
Table R1: Performance comparison of different DM unlearning methods
with different SD models evaluated on UNLEARNCANVAS. Besides the
default diffusion model SD v1.5 adopted in this work, an older (SD v1.4)
and newer version (SD v2.0) are tested. In case of any confusion, the
numbers of SD v1.5 are different from those reported in Tab. 2, as only the
first 20 styles and 10 objects in the alphabetic order in UNLEARNCANVAS
are tested due to the time limit. All the formats strictly follow Tab. 2.

SD v1.4

Method Style Unlearning Object Unlearning
UA (") IRA (") CRA (") UA (") IRA (") CRA (")

ESD [23] 98.72% 83.35% 93.11% 78.93% 44.13% 46.71%
FMN [28] 75.08% 44.32% 46.32% 45.32% 89.32% 61.17%
UCE [24] 94.82% 43.21% 38.91% 83.35% 36.52% 34.14%
CA [25] 55.23% 84.32% 83.33% 80.32% 48.88% 41.23%

SalUn [27] 81.32% 91.14% 88.11% 89.93% 94.53% 91.91%
SEOT [30] 51.71% 82.26% 73.43% 22.12% 92.13% 73.33%
SPM [26] 54.64% 91.23% 84.23% 62.99% 79.02% 71.83%
EDiff [31] 89.24% 63.26% 94.23% 84.32% 90.11% 51.11%
SHS [32] 91.13% 82.13% 39.82% 88.41% 80.75% 48.30%

SD v1.5

Method Style Unlearning Object Unlearning
UA (") IRA (") CRA (") UA (") IRA (") CRA (")

ESD [23] 96.12% 76.82% 90.43% 88.45% 52.71% 42.17%
FMN [28] 85.95% 54.22% 44.39% 42.68% 88.17% 70.98%
UCE [24] 95.36% 58.13% 45.52% 91.38% 37.21% 32.58%
CA [25] 58.40% 92.55% 88.88% 44.23% 86.79% 78.63%

SalUn [27] 82.58% 86.24% 90.93% 82.47% 91.39% 95.13%
SEOT [30] 54.89% 90.93% 80.32% 20.25% 91.32% 78.67%
SPM [26] 58.32% 88.76% 80.62% 68.10% 86.79% 78.12%
EDiff [31] 88.77% 69.82% 94.62% 82.34% 89.03% 45.13%
SHS [32] 92.35% 76.87% 40.02% 76.45% 77.84% 64.15%

SD v2.0

Method Style Unlearning Object Unlearning
UA (") IRA (") CRA (") UA (") IRA (") CRA (")

ESD [23] 93.32% 75.84% 72.43% 84.31% 60.56% 56.32%
FMN [28] 72.33% 41.45% 39.42% 39.93% 71.48% 61.92%
UCE [24] 83.44% 47.13% 42.41% 91.32% 21.11% 31.09%
CA [25] 41.32% 79.32% 72.32% 49.32% 92.41% 84.36%

SalUn [27] 71.32% 91.42% 84.21% 90.42% 94.11% 97.92%
SEOT [30] 57.63% 81.58% 74.91% 41.25% 91.24% 77.76%
SPM [26] 71.11% 82.34% 79.01% 63.17% 89.65% 90.12%
EDiff [31] 88.65% 74.32% 77.79% 81.22% 91.30% 44.32%
SHS [32] 91.31% 74.50% 32.11% 85.34% 71.43% 31.39%

Table R2: Performance comparison of more DM unlearning methods eval-
uated on UNLEARNCANVAS extended from Tab. 2. A new method MACE
[97] is added and tested. The statistics of other methods are from Tab. 2.

Method
Effectiveness Efficiency

Style Unlearning Object Unlearning FID (#) Time Memory Storage
UA (") IRA (") CRA (") UA (") IRA (") CRA (") (s) (#) (GB) (#) (GB) (#)

ESD [23] 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 65.55 6163 17.8 4.3
FMN [28] 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 131.37 350 17.9 4.2
UCE [24] 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 182.01 434 5.1 1.7
CA [25] 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 54.21 734 10.1 4.2

SalUn [27] 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 61.05 667 30.8 4.0
SEOT [30] 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 62.38 95 7.34 0.0
SPM [26] 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 59.79 29700 6.9 0.0
EDiff [31] 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 81.42 1567 27.8 4.0
SHS [32] 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 119.34 1223 31.2 4.0

MACE [97] 93.51% 73.22% 62.11% 89.32% 83.25% 57.42% 184.42 712 7.8 0.4

Table R3: Performance comparison of different DM unlearning methods
when evaluated with different classification models, i.e., ViT-Large-based
and ResNet-101-based model. Both models are pretrained on ImageNet-
21k and then finetuned on UNLEARNCANVAS as style or object-classifier
respectively.

Method
Style/Object Classifier: ViT-Large Style/Object Classifier: ResNet-101

Style Unlearning Object Unlearning Style Unlearning Object Unlearning
UA (") IRA (") CRA (") UA (") IRA (") CRA (") UA (") IRA (") CRA (") UA (") IRA (") CRA (")

ESD [23] 98.58% 80.97% 93.96% 92.15% 55.78% 44.23% 97.89% 80.14% 93.32% 91.48% 56.14% 44.67%
FMN [28] 88.48% 56.77% 46.60% 45.64% 90.63% 73.46% 87.95% 57.43% 45.96% 46.33% 91.32% 73.12%
UCE [24] 98.40% 60.22% 47.71% 94.31% 39.35% 34.67% 98.93% 59.61% 47.16% 93.64% 39.97% 34.01%
CA [25] 60.82% 96.01% 92.70% 46.67% 90.11% 81.97% 60.37% 95.48% 91.91% 47.45% 89.61% 82.44%

SalUn [27] 86.26% 90.39% 95.08% 86.91% 96.35% 99.59% 86.79% 90.01% 94.67% 87.42% 97.28% 99.14%
SEOT [30] 56.90% 94.68% 84.31% 23.25% 95.57% 82.71% 57.33% 94.07% 83.46% 23.78% 94.87% 82.39%
SPM [26] 60.94% 92.39% 84.33% 71.25% 90.79% 81.65% 61.37% 92.91% 83.92% 70.57% 90.31% 82.09%
EDiff [31] 92.42% 73.91% 98.93% 86.67% 94.03% 48.48% 91.85% 73.24% 99.82% 85.87% 93.47% 47.96%
SHS [32] 95.84% 80.42% 43.27% 80.73% 81.15% 67.99% 95.12% 79.71% 42.63% 79.92% 80.73% 68.81%
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Figure R1: An illustration of different types of ‘Van Gogh’ styles rendered
by Fotor [11] based on different style reference images (i.e., different Van
Gogh’s original master pieces). The type ‘Sunflowers’ exhibits low stylistic
similarity compared to the other three types.

(a) UNLEARNCANVAS (b) WIKIART

Figure R2: Stylistic loss comparison among the (a) styles in UNLEARN-
CANVAS and (b) artists in WIKIART. For each style/artist pair, the average
style loss is calculated over all the image pairs following [86]. The value
in each cell represent the level of stylistic distinctiveness between two
styles/artists with the corresponding indices. A lower value represent
higher stylistic similarity and lower distinctiveness.

Table R4: Ranking comparison of different DM unlearning methods in this
work. The harmonic mean for each metric of the ranks in each metrics
is calculated and used as the score for final ranking. The performance in
each metric are sourced and summarized from Tab. 2, Fig 6, Tab. 3, and
Tab. A5. The rankings are consistent with those reported in Fig. 1. A
smaller harmonic mean indicates a better overall performance. The top
method in each column is highlighted in bold.

Methods UA IRA CRA FID Rob. FU FR SU SR Harmonic Mean Final Rank

ESD 2 8 6 5 1 1 8 6 6 2.61 2
FMN 6 7 7 8 4 7 2 4 5 4.69 8
UCE 1 9 9 9 5 2 9 1 8 2.75 4
CA 8 3 2 1 8 5 4 8 4 3.09 5
SalUn 5 2 1 3 3 8 1 7 2 2.18 1
SEOT 9 1 3 4 9 9 3 9 1 2.68 3
SPM 7 4 4 2 7 6 5 2 7 3.92 7
EDiff 3 5 5 6 2 3 7 3 9 3.88 6
SHS 4 6 8 7 6 4 6 5 3 4.99 9
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