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Abstract

Continuous cardiovascular monitoring can
play a key role in precision health. How-
ever, some fundamental cardiac biomarkers
of interest, including stroke volume and car-
diac output, require invasive measurements,
e.g., arterial pressure waveforms (APW). As
a non-invasive alternative, photoplethysmogra-
phy (PPG) measurements are routinely col-
lected in hospital settings. Unfortunately, the
prediction of key cardiac biomarkers from PPG
instead of APW remains an open challenge, fur-
ther complicated by the scarcity of annotated
PPG measurements. As a solution, we propose
a hybrid approach that uses hemodynamic sim-
ulations and unlabeled clinical data to estimate
cardiovascular biomarkers directly from PPG
signals. Our hybrid model combines a condi-
tional variational autoencoder trained on paired
PPG-APW data with a conditional density esti-
mator of cardiac biomarkers trained on labeled
simulated APW segments. As a key result, our
experiments demonstrate that the proposed ap-
proach can detect fluctuations of cardiac out-
put and stroke volume and outperform a super-
vised baseline in monitoring temporal changes
in these biomarkers.

Keywords: Cardiovascular Monitoring,
Hemodynamics, Hybrid Learning, Generative
Learning, Simulation-based Inference

Data and Code Availability In this work we
make use of in-silico (simulated) and in-vivo (real-
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world) data. The in-vivo data is drawn from pub-
licly available datasets (UCIBP (Kachuee et al., 2015)
and VitalDB (Lee et al., 2022)) of hospitalized pa-
tients, while the in-silico dataset includes hemody-
namic waveforms (Manduchi et al., 2024) generated
using OpenBF, an open-source 1D blood flow solver
(Benemerito et al., 2024).

Institutional Review Board (IRB) This work
does not require IRB approval.

1. Introduction

Continuous monitoring of cardiovascular parameters
such as cardiac output (CO) and stroke volume (SV)
has proven essential to evaluate function, guide treat-
ment, and detect hemodynamic instability in criti-
cal care (Pinsky, 2007; Nguyen and Squara, 2017).
However, current clinical assessment relies on invasive
techniques that entail risk and require medical super-
vision (Joosten et al., 2017; Arya et al., 2022; Evans
et al., 2009). Photoplethysmography (PPG), which
captures cardiovascular information non-invasively
and is increasingly accessible through consumer wear-
ables (Charlton et al., 2022; Weng et al., 2024), of-
fers a promising alternative that could enable safer
monitoring in critical care and potentially extend
capabilities beyond hospital settings (Orini et al.,
2023; Williams et al., 2023). Yet, monitoring car-
diac biomarkers such as SV and CO from PPGs re-
mains challenging due to the scarcity of labeled data
and the indirect, not fully understood relationship
between PPG signals and these parameters.
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Figure 1: Proposed hybrid framework for non-invasive monitoring of cardiovascular parameters from PPG signals.
The framework combines simulated and real-world data across two key components: a) a conditional
VAE, trained on real-world paired APW and PPG segments, producing plausible APW signals from
PPG inputs; b) a density estimator trained on a in-silico dataset of hemodynamic simulations inferring
cardiovascular biomarkers from generated APW signals. The framework is validated in-vivo on unseen
VitalDB data, using per-subject Spearman correlation between ground truth and predicted values of
cardiovascular biomarkers.

In the context of cardiovascular monitoring, phys-
iological simulations (Charlton et al., 2019; Melis
et al., 2017) emerge as a potential strategy to mitigate
the scarcity of in-vivo (i.e. real-patient) labeled data
with cardiovascular biomarker annotations, using in-
silico (i.e. simulated) data. In particular, recent work
demonstrated the value of hemodynamic simulators
to obtain arterial pressure waveform (APW) signals
for inferring cardiovascular biomarkers in in-vivo data
(Manduchi et al., 2024). While closely related to
PPG signals, APWs are obtained invasively and thus
provide a more direct view of central hemodynam-
ics. By contrast, PPG reflects peripheral vascular
changes through a complex relationship influenced by
temperature, sweat, skin properties, and motion arti-
facts (Meier et al., 2024). Windkessel models attempt
to describe the APW–PPG relationship, but they are
too constrained to capture the full complexity of real-
world data. Consequently, Manduchi et al. (2024) re-
ported mixed results when applying the same strat-
egy to PPG, despite its effectiveness on APWs.
To address these limitations, we propose a novel

hybrid learning strategy that combines hemodynamic
simulations with in-vivo data to estimate cardiac
biomarkers directly from PPG signals. As in Man-
duchi et al. (2024), we first use a simulator of APWs
to train a neural posterior estimator (NPE, Lueck-
mann et al., 2017) to model the relationship between

APWs and cardiovascular parameters. To learn the
transfer function between APW and PPG modali-
ties, we then train a generative model on a real-
world dataset of paired PPG-APW signals. Taken
together, our contributions are: (i) a novel hybrid
approach leveraging both in-silico simulations and
in-vivo biosignals for PPG-based cardiovascular as-
sessment; (ii) validation on unseen in-vivo data for
the monitoring of stroke volume and cardiac out-
put changes; and (iii) a demonstration that physics-
based simulation enables robust cardiovascular pa-
rameter estimation from PPG signals.

2. Method

Our goal is to predict some cardiovascular parame-
ters of interest given a finger PPG measurement, for
which we propose a novel approach illustrated in Fig-
ure 1. We formalize this task as learning a conditional
density estimator of p(θ | y), where y ∈ RT denotes
a T-timestep PPG measurement and θ ∈ Rd the pa-
rameters of interest. To solve this task, we are given
1. a large dataset of labeled simulated APWs Ds :=
{θi,xi}Ns

i=1, where θi ∼ π(θ) are sampled from a prior
distribution π, and xi ∼ p̃(x | θ = θi) are generated
by running the simulator on θi (where p̃ emphasizes
that the simulator approximates the real world); and
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Figure 2: Box plots illustrating the per-subject Spearman correlation coefficients for the estimation of four key
cardiovascular parameters. Our proposed hybrid approach (green) is compared against three relevant
baselines: (i) APW (orange), which uses the ground-truth invasive APWs for inference with estimator
trained in-silico; (ii) PPG Windkessel (pink), an estimator trained on labeled in-silico PPGs obtained with
a Windkessel model approximation (Manduchi et al., 2024); and (iii) PPG Supervised (blue), an estimator
trained directly on a subset of labeled VitalDB PPG data. Average results across independent runs with
standard deviations are reported in Table 2.

2. a dataset Dr = {xi,yi}Ni=1 of simultaneous real-
world APW and PPG measurements. In addition, for
evaluation, we use a labeled dataset De := {θi,yi}Ne

i=1

containing PPGs paired with ground truth parameter
values.

Estimating p(θ | y). We approximate p(θ | y) by
ignoring direct dependencies between parameters θ
and PPG measurements y, leading to

p(θ | y) ≈ Ep(x|y)[p(θ | x)].

We then learn two estimators, pϕs
(θ | x) and pϕr

(x |
y) on the labeled simulation dataset Ds and paired
APW-PPG dataset Dr, respectively.

Deep generative modeling of p(x | y) from
Dr. We train a conditional variational auto-
encoder (VAE, Kingma and Welling, 2014) on Dr

to estimate p(x | y), the mapping from PPG to
APW segments. In particular, we assume a la-
tent generative model pϕr (x | y) := Ep(z)[pϕr (x |
z,y)], where the latent z ∼ p(z) := N (0, I) aims
to capture unobserved physiological variations im-
pacting the relationship between APWs and PPGs.
In our experiments, we use 1D-CNN architectures
and Gaussian densities to parameterize the encoder
qϕr (z | x,y) and decoder pϕr (x | z,y) networks.
We train these two networks by optimizing the Ev-
idence Lower Bound objective on the the UCI Cuff-
Less Blood Pressure Estimation (UCIBP) dataset
(Kachuee et al., 2015), containing 333,690 paired
APW and PPG 8-second segments from ICU pa-
tients. We provide details on the data format, ar-
chitecture and training settings in appendix A.2.1.

Neural posterior estimation of p(θ | x). Fol-
lowing Manduchi et al. (2024), we train a neural pos-
terior estimator (NPE) pϕs

(θ | x) by optimizing di-

rectly
∑Ns

i=1 log pϕs(θi | xi) via stochastic gradient
ascent. To make pϕs

(θi | xi) differentiable we param-
eterize it with a conditional normalizing flow (NF,
Rezende and Mohamed, 2015) composed of 3 steps
of autoregressive and affine transformations and a
convolutional neural network that encodes the APW.
For our experiments, we reproduce the dataset from
Manduchi et al. (2024), which contains ≈ 32,000 syn-
thetic APW segments paired with parameter values.
Appendix A.2.2 further documents how we train the
NPE model.

Forming predictions with pϕ(θ | y). For a given
PPG segment y, we first sample M plausible corre-
sponding APW segments xm ∼ pϕr (x | y, zm), where
zm ∼ π. Then, from each corresponding estimated
posterior distribution pϕs

(θ | xm) we draw K sam-
ples. To obtain a point estimate we average the ob-
tained M ×K samples, and their standard deviation
is used as a measure of uncertainty.

3. Results

We evaluate our approach on an entirely separate
dataset, namely the VitalDB dataset (Lee et al.,
2022), comprising APW and PPG signals from 128
patients undergoing non-cardiac surgery, labeled with
cardiovascular biomarkers. Our evaluation focuses
on four key cardiovascular parameters: Heart Rate
(HR), Stroke Volume (SV), Cardiac Output (CO),
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Figure 3: SV ground truth (gray), predicted values with our approach (green), and redictions obtained with invasive
inference from ground truth APW (orange), on different subjects from the VitalDB dataset.

and Systemic Vascular Resistance (SVR). As a quan-
titative metric we report the per-patient Spearman
correlation between ground truth and predicted val-
ues for a given cardiovascular parameter over the time
frame that a patient is monitored.

Usefulness of hybrid modeling. Figure 2 com-
pares our hybrid approach with three relevant base-
lines, described in the caption. First, all meth-
ods perform well at predicting HR. This confirms
that our pipeline is capable, in principle, of predict-
ing cardiovascular parameters whose effect is faith-
fully captured by the simulator. More interestingly,
our method achieves a median per-subject correla-
tion above 0.5 for both SV and CO, significantly
higher than what Manduchi et al. (2024) obtained
using a prescribed Windkessel transfer function be-
tween APWs and PPGs. Directly using groundtruth
APWs as input to the predictive model, as in the
APW baseline, expectedly outperforms our method,
which instead relies on APW estimates. However,
our method outperforms a PPG-supervised baseline
in this task despite not having seen any in-vivo data
with cardiovascular parameter labels, in contrast to
this baseline. This comparison underscores the value
of hemodynamic simulations for estimation of car-
diovascular biomarkers from PPG inputs, and the ef-
fectiveness of combining prescribed simulations with
learned components. Unlike purely model-based ap-
proaches, which often suffer from oversimplified as-
sumptions (such as the Windkessel model), our hy-

brid modeling strategy has the potential to mitigate
the absence of large labeled datasets.

Usefulness of generative modeling. We demon-
strate that learning the PPG-to-APW transfer func-
tion with a conditional generative model offers ben-
efits over deterministic models for the downstream
tasks we consider in the experiments. Estimating
APW from PPG is inherently difficult because PPG
signals reflect peripheral vascular changes and are
significantly influenced by noise, motion, and other
confounding factors, making their relationship to in-
vasive APWs complex and indirect. Hence deter-
ministic models must compromise on this ambiguity,
leading to a suboptimal information bottleneck for
the parameters of interest. Table 1 in Appendix B.1
compares our method with a deterministic model and
shows that deterministic models consistently achieve
suboptimal performance. Furthermore, Figure 4
shows that prediction uncertainty tracks signal qual-
ity, highlighting the value of generative models for
uncertainty modeling.

On the difficulties of absolute value predic-
tion. In Figure 3, we examine the SV predictions
for a subset of patients. While our approach reli-
ably captures temporal trends in SV (e.g., it cap-
tures SV and CO peaks accurately), predicting the
absolute values of such complex hemodynamic pa-
rameters remains a persistent challenge (Manduchi
et al., 2024). Our results in Table 3 confirm this
observation, showing that our method, as the other
compared methods in this work, achieves limited ef-

4



Hybrid modeling of photoplethysmography for non-invasive monitoring of cardiovascular parameters

fectiveness for absolute value prediction. This chal-
lenge stems from a combination of factors: (i) our
current estimator performs a per-segment prediction
and lacks a notion subject, thus overlooking unob-
servable, subject-specific physiological characteristics
that influence baseline SV; and (ii) despite its so-
phistication, the underlying hemodynamic simulator
may have inherent model misspecification when ap-
plied to real-world data. As future work, predictive
model calibration on a small set of labeled data shall
improve absolute value prediction. Furthermore, en-
abling personalized predictions, e.g., by introducing
a notion of subject in the simulations and via the
PPG-to-APW model, is another promising avenue.

4. Conclusion

In this work we use a hybrid modeling approach to
infer cardiovascular parameters from in-vivo PPG sig-
nals. Compared to purely data-driven approaches
that struggle due to limited labeled data, our method
achieves promising results by incorporating simu-
lations and sidestepping the need for invasive and
costly annotations. While other existing hybrid ap-
proaches for cardiovascular modeling either embed
physical properties as structural constraints within
neural networks (Sel et al., 2023; Zhang et al., 2025)
or augment traditional physiological models with
data-driven components (Nazaret et al., 2023), our
method incorporates physical knowledge in the model
through SBI. While SBI relies on accurate forward
models, in practice these may not be available to
fully characterize each aspect of a complex process.
We address this challenge and integrate a data-driven
generative model which approximates the PPG-to-
APW mapping, for which an accurate physics-based
characterization is currently lacking. Our results con-
tribute to characterizing the informativeness of PPG
signals for predicting cardiac biomarkers, and could
extend beyond the ones considered in our experi-
ments. While our results are promising in monitoring
temporal trends, absolute value prediction of com-
plex biomarkers remains challenging, and is a key di-
rection for future work. Future work may also ex-
plore alternative generative approaches for the PPG-
to-APW mapping, or investigate different architec-
tural choices. Finally, a similar learning strategy than
the one used here for finger PPG could extend to
other modalities, including wearable PPG, and open
the door to passive and long-term cardiac biomarker
monitoring.
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Appendix A. Experimental details

A.1. Datasets details

In this section we provide additional details for the
in-silico and in-vivo datasets used in this work. It is
worth noting that all PPG datasets considered in this
work consist of finger PPG signals.

In-silico datasets We utilize an in-silico dataset of
simulated Arterial Pressure Waveforms (APWs) gen-
erated using the OpenBF simulator, an open-source
1D blood flow solver (Benemerito et al., 2024), re-
cently introduced by Manduchi et al. (2024). This
dataset consists of 8-second 125Hz-frequency APW
segments, synthesized from a comprehensive set of
physiological parameters, that characterize the car-
diovascular state for 80,000 virtual subjects. These
parameters characterize heart function (e.g. Heart
Rate, Stroke Volume, Peak Flow Time), arterial
properties (e.g. arteries diameter/length) and vas-
cular beds. The simulation process incorporates a
stochastic noise model, combining Gaussian and red
noise, to mimic the noise present in real measure-
ments. Finally, the generated signals undergo a band-
pass filtering. For the comparisons in Section 3 we use
a PPG in-silico dataset, also introduced in Manduchi
et al. (2024). Similar to APW generation, cardiovas-
cular states for 80,000 patients are characterized by
a comprehensive set of physiological parameters, and
the PPG model is modeled by a simplistic Windkessel
model (Manduchi et al., 2024; Charlton et al., 2019).
While 80,000 APW and PPG signals were generated
for both in-silico datasets, samples with anomalous
systolic and diastolic bloop pressure were filtered out,
leaving ≈ 32, 000 waveforms after this filtering.

In-vivo datasets We use two different in-vivo
datasets in this work. The UCI Cuff-Less Blood Pres-
sure Estimation (UCIBP) dataset (Kachuee et al.,
2015) provides paired APW and PPG 8-second seg-
ments from ICU patients in the MIMIC-II dataset
(Saeed et al., 2011), without subject information.
The signals are sampled at 125Hz frequency. Note
that the biosignals in this dataset are not annotated
with any cardiovascular labels. For our evaluations
in Section 3 we use the VitalDB dataset, which in-
cludes intraoperative APW and PPG signals from pa-
tients undergoing non-cardiac surgery in the Seoul
National University Hospital with associated cardio-
vascular parameters. As cardiovascular biomarker la-
bels we consider Heart Rate (HR), Stroke Volume
(SV), Cardiac Output (CO), and Systemic Vascular

Resistance (SVR). As in Manduchi et al. (2024), we
process the VitalDB data to remove faulty signals
(e.g. containg NaNs or implausible minimum or max-
imum values). We split the resulting APW and PPG
waveforms in 8-second segments to match the lenght
of simulated/UCIBP data.

A.2. Model and Implementation Details

A.2.1. Conditional VAE model

We use 1D-CNNs to parameterize the encoder and
decoder of our conditional VAE model. We split the
UCI Cuff-Less Blood Pressure Estimation (UCIBP)
dataset as follows. We use 333, 690 paired APW-PPG
segments from this dataset, randomly split in training
(80%) and validation (20%) sets. We set the latent
space size of the VAE to 128 dimensions. The VAE
model is trained using the Adam Optimizer by maxi-
mizing the ELBO objective referenced in Section 2 for
300 epochs, with a learning rate of 0.0005, batch size
of 256, and early stopping on the validation dataset.

A.2.2. NPE model

To invert the forward process of the OpenBF APW
simulator, mapping θ ∈ Rd to a given APW segment
x ∈ RT , we follow recent work (Manduchi et al., 2024)
and train a Neural Posterior Estimator (NPE) to ap-
proximate the posterior distribution p(θ | x) via nor-
malizing flows (Rezende and Mohamed, 2015). Fol-
lowing Manduchi et al. (2024) we use autoregressive
normalizing flows, thereby minimizing the loss

ℓNPE(ϕs) =
1

Ns

Ns∑
i=1

log pz (fϕs
(θi;xi))

+ log
∣∣Jfϕs

(θi;xi)
∣∣ ,

where pz denotes the isotropic Gaussian distribution
and Jfϕs

is the Jacobian’s determinant of the function
fϕs

. Note that the function fϕs
(θi;xi) decomposes

as fϕs
(θi;xi) = hτ (θi; gη(xi)) where hτ is invertible

with respect to the first argument and parameterized
via a three-step autoregressive normalizing flow, and
gη is a 1D-CNN encoder processing the APW seg-
ment into a 140-dimensional representation, used to
condition the normalizing flow. The NPE model is
trained for 50 epochs with a learning rate of 0.0003
and batch size 256, with early stopping on a valida-
tion set (20%). At inference time, we sample K = 20
values for the θ parameters from the normalizing flow
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model for each of M = 10 APW generations obtained
with the conditional VAE model (see also Section 2).

A.2.3. Baselines

In this section we describe implementation and train-
ing details for the baselines included in Section 3. We
report three key baseline comparisons.

APW: We compare our approach with inference
performed directly on ground truth VitalDB APWs,
using the same NPE model trained on in-silico APWs
that we use as part of our proposed approach. Note
that in comparing with this baseline one should keep
in mind that it requires invasive measurements. We
train the model for 50 epochs with a learning rate of
0.0003 and early stopping on the validation set.

PPG Supervised: We also include as a baseline a
supervised density estimator trained on a subset of
VitalDB subjects. For consistency, we use the same
architecture as the NPE model trained on in-silico
APW that is part of our approach. We train the
model on the labeled PPG data for 86 (two thirds) of
the patients for training, and split the remaining ones
equally between validation and set sets. To achieve
this and prevent data leakage, we use subject-wise K-
fold cross-validation, guaranteeing that every subject
in the VitalDB dataset serves as part of a test set
exactly once across the folds. The reported perfor-
mance is then the aggregate over all these test sets,
providing a fair comparison. We train the model for
50 epochs with a learning rate of 0.0003 and early
stopping on the validation set.

PPG Windkessel: We train a density estimator
to predict cardiovascular parameters on a dataset of
in-silico PPGs (see Appendix A). As estimator we
use the same NPE model architecture used for the
other methods, and keep a 20% validation split for
model selection. Performance is evaluated on the Vi-
talDB dataset. Compared to the other models, where
longer training did not result in an improvement,
for this baseline we observed improved performance
when training for a larger number of epochs so we re-
port the results for the model trained for 250 epochs
with a learning rate of 0.0003, with early stopping on
the validation set.

A.3. Metrics and Evaluation

Following recent work (Manduchi et al., 2024) we
focus our evaluation on assessing the ability of a

model to predict temporal trends in cardiovascular
parameters. To this end, we compare the predicted
and ground truth values of a given cardiovascular
biomarker for a given subject, over the time frame
the subject is monitored. We compute the Sperman’s
correlation between the two time series. To mitigate
short-term fluctuations and noise, both the predicted
and ground truth time series are smoothed using an
exponential moving average with a window size of 16
segments (i.e., 128 seconds), prior to computing cor-
relation.

Appendix B. Additional qualitative
and quantitative results

B.1. Generative modeling for PPG-to-APW
mapping

Given the complexity of the cardiovascular system,
the mapping between a PPG and the correspond-
ing APW is complex and influenced by unobservable
factors, introducing inherent ambiguities. Therefore,
a single PPG segment may correspond to multiple
physiologically plausible APWs. Consequently, train-
ing a deterministic model to map PPGs to APWs
using a standard regression loss (e.g., Mean Squared
Error) may be suboptimal, due to forcing a single
averaged solution that fails to capture the variation
in plausible generations. A generative model on the
other hand may be a more sensible solution, with
the possibility of capturing a distribution of plausi-
ble APWs through multiple generations. Therefore,
in this work we employed a conditional VAE to model
the conditional distribution of physiologically plausi-
ble APWs given an input PPG. To empirically vali-
date this choice, in this section we compare the APW
generations obtained with our approach, against the
ones obtained with a neural network trained for direct
APW reconstruction with an MSE loss.

We repeat the experiment described in Section 3,
where produced APWs from VitalDB PPG inputs,
are used for inference of cardiovascular parameters
with our NPE model trained on in-silico APWs. Per-
formance is assessed via the Spearman correlation be-
tween the ground truth and predicted values for HR,
SV, CO and SVR. The results demonstrate a signifi-
cant performance advantage for our generative model,
confirming that a deterministic mapping lacks the ex-
pressive power to capture the physiological variations
inherent in the PPG-to-APW relationship, thereby
empirically validating our modeling choice.
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Model HR SV CO SVR

Ours (1D-CNN) 0.94 0.31 0.40 0.24
Ours (ConditionalVAE) 0.96 0.49 0.53 0.29

Table 1: Comparison between modeling the PPG-to-APW generation via a conditional VAE model vs a
determinisitc 1-D CNN trained via MSE loss. Physiological relevance of the generated signals is
assessed by evaluating the accuracy of cardiovascular parameter inference on the VitalDB dataset,
using an NPE estimator trained in-silico. Average Spearman correlation between ground truth and
predicted values per-subject for different cardiovascular parameters is reported.

Model HR SV CO SVR

APW 0.962 (0.002) 0.653 (0.006) 0.725 (0.006) 0.341 (0.008)
PPG Windkessel 0.804 (0.040) 0.348 (0.035) 0.438 (0.027) 0.289 (0.020)
PPG Supervised 0.967 (0.001) 0.190 (0.010) 0.333 (0.020) 0.246 (0.006)
Ours 0.966 (0.005) 0.489 (0.003) 0.531 (0.003) 0.288 (0.001)

Table 2: Per-subject Spearman correlation between ground truth and predicted values for four cardiovascular
biomarkers, obtained with the approaches compared in Figure 2. Results are averaged across three
independent runs for each approach, and standard deviations are reported in parenthesis.

Model HR (bpm) SV (mL) SVR (dyn · s/cm5) CO (L/min)

APW 0.755 18.087 412.992 1.272
Ours 1.199 20.243 454.516 1.425
PPG Windkessel 2.951 20.960 557.478 1.552
PPG Supervised 0.725 18.789 328.499 1.329

Table 3: Average per-subject MAE results on the VitalDB dataset, for the models compared in Figure 2.
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(a) High predicted uncertainty.
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(b) Low predicted uncertainty.

Figure 4: Rejecting unusable samples via predicted uncertainty for HR inference. (a) Twelve VitalDB PPG
segments with the highest predicted uncertainty. (b) Twelve VitalDB PPG segments with the
least predicted uncertainty. All PPG signals underwent bandpass filtering.

B.2. Rejection of unusable PPG segments

In this section we demonstrate the utility of uncer-
tainty modeling in our cardiovascular parameter in-
ference, through the rejection of unusable PPG mea-
surements. In detail, we use the uncertainty estima-
tor associated with the cardiovascular parameter pre-
diction (see Section 2). In Figure 4(a) we showcase
segments with highest predicted heart rate (HR) un-
certainty on the VitalDB dataset, demonstrating the
ability to identify overly noisy input PPG samples
for which inference is unreliable. Figure 4(b) com-

plements these results, showing that low predicted
uncertainty corresponds to clean PPG segments.

B.3. Absolute value prediction

Table 3 reports average per-subject Mean Absolute
Error (MAE) for the compared models across the
considered biomarkers. Our approach demonstrates
superior performance to the PPG Windkessel model
baseline, that also does not use labeled in-vivo data
for training. However these results highlight that all
approaches, including ours, currently exhibit signif-
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icant limitations in absolute value prediction. This
difficulty stems from the inherent dependence of
complex hemodynamic parameters on unobservable,
subject-specific physiological characteristics. Com-
mercial devices often address this by integrating pa-
tient demographics (Hendy and Bubunek, 2016; Ma-
necke, 2005) or requiring an initial gold-standard as-
sessment (Hendy and Bubunek, 2016). In this work
we focus on PPG-based cardiovascular assessment
without resorting to in-vivo PPG signals with hemo-
dynamic labels or patient-specific metadata for train-
ing or calibration. Consequently, within this specific
setting, accurate absolute value prediction remains
an elusive target. As discussed in section 3, personal-
ization and calibration strategies represent promising
directions to improve this performance aspect in fu-
ture work.
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