encoding of the ordering. We implement this final step with CAM-pruning.657

C.3 GraN-DAG658

GraN-DAG [38] defines a continuous constrained optimization problem to infer the causal graph659

from an ANM with Gaussian noise terms. For each variable Xi in the graph, the authors estimate the660

parameters of the conditional distribution p(Xi | X \ {Xi}) with a neural network ϕi. They define661

an adjacency matrix A ∈ Rd×d representation of the causal DAG, by finding inactive paths in the662

neural network computations, where a path is defined as the sequence of weights of the network663

from the input j to the output k: if zero weights are encountered in the path, then the output k is664

independent of the input j. If this is repeated for all paths from j to k and for all outputs k, then all665

paths are inactive and Xi is independent of Xj conditional on the remaining variables, meaning that666

Aij = 0. Note that GraN-DAG in principle does not require a post-processing consisting of an edge667

selection procedure, given that its output is not a fully connected encoding of a topological order, but668

an arbitrarily sparse graph. However, in practice, it is the case that GraN-DAG output approximates a669

fully connected graph, with a large number of false positives with respect to the ground truth edges670

(see Table 5 of Appendix A.3 in Lachapelle et al. [38] for quantitative results). To account for this, the671

authors of the method apply the CAM-pruning step on top of their neural network graph output. In672

our experiments, in order to compare the goodness of the ordering encoded by the GraN-DAG output673
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Figure 3: In order to evaluate the goodness of the inferred ordering of GraN-DAG, we sample one topological
order at random between those admitted by the adjacency matrix before the CAM-pruning step. In this figure,
we compare the empirical FNR-π̂ of an order randomly sampled between those admitted by the output, against
the average of the FNR-π̂ computed on the set of all possible orderings admitted by the output. We see that
selecting an order at random gives an unbiased representation of the average order accuracy, between those
admitted by GraN-DAG output before the CAM-pruning. The violin plots refer to the FNR-π̂ evaluated on ER
graphs with 10 nodes over 20 different random seeds.

before applying the CAM-pruning step, we sample one order at random between those admitted by674

the output adjacency matrix and compute its FNR-π̂. Given that the order is selected at random, we675

consider an unbiased solution, as we show in Figure 3.676

C.4 DirectLiNGAM677

ICA-LiNGAM [44] formulates a causal discovery algorithm for the identifiable LiNGAM model,678

assuming linear mechanisms and non-Gaussian noise terms. The idea is that solving for X the system679

defined in Equation (3), one obtains680

X = AU, (17)

where A = (I−B)−1. By standard linear ICA (independent component analysis) it is possible to681

find A, which is equivalent to finding the weighted adjacency matrix B. This intuition lies at the base682

of the DirectLiNGAM algorithm [44], a variation of ICA-LiNGAM that uses pairwise independence683

measures to find the topological order of the graph, and covariance-based regression to find the684

connection strengths in the matrix B.685

C.5 PC686

PC algorithm (Section 5 of Spirtes et al. [4]) is a causal discovery method based on conditional687

independence testing that finds a CPDAG from the data. First, it starts from a fully connected688

undirected graph, and estimates the skeleton of the graph by removing edges between each pair of689

nodes Xi, Xj if it finds a subset S ⊂ X \ {Xi, Xj} such that Xi |= Xj | S. Then, it finds all the690

v-structures Xi → Xj ← Xk along with their directions. Finally, additional orientation rules are691

applied to direct as many edges as possible in the output CPDAG. In our experiments, we use a692

kernel-based test of conditional independence [51].693

C.6 GES694

The GES algorithm [9] (Greedy Equivalent Search) defines a discrete optimization problem over695

the space of all CPDAGs, and outputs the graph that maximizes the fit measure according to some696

score (e.g. the Bayesian Information Criterion (BIC) score). The algorithm is defined as a two steps697

greedy procedure. It starts from an empty graph, and in the forward step it adds directed edges one698

by one, each time selecting the directed edge that most increases the fit score. When edge addition699

doesn’t improve the score any further, in the backward step it removes edges one by one until the700

score stops increasing. The DAG defined by this procedure is then transformed into a CPDAG, such701

that GES final output is a Markov equivalence class.702
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C.7 SCORE703

Rolland et al. [23] defines a formal criterion for the identification of the causal order of a graph704

underlying an additive noise models with Gaussian distribution of the noise terms Ui ∼ N (0, σi).705

Under these assumptions, the score entry of a leaf node Xl is sl(X) = −Xl−fl(PAl)
σ2
l

. It is then easy706

to verify that ∂Xl
sl(X) = − 1

σ2
j

, such that the diagonal entry of the score’s Jacobian associated to a707

leaf node is a constant. Based on this relation, a formal criterion identifying leaf nodes holds:708

Lemma 1 (Lemma 1 of [23]). Let X be a random vector generated according to an identifiable709

ANM with exogenous noise terms Ui ∼ N (0, σ2
i ), and let Xi ∈ X. Then710

Var
[
∂Xi

si(X)
]
= 0⇐⇒ Xi is a leaf, ∀i = 1, . . . , d. (18)

The Lemma is exploited by SCORE algorithm for estimation of the topological order, given a711

dataset of i.i.d. observations X ∈ Rn×d: first it estimates the diagonal elements of the Jacobian712

matrix of the score J(s(X)) via score matching [22]. Then, it identifies a leaf in the graph as the713

argmini Var[∂Xi
s(X)], which is removed from the graph and assigned a position in the order vector.714

By iteratively repeating this two steps procedure up to the source nodes, all variables in X end up715

being assigned a position in the causal ordering. Finally, SCORE applies the CAM-pruning algorithm716

to select a subset of the edges in the fully connected DAG encoding of the inferred topological order.717

C.8 NoGAM718

Montagna et al. [25] proposes a generalization of SCORE, defining a formal criterion for the719

identification of leaf nodes in a graph induced by an additive noise model without restrictions on the720

distribution of the noise terms. After some manipulations, it can be shown that the score entry of a721

leaf Xl defined in Equation (9) satisfies722

sl(X) = ∂Ul
log pl(Ul), (19)

such that observations of the pair (Ul, sl(X)) can be used to learn a predictor of the score entry. For an723

additive noise model, the authors show that the noise term of a leaf is equal to the residual defined as:724

Rl := Xl −E [Xl | X \Xl] . (20)

Then, it is possible to find a consistent approximator of the score entry of a leaf node using Rl as725

the only predictor.726

Lemma 2 (Lemma 1 of [25]). Let X be a random vector generated according to an identifiable
ANM, and let Xi ∈ X. Then

E
[
(E [si(X) | Ri]− si(X))

2
]
= 0⇐⇒ Xi is a leaf.

Similarly to SCORE, NoGAM algorithm defines a procedure for estimation of the topological order by727

iterative identification of leaf nodes, which are found as the argmini E
[
(E [si(X) | Ri]− si(X))

2
]
.728

In practice, the residuals Ri, i = 1, . . . , d, can be estimated by any regression algorithm, whereas729

the score is approximated by score matching with Stein identity [22].730

C.9 DAS731

Montagna et al. [24] defines a condition on the Jacobian of the score function that identifies the edges732

of the graph induced by an additive noise model with Gaussian distribution of the noise terms, given733

a valid causal order.734

Lemma 3 (Lemma 1 of [24]). Let X be a random vector generated according to an identifiable735

ANM with exogenous noise terms Ui ∼ N (0, σ2
i ), and let Xl ∈ X be a leaf node. Then:736

E
[∣∣∂Xj

sl(X)
∣∣] ̸= 0⇐⇒ Xj ∈ PAl(X), ∀j ∈ {1, . . . , d} \ {l} (21)

737
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In practice, off-diagonal elements of the Jacobian matrix contain information about conditional738

independencies of the variables in the DAG, such that they define a condition of identification of739

the graph edges. Given the ordering procedure of SCORE, DAS (acronym for Discovery At Scale)740

defines an algorithm that can map the score function to a unique causal graph with directed edges: in741

practice, condition (21) of Lemma 3 is verified via hypothesis testing for the mean equals to zero.742

Note that, despite the fact that this approach provides a consistent estimator of the causal graph,743

the authors of DAS retain a CAM-pruning step on top of their edge selection procedure based on744

Lemma 3, in order to reduce the number of false positives of the inferred output. The benefit of745

DAS preliminary edge detection is that it reduces the computational costs of CAM-pruning, which is746

cubic in the number of nodes in the graph, such that it doesn’t scale well to high dimensional graphs.747

Overall, given an input dataset X ∈ Rn×d, with n number of samples and d number of nodes in the748

graph, DAS computational complexity is O(dn3 + d2), whereas, for the SCORE algorithm this is749

O(dn3 + nd3).750

C.10 Random Baseline751

In our experimental analysis of Section 4, we consider the performance of a random baseline in terms752

of F1 score and FNR-π̂ accuracy of the order (Figure 1). Our random baseline is defined as follows.753

Given a graph with d variables, we sample a random topological order π as a permutation of the754

vector of elements X1, . . . , Xd. Then, given the fully connected graph admitted by the order, with the755

set of edges Eπ = {Xπi
→ Xπj

: Xπi
≺ Xπj

,∀i, j = 1, . . . , d}, for each pair of connected nodes756

we sample a Bernoulli random variable Y with parameter p = 0.5, such that the edge is removed for757

Y = 0.758

D Metrics definition759

For the evaluation of the experimental results of our benchmark, we consider the F1 score, the false760

positive (FP) and false negative (FN) rates of the inferred graph, and the false negative rate FNR-π̂ of761

the fully connected encoding of the output topological order. In order to specify the F1 score, we762

need a definition of FP, FN, and true positive (TP), that applies to both undirected and directed edges,763

given that we evaluate both DAGs and CPDAGs.764

• We define as TP any predicted edge that is in the skeleton of the ground truth graph (i.e. the765

set of edges that doesn’t take direction into account).766

• We define the FPs as the edges in the skeleton of the predicted graph that are not in the767

skeleton of the ground truth graph. Note that this definition of FP doesn’t penalize undirected768

edges or edges inferred with reversed direction.769

• We define as FN a pair of nodes that are disconnected in the predicted skeleton while being770

connected in the ground truth. Additionally, we count as false negatives inferred edges771

whose direction is reversed with respect to the DAG ground truth.772

Then, the F1 score is defined as the ratio TP
TP+0.5(FN+FP ) .773

E Possible generalisation of NoGAM to the PNL model774

Proposition 1 of Section 3.2.1 suggests that it is possible to generalize Lemma 2 and, accordingly, the775

NoGAM algorithm, to the case of the post nonlinear model.776

E.1 Proof of Proposition 1777

Proof. Let X ∈ Rd be a random vector generated by the post nonlinear model of Equation (5). Given
the Markov factorization of Equation (2), the logarithm of the joint distribution pX satisfies the
following equation:

log pX(X) =

d∑
i=1

log pXi
(Xi).
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Then, for a node Xi in the graph the score entry si is defined according to Equation (8), whereas778

given a leaf node Xl in the graph, sl satisfies the following:779

sl(X) := ∂Xl
log pX(X) = ∂Xl

log pl(Xl|PAl). (22)

Our goal is to show that ∂Xl
log pl(Xl|PAl) = ∂Xl

log pl(Ul), with Ul = g−1(Xl) − fl(PAl) and780

g−1 the inverse of the postnonlinear function g (which is invertible by modeling assumption). As781

a notational remark, in what follows we will drop any sub-index on the distribution of the random782

variables, which we distinguish by their argument. Also, we denote realizations of random variables783

(or random vectors) with lowercase letters (e.g. xl is the value of the random variable Xl). We rewrite784

the distribution of Xl conditional on its parents by marginalizing over all values of Ul:785

p(xl | pal) =
∫
ul

p(xl | pal, ul)p(ul)dul (23)

=

∫
ul

p(xl | pal, ul)p(ul)1(xl = g(fl(pal) + ul))dul (24)

=

∫
ul

p(xl | pal, ul)p(ul)1(ul = g−1(xl)− fl(pal))dul, (25)

with 1 being the indicator function. Being g an invertible function, the value of ul equals to786

g−1(xl)− fl(pal) is unique, which implies that p(xl | pal, ul) = 0 if ul ̸= g−1(xl)− fl(pal), else787

p(xl | pal, ul) = 1. Let us denote u∗
l := g−1(xl)− fl(pal). Then, the integral in Equation 25 simply788

becomes:789

p(xl | pal) =
∫
ul

dp(ul)1(ul = u∗
l ) = p(u∗

l ). (26)

Thus, ∂Xl
log p(Xl|PAl) = ∂Xl

log p(Ul).790

E.2 Discussion791

Proposition 1 derives a connection between Lemma 2 defined by Montagna et al. [25] for identifiable792

additive noise models to the case of a PNL model. Note that the authors define a consistent estimator793

of sl score function of a leaf node Xl from the residual Rl := Xl −E [Xl | X \Xl], which satisfies794

Rl = Ul in the case of an ANM with noise terms centered at zero. In general, the latter equality does795

not hold for a post nonlinear model, meaning that regression of a leaf variable against all the other796

variables of X does not guarantee a consistent estimation of the disturbance on the leaf structural797

equation. This implies that, as is, NoGAM doesn’t provide theoretical guarantees of consistent798

estimation of the topological order of a PNL model.799

F Proof of Proposition 2800

We define two lemmas preliminary to the proof of Proposition 2.801

Lemma 4. Let X ∈ Rd be generated according to an SCMM that satisfies score-sortability, and let802

G be the graph induced by the model. Then, there exists a leaf node of G that is score-identifiable.803

Proof. By contradiction, let’s say that the node Xl with l = argmini Var[si(X)] is not a leaf node.804

Then, the causal order π where Xl is a successor of all other nodes in the graph, is not a correct805

ordering, implying that the model is not score-sortable.806

Lemma 5. Let X ∈ Rd be generated according to an SCMM that satisfies score-sortability, and let807

G be the graph induced by the model. LetM\{l} the model defined removing the leaf node Xl from808

the set of structural equations ofM. Then, the modelM\{l} is score-sortable.809

Proof. By contradiction, let’s assume that M\{l} does not satisfy score-sortability, such that810

the node Xm with m = argmini=1,...,l−1,l+1,...,d Var[si(X)] is not a leaf node in the graph811

G\{l} induced by M\{l}. Then, any topological order π with Xm successor of all nodes812

Xi, i = 1, . . . , l − 1, l + 1, . . . , d, is a wrong topological ordering of the graph G. This implies that813

M is not score-sortable.814
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Now, we present the proof of Proposition 2.815

Proof. (Proof of Proposition 2.) By Lemma 4, beingM a score-sortable model, there exists a leaf
Xl such that l := argmini Var[si(X)]. Then,

Var[∂l log pl(Xl | PAl)] ≤ Var[∂i log pi(Xi | PAi)] +
∑

k∈CHi

Var[∂k log pk(Xk | PAk)] + C,

for all i = 1, . . . , d. Moreover, by previous Lemma 5, the modelM\{l} is score-sortable. Thus816

there exists an index m ∈ {1, . . . , l − 1, l + 1, . . . , d} such that Xm is a leaf and Var[sm(X\{l})] ≤817

Var[si(X\{l})],∀i = 1, . . . , l − 1, l + 1, . . . , d. Then, the topological ordering defined by iterative818

identification of leaf nodes with Lemma 4 and Lemma 5 on the subgraphs resulting by removal of a819

leaf node, is correct with respect to the modelM.820

G Tuning of the hyperparameters in the experiments821

The methods included in the benchmark require the tuning of several hyperparameters for the822

inference procedure. In particular, PC, DAS, SCORE, NoGAM, RESIT, GraN-DAG, CAM, and823

DiffAN require a threshold α over the p-value of the statistical test used for the edge selection824

procedure. Instead, GES applies a regularization term weighted by λ to its score, which penalizes the825

number of edges included in the inferred graph: the higher the value of λ, the sparser the solution.826

Given that the tuning of both α and λ requires prior knowledge about the sparsity of the ground truth,827

there is no established procedure for finding their optimal values in real-world settings, where the828

ground truth is not accessible. Thus, in order to enable a fair comparison between all the methods, we829

always select the optimal value of α ∈ {0.001, 0.01, 0.05, 0.1} and λ ∈ {0.05, 0.5, 2, 5} over each830

benchmark dataset. In Section H we discuss the stability of the algorithms with respect to choices of831

these hyperparameters.832

GraN-DAG and DiffAN both define a learning procedure over the data, which requires the tuning of833

several training hyperparameters, the most important of which is the learning rate η. For each dataset,834

this is optimized over the loss function on a held-out validation set, without accessing the ground835

truth graph.836

H Stability with respect to hyperparameters choices837

Most causal discovery methods come with hyperparameters that alleviate minor assumption violations838

(e.g. sparsity regularization or higher thresholds on p-values in statistical tests). In the absence of839

background knowledge, tuning these hyperparameters is an art that often relies on pre-conceptions840

about reasonable solutions. In this section, we investigate the impact of these hyperparameters on the841

accuracy of the output graph. GES penalizes dense solution with a regularization term in its score,842

weighted by a hyperparameter λ that can not be tuned in the absence of the ground truth. Similarly,843

an α threshold on p-values for statistical tests for edge selection is required by all the benchmarked844

methods (excluding GES and DirectLiNGAM) and can not be tuned without knowledge of the ground845

truth. In this section, we analyze the inference F1 score by fixing α and λ to the commonly accepted846

default values of 0.05 and 0.5 respectively. In Figure 4 we summarise the absolute value of the847

difference between the F1 score obtained with hyperparameters optimized on the ground truth of848

each dataset, against the F1 score yielded by inference with the default α and λ values (denoted with849

|f1diff| in the plots). According to our empirical findings, in the case of graphs with at least 10 nodes,850

the median of this difference is in general lower than 0.1, and most of the time close to 0. Sparse851

graphs seem to be more affected in their performance by the hyperparameters choice: this means852

that using the default α and λ causes an increase of false positives in the output graph. Bühlmann853

et al. [46] shows that under correct topological order, a graph whose set of edges is a superset of the854

ground truth still provides consistent estimates of the causal effects, such that increasing the false855

positives doesn’t affect the outcome of downstream tasks, but only the statistical efficiency of the856

inference. Given that estimation of the topological ordering is not affected by the choice of α and λ857

values, we suggest that the role of hyperparameters value is in this respect marginal with respect to858

the task of interest.859

Implications. We observe remarkable stability of the benchmarked methods with respect to the860

choice of their hyperparameters. The biggest drops in F1 score are observed on sparse graphs,861
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Figure 4: The violin plots in the figure represent the difference between the F1 score of a method running
inference with hyperparameters optimized using the ground truth, versus the F1 score of the same method using
a default value of the hyperparameters. We denote this difference with |f1diff|. In the case of GES, we define as
default λ = 0.5. For all the remaining methods, the default alpha threshold is defined as α = 0.05. The violin
plots refer to the inference performance on datasets and graphs generated according to 20 different random seeds.
Results in the table are on data generated from the vanilla scenario, and we consider Erdos-Renyi graphs with
the number of nodes in {5, 10, 20, 50} in the dense and sparse settings.

meaning that the default parameters cause an increase of false positives, which nevertheless does862

not affect the downstream task of interest of consistent estimation of causal effects.863

I Other experimental results on Erdos-Renyi graphs864

In this section, we present additional experimental results on Erdos-Renyi graphs.865

I.1 The effect of non-iid distribution of the data866

Figure 1f (right) illustrates that all the methods included in our benchmark do not perform well on867

data sampled from a non-iid distribution generated according to the autoregressive model of Equation868

(7): F1 score and FNR-π̂ are indeed similar to that of the random baseline. It clearly appears that869

none of the presented algorithms provide guarantees of good empirical performance in the setting of870

non-iid distribution of the data.871

I.2 Experiments under arbitrary distribution of the noise terms872

In Section 2.2 we discussed the effect of the distribution of the noise terms on the identifiability873

of the causal graph underlying an SCM. Given that the assumption of Gaussian distribution of the874

disturbances is often not satisfied in real datasets, it is important to provide empirical evidence on875

the performance of the benchmarked methods on data generated with an arbitrary distribution of the876

noise. In this section, we discuss experiments on data generated with the noise terms that are iid877

samples from the distribution of Figure 2c. Similar to Section 4, we analyze results on ER graphs878

with 20 nodes, with experiments repeated over 20 random seeds. In this section, we include results of879

DirectLiNGAM, on both linear and nonlinear SCMs.880

Figure 5 illustrates the FNR-π score of the inferred topological order on data generated according881

to the vanilla model with non-Gaussian noise terms. Under these conditions, NoGAM and RESIT882

provide theoretical guarantees of consistent estimate of the causal ordering. Similarly, PC and883

GES do not make explicit assumptions on the distribution of the noise terms (despite the fact that884
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Figure 5: F1 score and FNR-π̂ on data generated with non-Gaussian distribution of the noise terms (c.f. Figure
2c). For each method, we also display the violin plot of its performance on the vanilla scenario with Gaussian
noise terms, with transparent color. F1 score (the higher the better) and FNR-π̂ (the lower the better) are
evaluated over 20 seeds on Erdos-Renyi dense graphs with 20 nodes (ER-20 dense). FNR-π̂ is not computed for
GES and PC methods, whose output is a CPDAG.

GES optimizes a Gaussian likelihood). SCORE, DiFFAN, DAS, and CAM instead are limited by885

restrictions on the noise terms, which are required to be normally distributed. However, Figure 5886

(right) shows that, except for CAM, they can estimate the order with accuracy comparable to that887

achieved in the case of vanilla generated data, with Gaussian distribution of the disturbances. These888

observations are in line with the experimental findings in Montagna et al. [25], which shows how889

the structure of the score entries of leaf nodes can still be exploited by SCORE for inference on890

data generated under arbitrary noise distribution. Our experimental results agree with this intuition:891

surprisingly, SCORE ordering ensures better FNR-π̂ accuracy than RESIT, despite the latter being892

explicitly designed to be insensitive to the distribution of the noise terms. Interestingly, we notice that893

the median of the violin plot referred to DirectLiNGAM in Figure 5 (right) is close to that of RESIT894

and CAM: this suggests that in the realistic scenario of mixed linear and nonlinear mechanisms with895

non-Gaussian additive disturbances, we can expect DirectLiNGAM to give performance significantly896

better than several methods designed to perform on nonlinear ANM. Figure 5 (left), shows that the897

in the case of methods whose ordering accuracy is comparable to the Gaussian case, the F1 score898

after pruning is also comparable to that on Gaussian data. This means that CAM-pruning is robust899

with respect to arbitrary distributions of the noise terms. Additional experimental results on data900

generated according to the misspecified scenarios of Section 3.1.1 with non-Gaussian distribution of901

the disturbances, are presented in Figure 6.902

Implications. Most of the benchmarked methods are capable of robust inference on datasets generated903

by an ANM with non-Gaussian noise terms. DirectLiNGAM shows remarkable performance,904

comparable to that of several methods designed for inference on nonlinear additive noise models.905

I.3 Experiments with score-sortability906

In this section, we present the experimental results of a simple ordering algorithm, that we name907

ScoreSort, based on the score-sortability criterion defined in Section 4.1.1. Given the random vector908

X ∈ Rd generated according to a structural causal model, the ScoreSort baseline identifies the909

index of a leaf node l as the argmini Var[si(X)]. Then it removes the leaf node Xl from the set910

of vertices of the graph, and identifies the next leaf with the argmin of the variance of the score911

vector of the remaining set of nodes. Identification of leaf nodes according to this procedure over the912

d (sub)graphs obtained by the iterative leaves removal yields a topological ordering π for the graph913

G underlying the SCM. If the model is score-sortable, then, according to Proposition 2, the causal914

order π is correct with respect to the graph. Details on ScoreSort are presented in the Algorithm915

box 1. In practice, ScoreSort estimates the score vector ŝ according to the same score-matching916

algorithm used by SCORE and NoGAM, which is based on the Stein identity [22].917

Figure 7 compares ScoreSort performance with NoGAM and SCORE ordering algorithms, on918

data generated according to the vanilla and misspecified scenarios of Section 3.1.1. In line with919

our considerations in the discussion on score matching robustness in Section 4.1.1, we observe920
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Figure 6: Experimental results on the misspecified scenarios with non-Gaussian distribution of the noise terms.
For each method, we also display the violin plot of its performance on the same misspecified scenario under
Gaussian distribution of the noise terms, with transparent color. F1 score (the higher the better) and FNR-π̂ (the
lower the better) are evaluated over 20 seeds on Erdos-Renyi dense graphs with 20 nodes (ER-20 dense). FNR-π̂
is not computed for GES and PC, methods whose output is a CPDAG.

that ScoreSort FNR-π̂ accuracy is comparable, with statistical significance, to that of SCORE and921

NoGAM. This is true both in the case of data generated under vanilla and misspecified scenarios.922

J Experiments on SF, GRP, and FC graphs923

In this section, we analyze the F1 score and FNR-π̂ accuracy of the benchmarked methods in the case924

when the ground truth graph is generated with Scale-free, Fully Connected, and Gaussian Random925

Partitions algorithms.926

J.1 Experiments on Scale-free graphs927

Figure 8 illustrates the F1 score and FNR-π̂ on SF graphs. We see that similar to the case of ER928

networks, score matching-based methods show remarkable robustness in the inferred order in the929

case of several misspecified scenarios, particularly, on data generated by the PNL (Figure 8a right),930

measurement error (Figure 8d right), and unfaithful models (Figure 8e right). However, we notice931

two significant differences with respect to the conclusions that we derived in the case of ER graphs in932

Section 4, Figure 1: in the case of the LiNGAM model, SCORE, DAS and NoGAM display FNR-π̂933

accuracy that is remarkably close to that on vanilla data (Figure 8b right), whereas their decrease in934

performance in the case of latent confounders effects (Figure 8c right), is worse than that observed on935

ER graphs. Interestingly, the results on the F1 score show that DAS, SCORE, NoGAM, and DiffAN936

performance is surprisingly good (with respect to the random baseline) across all the misspecified937

scenarios, which suggests good performance of CAM-pruning on SF graphs. Moreover, we see that938
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Algorithm 1 ScoreSort algorithm for inference of the causal order

Input: data matrix X ∈ Rn×d

π ← [ ]

nodes← [1, . . . , d]

for i = 1, . . . , d do
ŝ← score-matching(X)

lindex ← argmin V̂ar[ŝ]

l← nodes[lindex]

π ← [l, π]

Remove lindex-th column from X; Remove l from nodes

end for
π ← reverse(π) (first node is a source, last node is a leaf)
return π
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Figure 7: Experiments on score-sortability. We compare the FNR-π̂ accuracy of the simple ScoreSort baseline
(c.f. Algorithm 1) with SCORE and NoGAM algorithms performance. The violin plots are evaluated over 20
seeds on Erdos-Renyi dense graphs with 20 nodes (ER-20 dense).

GraN-DAG and RESIT inference procedure is close to that of the random baseline in almost all939

the misspecified scenarios: this is also explained by the poor performance of these two methods on940

vanilla data and SF graphs (illustrated in the transparent violin plots of Figure 8).941

Implications. Score-matching based approaches show remarkable robustness even in the case of942

SF graphs. Interestingly, CAM-pruning performance on SF graphs is generally better than the one943

relative to ER-generated ground truths, such that the observed F1 score is often better than random.944

We also observe that RESIT and GraN-DAG ordering ability is negatively affected by the SF ground945

truth, in comparison to the case of ER graphs.946

J.2 Experiments on fully connected graphs947

In the case of fully connected graphs, the ground truth admits a unique topological ordering. This948

means that we expect to observe an increase in the false negative rate FNR-π̂, with respect to the949

results on ER graphs of Figure 1. This is in line with our empirical evidence, as illustrated in Figure 9.950

However, we see that score matching-based approaches still show robust performance in the inference951

of the ordering with respect to misspecified scenarios, except for the case of data generated according952

to the LiNGAM ground truth model. Notably, the F1 score accuracy of GES is consistently better953
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Figure 8: Experimental results on the misspecified scenarios. For each method, we also display the violin plot
of its performance on the vanilla scenario with transparent color. F1 score (the higher the better) and FNR-π̂ (the
lower the better) are evaluated over 20 seeds on Scale-free dense graphs with 20 nodes (SF-20 dense). FNR-π̂ is
not computed for GES and PC methods, whose output is a CPDAG. Note that DirectLiNGAM performance does
not appear, as both the linear mechanisms and non-Gaussian noise assumptions are violated.

than that of all the other methods, across every scenario. This is to be understood with the fact that954

the unpenalized BIC score optimized by GES always improves by increasing the number of edges in955

the graph. Given that we optimize the regularizer term λ on each dataset, the optimal λ value will956

naturally privilege the densest solutions. Different is the case for methods that rely on CAM-pruning,957

which display an F1 score consistently lower than the random baseline, except for the case of data958

generated by the unfaithful and LiNGAM models.959

Implications. Score matching-based approaches are in general robust to misspecifications of the960

scenario in the case of a fully connected ground truth. GES shows a remarkable performance, that is961

partly explained by the optimization of the loss penalization term directly on the ground truth. Finally,962

we observe that the CAM-pruning step is negatively affected by the large density of the graphs.963

J.3 Experiments on GRP graphs964

In Figure 10 we see that score matching-based methods and CAM algorithm display better robustness965

in the inference of the order than the remaining approaches, in reference to all of the benchmarked966

scenarios. The FNR-π̂ of RESIT, GraN-DAG, and DiffAN are significantly close to the random967

baseline for data generated according to most of the ground truth models (with the exception of968

DiffAN on the LinGAM model and GraN-DAG on unfaithful samples). In terms of F1 score,969

most of the methods show good capability of inferring the ground truth graph, even in the case of970

data generated under assumption violations. Note that the F1 score of the random ground truth is971

remarkably bad, if compared to the case of SF, FC, and ER graphs. This is in line with the cluster972

structure of GRP graphs: given that the random baseline connects pair of nodes all with the same973
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Figure 9: Experimental results on the misspecified scenarios. For each method, we also display the violin plot
of its performance on the vanilla scenario with transparent color. F1 score (the higher the better) and FNR-π̂
(the lower the better) are evaluated over 20 seeds on fully connected graphs with 20 nodes (FC-20). FNR-π̂ is
not computed for GES and PC methods, whose output is a CPDAG. Note that DirectLiNGAM performance does
not appear, as both the linear mechanisms and non-Gaussian noise assumptions are violated.

probability 0.5, we expect a large number of false positives due to edges between nodes of different974

clusters.975

Implications. Score matching-based approaches and CAM algorithm are remarkably robust to model976

misspecification both in terms of F1 score and FNR-π̂ accuracy.977

K Other results978

Statistical efficiency. Figure 11 shows F1 score and FNR-π̂ accuracy on datasets with sample size979

equals to 100 and 1000. Comparing the relative difference in performance with respect to different980

sample sizes, we get an empirical idea of the statistical efficiency of the inference methods. In line981

with our expectations, the experimental results show that both metrics are negatively affected by the982

reduction in sample size. Interestingly, in the case of SCORE, DAS, NoGAM, and DirectLiNGAM,983

we observe better stability of the FNR-π̂, compared to the other methods, with the score matching-984

based approaches that are in general significantly better than the random baseline also with datasets985

of size 100.986

The effect of the graph size and density. Figure 12 illustrates the F1 score and the FNR-π̂ accuracy987

on datasets generated according to the vanilla scenario and ground truth graphs that differ in size988

and density. In particular, we consider the case of dense and sparse graphs, with {5, 10, 20, 50}989

nodes. Interestingly, we see good stability of the F1 score across different graph dimensions in990

the sparse case. The decrease in performance due to larger graph sizes is more evident in the case991

of dense graphs: this is particularly true for dense graphs with 50 nodes, where the preliminary992

neighbours search step (described in Section C.1) before the CAM-pruning reduces the ability to993
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Figure 10: Experimental results on the misspecified scenarios. For each method, we also display the violin plot
of its performance on the vanilla scenario with transparent color. F1 score (the higher the better) and FNR-π̂ (the
lower the better) are evaluated over 20 seeds on Gaussian Random Partitions graphs with 20 nodes (GRP-20).
FNR-π̂ is not computed for GES and PC methods, whose output is a CPDAG. Note that DirectLiNGAM
performance does not appear, as both the linear mechanisms and non-Gaussian noise assumptions are violated.

infer true positives for most of the methods. Considering the FNR-π̂ of the inferred orders, we see994

that, similarly to what we observed in the analysis of the F1 score, in the case of sparse ground995

truths most of the methods display stable results across different graph dimensions. Indeed, score996

matching-based approaches, as well as CAM, DiffAN, GraN-DAG, and DirectLiNGAM do not997

display any clear evidence of degraded performance for larger graphs. In the dense setting, instead,998

we see that CAM and DirectLiNGAM accuracy in the inference of the order is negatively affected by999

larger dimensionality.1000

L FCI experiments on confounded graphs1001

In this section, we describe the experimental setting for the FCI algorithm (Fast Causal Inference) [4].1002

Given that the method can handle latent confounders, we focus our experiments on data generated1003

from graphs admitting latent common causes.1004

PAG. The output graphical object of FCI is a Partial Ancestral Graph (PAG) [47]. It admits six types1005

of edges. We denote the two ends of an edge as marks. The possible marks are a tail (−), a circle (◦),1006

and an arrowhead (>), which combined allow for six edges. These graphs represent an equivalence1007

class for Maximal Ancestral Graphs, which are graphical objects that represents the presence of1008

confounders effects and selection bias [2].1009

Metrics. For the evaluation of the FCI inferred output, we adopt the strategy proposed by Heinze-1010

Deml et al. [17] (see their Section 4.2). We define true positives, false positives, and false negatives1011

over three possible adjacency matrices, each one defined by a specific query.1012
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Figure 11: Experiments on the effect of the sample size. We compare the F1 score and FNR-π̂ accuracy on
datasets generated under the vanilla scenario with Gaussian noise, with different sample sizes. We remark that in
the case of DirectLiNGAM, in order to provide meaningful results, we report the performance on datasets with
non-Gaussian noise terms. Violin plots filled with color refer to datasets of size 100, and transparent violin plots
refer to datasets of size 1000. The metrics are reported on Erdos-Renyi graphs of size {5, 10, 20, 50} both in
the sparse and dense case (PC and GES are not included for graphs of 50 nodes, as their computational demand
is too high). Experiments are repeated over 20 different random seeds.
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Figure 12: Experiments on the effect of the graph size and graph density. We compare the F1 score and FNR-π̂
accuracy on datasets generated under the vanilla scenario with Gaussian noise, on ground truth graphs with the
number of nodes {5, 10, 20, 50} both in the sparse and dense case (PC and GES are not included for graphs of
50 nodes, as their computational demand is too high). We remark that in the case of DirectLiNGAM, in order to
provide meaningful results, we report the performance on datasets with non-Gaussian noise terms. The metrics
are reported on Erdos-Renyi graphs. Experiments are repeated over 20 different random seeds.
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Figure 13: FCI performance on dense and sparse ER graphs, on datasets generated under latent confounders
effects.

• IsPotentialParent query: the estimated adjacency matrix has Aij = 1 if there is an edge1013

between Xi −Xj , Xi −◦Xj , Xi → Xj , Xi ◦−Xj , Xi ◦−◦Xj , Xi◦→ Xj in the estimated1014

PAG, else Aij = 0. Aij = 1 denotes the case in which Xi is a potential parent of Xj .1015

• IsAncestor query: the estimated adjacency matrix has Aij = 1 if there is a path from Xi to1016

Xj with edges of type Xi −◦Xj , Xi → Xj , Xi ◦−Xj in the estimated PAG, else Aij = 0.1017

Aij = 1 denotes the case in which Xi is an ancestor of Xj .1018

• IsPotentialAncestor query: the estimated adjacency matrix has Aij = 1 if there is a path1019

from Xi to Xj with edges of type Xi −Xj , Xi −◦Xj , Xi → Xj , Xi ◦−Xj , Xi ◦−◦Xj ,1020

Xi◦→ Xj in the estimated PAG, else Aij = 0. Aij = 1 denotes the case in which Xi is a1021

potential ancestor of Xj .1022

For each adjacency matrix defined by one of the three queries, we define true positives, false negatives,1023

and false positives as follows:1024

• A true positive (TP) is a pair i, j with Aij = 1 in both the inferred and ground truth adjacency1025

matrices (with the ground truth DAG converted to a PAG).1026

• A false negative (FN) is a pair i, j with Aij = 0 in the inferred matrix, and Aij = 1 in the1027

ground truth (with the ground truth DAG converted to a PAG).1028

• A false positive (FP) is a pair i, j with Aij = 1 in the inferred matrix, and Aij = 0 in the1029

ground truth (with the ground truth DAG converted to a PAG).1030

Given these definitions of TP, FN, FP, we define the F1 score as F1 = TP
TP+0.5(FP+FN) , which we1031

use to present our empirical results in Figure 13.1032

31



0.0

0.2

0.4

0.6

0.8

1.0

fn
r

FNR

0.0

0.2

0.4

0.6

0.8

1.0

fp
r

FPR
PNL model - ER-20 dense

(a) PNL

0.0

0.2

0.4

0.6

0.8

1.0

fn
r

FNR

0.0

0.2

0.4

0.6

0.8

1.0

fp
r

FPR
LiNGAM - ER-20 dense

(b) LiNGAM

0.0

0.2

0.4

0.6

0.8

1.0

fn
r

FNR

0.0

0.2

0.4

0.6

0.8

1.0

fp
r

FPR
Confounded model - ER-20 dense

(c) Latent confounders

0.0

0.2

0.4

0.6

0.8

1.0

fn
r

FNR

0.0

0.2

0.4

0.6

0.8

1.0

fp
r

FPR
Measurement error model - ER-20 dense

(d) Measurement error

0.0

0.2

0.4

0.6

0.8

1.0

fn
r

FNR

0.0

0.2

0.4

0.6

0.8

1.0

fp
r

FPR
Unfaithful model - ER-20 dense
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Figure 14: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the misspecified
scenarios, on Erdos-Renyi dense graphs with 20 nodes (ER-20 dense). For each method, we also display the
violin plot of its performance on the vanilla scenario with transparent color. The noise terms are normally
distributed, except for the LiNGAM model, in which case we generate disturbances according to a non-Gaussian
distribution.
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Figure 15: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the misspecified
scenarios, on Erdos-Renyi sparse graphs with 20 nodes (ER-20 sparse). For each method, we also display
the violin plot of its performance on the vanilla scenario with transparent color. The noise terms are normally
distributed, except for the LiNGAM model, in which case we generate disturbances according to a non-Gaussian
distribution.
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Figure 16: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the misspecified
scenarios, on Erdos-Renyi dense graphs with 10 nodes (ER-10 dense). For each method, we also display the
violin plot of its performance on the vanilla scenario with transparent color. The noise terms are normally
distributed, except for the LiNGAM model, in which case we generate disturbances according to a non-Gaussian
distribution.
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Figure 17: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the misspecified
scenarios, on Erdos-Renyi sparse graphs with 10 nodes (ER-10 sparse). For each method, we also display
the violin plot of its performance on the vanilla scenario with transparent color. The noise terms are normally
distributed, except for the LiNGAM model, in which case we generate disturbances according to a non-Gaussian
distribution.
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Figure 18: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the misspecified
scenarios, on Erdos-Renyi dense graphs with 5 nodes (ER-5 dense). For each method, we also display the violin
plot of its performance on the vanilla scenario with transparent color. The noise terms are normally distributed,
except for the LiNGAM model, in which case we generate disturbances according to a non-Gaussian distribution.
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Figure 19: FNR (False Negative Rate) and FPR (False Positive Rate) of the experiments on the
misspecified scenarios, on Erdos-Renyi sparse graphs with 5 nodes (ER-5 sparse). For each method,
we also display the violin plot of its performance on the vanilla scenario with transparent color. The
noise terms are normally distributed, except for the LiNGAM model, in which case we generate
disturbances according to a non-Gaussian distribution.
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