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ABSTRACT

LLMs are an integral component of retrieval-augmented generation (RAG) sys-
tems. While many studies focus on evaluating the overall quality of end-to-end
RAG systems, there is a gap in understanding the appropriateness of LLMs for
the RAG task. To address this, we introduce TRUST-SCORE, a holistic metric that
evaluates the trustworthiness of LLMs within the RAG framework. Our results
show that various prompting methods, such as in-context learning, fail to effec-
tively adapt LLMs to the RAG task as measured by TRUST-SCORE. Consequently,
we propose TRUST-ALIGN, a method to align LLMs for improved TRUST-SCORE
performance. 26 out of 27 models aligned using TRUST-ALIGN substantially out-
perform competitive baselines on ASQA, QAMPARI, and ELI5. Specifically, in
LLaMA-3-8b, TRUST-ALIGN outperforms FRONT on ASQA (↑12.56), QAM-
PARI (↑36.04), and ELI5 (↑17.69). TRUST-ALIGN also significantly enhances
models’ ability to correctly refuse and provide quality citations. We also demon-
strate the effectiveness of TRUST-ALIGN across different open-weight models,
including the LLaMA series (1b to 8b), Qwen-2.5 series (0.5b to 7b), and Phi3.5
(3.8b). We release our code at https://github.com/declare-lab/
trust-align.

1 INTRODUCTION

LLMs are widely used for information retrieval but often produce hallucinations—factually incor-
rect yet convincing responses (Ji et al., 2023), undermining their reliability. A common mitigation
is Retrieval-Augmented Generation (RAG), which integrates external knowledge to improve correct
token generation, reducing perplexity (Khandelwal et al., 2019) and enhancing downstream tasks
like machine translation (Zheng et al., 2021) and classification (Bhardwaj et al., 2023). Connect-
ing LLMs to external documents via retrieval also improves response quality (Shuster et al., 2021;
Béchard & Ayala, 2024), further enhanced by attribution mechanisms (Gao et al., 2023b; Hsu et al.,
2024).

In this paper, we investigate LLMs’ ability to ground responses in provided documents instead of
relying on their parametric knowledge from training. A response is considered grounded if it cor-
rectly answers using only the attached documents, with in-text citations supporting its claims. Key
aspects include LLMs’ refusal capability—whether they abstain from answering when documents
lack sufficient information. Additionally, we analyze their overall tendency to answer, the fraction
of claims grounded in documents, and whether cited sources substantiate generated statements.

To comprehensively understand LLMs’ groundedness, we propose a new metric TRUST-SCORE.
It assesses an LLM across multiple dimensions: 1) The ability to discern which questions can be
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answered or refused based on the provided documents (Grounded Refusals); 2) The correctness
of LLM response for the answerable questions; 3) The extent to which generated statements are
supported by the corresponding citations; and 4) The relevance of the citations to the statements.
Unlike existing metrics that primarily assess the overall performance of RAG systems (Gao et al.,
2023b)—where a weak retriever can significantly decrease the scores—TRUST-SCORE is designed
to specifically measure the LLM’s performance within a RAG setup, isolating it from the influence
of retrieval quality.

Our investigation in Section 6.1 shows that many state-of-the-art systems, including GPT-4 and
Claude-3.5-Sonnet, heavily rely on their parametric knowledge to answer questions (OpenAI, 2023;
Anthropic, 2024). This reliance limits their suitability for RAG tasks, where models should base re-
sponses solely on the provided documents, resulting in a low TRUST-SCORE. Additionally, prompt-
ing approaches intended to enhance model groundability have proven ineffective, as models become
overly sensitive to the prompt, leading to exaggerated refusals or excessive responsiveness shown
in Appendix F.4. To enhance the groundedness of LLMs, i.e., achieve a higher TRUST-SCORE, we
propose an alignment method, TRUST-ALIGN. This approach first constructs an alignment dataset
consisting of 19K questions, documents, positive (preferred) responses, and negative (unpreferred)
responses. The dataset covers a range of LLM errors—Inaccurate Answers, Over-Responsiveness,
Excessive Refusal, Over-Citation, and Improper Citation. We regard these errors as LLM hallucina-
tions within an RAG framework.

Evaluations on the benchmark datasets ASQA, QAMPARI, and ELI5 show that models trained with
TRUST-ALIGN outperform the competitive baselines on TRUST-SCORE in 26 out of 27 model fam-
ily and dataset configurations. Notably, in LLaMA-3-8b, TRUST-ALIGN achieves substantial im-
provements over Huang et al. (2024b) FRONT, a leading baseline, with respective gains of 12.56%
(ASQA), 36.04% (QAMPARI), and 17.69% (ELI5). Additionally, TRUST-ALIGN substantially en-
hances the ability of models to correctly refuse or provide grounded answers in all 27 model family
and dataset configurations, with LLaMA-3-8b showing increases of 23.87%, 47.95%, and 45.77%
correct refusals compared to FRONT. Citation groundedness scores also improved in 24 out of 27
model family and dataset configurations, with notable increases of 22.12%, 38.35%, and 5.55% in
LLaMA-3-8b compared to FRONT. Due to the gamification of the metric, where parametric knowl-
edge can artificially inflate the scores, we notice mixed results on answer correctness scores. Specif-
ically, we observe a notable increase in answer correctness scores for all models in QAMPARI, 5/9
models in ELI5, and 2/9 models for ASQA.

Our key contributions to this work are as follows:

• We study LLM groundedness problem, where model model responses should be derived from
retrieved documents (external memory) rather than the parametric knowledge (knowledge stored
in model parameters).

• To measure LLM’s groundedness under RAG, we introduce TRUST-SCORE, a holistic metric for
quantifying LLM’s grounding errors.

• We propose TRUST-ALIGN, an alignment approach designed to improve the trustworthiness of
LLMs in RAG (Figure 2). It first creates an alignment dataset of 19K samples with paired posi-
tive and negative responses, followed by aligning the model using direct preference optimization
(DPO) (Rafailov et al., 2024b).

Comparison with existing approaches. Current evaluations of RAG focus on the overall system
performance (Gao et al., 2023b; Xu et al., 2024), conflating the effects of retriever quality and LLM
performance in the metric scores (Fan et al., 2024). This highlights the need for new ways to mea-
sure LLM effectiveness in RAG systems without the influence of the retriever. The work by Thakur
et al. (2024) is closest to ours, as it analyzes the refusal capabilities of LLMs in a RAG context but
lacks holistic evaluation, as it does not account for both response and citation groundedness. On the
other hand, Ye et al. (2024); Hsu et al. (2024); Huang et al. (2024b) propose frameworks to improve
LLM response groundedness but overlook refusal behaviors in their metrics. Ignoring refusal be-
haviors, retriever influence, citation and answer groundedness weakens the ability of current metrics
to effectively measure LLM performance in RAG. TRUST-SCORE comprehensively evaluates LLM
performance, including refusal, citation, and answer groundedness, while TRUST-ALIGN creates a
corresponding alignment dataset, making the metric and approach more unique and holistic for LLM
evaluations and alignment in RAG. A more detailed comparison can be found in Appendix C.
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2 PROBLEM DESCRIPTION

2.1 TASK SETUP

Given a question q and a set of retrieved documents D as input, the LLM is instructed to generate
a response S which consists of a set of citation-grounded statements {s1, . . . , sn}; each statement
si follows a set of inline citations Ci = {ci,1, ci,2, . . .} referring to the documents in D. If D is not
sufficient to answer q, the gold response would be a refusal statement1, such as, “I apologize, but
I couldn’t find an answer to your question in the search results”. Otherwise, the response would
follow the pattern: “statement1 [1][2] statement2 [3]” where [1][2] and [3] denote the enumeration
of documents that supports each statement respectively.

Trust-Score

Response Truthfulness Attribution Groundedness

Grounded Refusals (F1      )GR Answer Correctness (F1      )AC Grounded Citations (F1      )GC

Set of answered questions
(statements only, no citations /
citations only, no statements)

Set of answered questions

Set of answerable questions

Number of elements in the set/
Statement and
corresponding citations

Answer correctness for question

Citation recall for statement

Citation precision for citation

Figure 1: TRUST-SCORE calculation shown as a computational graph.

2.2 ON ANSWERABILITY OF A QUESTION

To label if a response should be a refusal or consist of claims, we define the notion of answerability.
A question q is considered answerable if D contains sufficient information to answer q. Formally,
we label a question as answerable if a subset of the retrieved documents entails at least one of
the gold claims; otherwise, q is unanswerable and thus should result in a ground truth refusal. A
refusal response contains no claims or citations but provides a generic message conveying the LLM’s
inability to respond to q.

2.3 HALLUCINATION IN LLM IN RAG

We define an LLM’s response as grounded when it correctly answers a question using only the
information in the documents, and the response can be inferred from the inline citations to those
documents. When a response is not grounded, it is considered a case of hallucination. We define
hallucination as an erroneous LLM response, categorized into five types: (1) Inaccurate Answer –
The generated statements S fail to cover the claims in the gold response, (2) Over-Responsiveness
– The model answers a question that should result in a refusal, (3) Excessive Refusal – The model
refuses to answer a question that is answerable, (4) Overcitation – The model generates redundant
citations, and (5) Improper Citation – The citations provided do not support the statement. Next, we
introduce a comprehensive metric to concretely measure hallucinations in LLMs, i.e., to assess an
LLM’s groundedness or trustworthiness2.

1There are many applications where LLM parametric knowledge use is expected and retrieved documents
serve to improve the LLM’s response. However, in this paper we study the problem of complete grounded-
ness—i.e., all claims should be documents derivable, making this an IR task.

2In this paper, we use LLM groundedness and trustworthiness interchangeably in the context of RAG.
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3 METRICS FOR LLM-IN-RAG

Given a question q and the corresponding ground truth response AG = {ag1, . . . , agn} consisting of
gold claims, we define the claims obtainable from the provided documents as AD = {ad1, . . . , adn}
and the claims generated in the response as AR = {ar1, . . . , arn}. We aim to measure two aspects
of an LLM in RAG: 1) the correctness of the generated claims (Response Truthfulness); and 2) the
correctness of citations generated (Attribution Groundedness).

Insufficiency of the existing metrics. Gao et al. (2023b) measure Response Truthfulness by first
computing the per-sample Answer Correctness recall (ACq

reg) score for gold claims AG, disregarding
how many of these claims are obtainable from D. This is followed by averaging the recall scores
across samples to obtain a single score for the dataset. This method introduces inconsistencies:
models that rely on parametric knowledge (Mp) may generate gold claims not found in D, leading
to an artificially inflated recall value. In contrast, an ideal LLM (Mi) would rely solely on D to
generate responses (a desired trait) and would be constrained by an upper recall limit of |AG∩AD|

|AG| ,
which varies depending on the question. This approach presents two key problems: (1) Recall
Consolidation: Since the measurement range depends on the claims present in D, it is infeasible to
provide a consistent, consolidated ACreg score across the dataset, (2) Recall Gamification: Mp may
have a higher upper limit on ACreg (up to 1) because they can generate gold claims not present in D
(an undesirable trait), unlike Mi that depend entirely on D.

Answer Calibration. To address the challenges of recall consolidation and gamification in exist-
ing evaluation metrics, we propose new metrics that measure sample-wise recall score based on the
fraction of gold claims ontainable from D. Specifically, this involves computing |AG ∩AD|, which
measures the Answer Correctness (AC) recall after calibrating the gold claims. This approach sets a
maximum recall limit of 1 for all models. For dataset-wide scoring, we consolidate per-sample AC
scores using two methods: 1) PAC: The average AC score across samples answered by the LLM, i.e.,
samples where AR ̸= ∅, reflecting a precision oriented perspective; 2) RAC: The average AC score
across samples that are answerable, i.e., samples where AG ∩AD ̸= ∅, reflecting a recall oriented
perspective3. These metrics, illustrated in Fig. 1, are then combined into a single score, F1AC, which
serves as a comprehensive measure of how well the LLM grounds its claims on the document D.
This combined metric not only facilitates the consolidation of recall but also addresses issues related
to recall gamification.

Scoring refusals. An important capability of an LLM in RAG is its ability to identify when a
response is unanswerable based on the provided documents D. To measure this, we introduce a
metric called Grounded Refusals. This metric evaluates the model’s refusal performance by calcu-
lating dataset-wide precision and recall for both ground-truth answerable cases and refusals. These
values are then combined into their respective F1 scores, F1ref for refusals and F1ans for answerable
cases. The final score, F1GR, is the average of these two F1 scores, as shown in Figure 1.

Measuring attribution groundedness. While Response Truthfulness metrics like F1AC and F1GR
evaluate the quality of generated claims, it is equally important to measure how well these statements
are supported by relevant citations—what we call Attribution Groundedness. To this end, we adopt
two sub-metrics from (Gao et al., 2023b): Citation Recall (Rcite) and Citation Precision (Pcite). To
compute Rcite, we first determine if a generated statement si is supported by its cited documents
using an NLI model4, thus obtaining sample-wise recall scores Rcite

si . Then we take the mean
across all samples to obtain the final Rcite score (Figure 1). To compute Pcite, we first score each
citation ci,j of a statement si, followed by computing the average across citations in a response S
(sample-wise score). The dataset-wide citation score is computed by averaging the citation scores
across all the samples. To quantify the Groundedness of Citations, we compute F1GC, the harmonic
mean of Pcite and Rcite. A detailed breakdown of this metric is provided in Appendix D and Figure 1.

Thus, we define a new metric TRUST-SCORE = 1
3 (F1GR + F1AC + F1GC).

3Notably, both PAC and RAC sum over samples that are both answered and answerable, differing primarily
in their normalization values.

4An NLI model checks if the cited document entails the statement.
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Responsiveness. To measure the answering tendency of an LLM, we define Responsiveness. It is
the fraction of answered questions, denoted by the Answered Ratio (AR %), which is calculated as
AR % = |Ar|

|Ag|+|¬Ag| . |Ar|, |Ag|, and |¬Ag| are the number of answered, answerable, and unanswer-
able questions respectively. A model is expected to show a high AR% for answerable questions and
a low AR% for unanswerable ones, with the scores expected to align with the dataset distribution.
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Figure 2: Overview of the TRUST-ALIGN. Left: The curation of both seed and augmented prompts (Q-
D pairs) and an example of the answerability labeling process during the retrieval stage. Right: The response
paired data generation process. First, we obtain positive answers and then select hard negative answers. Finally,
we align our model via DPO.

4 THE TRUST-ALIGN DATASET

To align LLMs towards trustworthiness, we propose a new approach, TRUST-ALIGN. The approach
constructs an LLM trustworthiness alignment dataset, where each sample in the dataset consists of
a question q, a set of retrieved documents D, and a pair of positive (preferred) and negative (un-
preferred) responses (r+, r−). The positive response corresponds to an answer that encompasses
expected gold claims for q and corresponding citations referring to the documents. If D is not suf-
ficient to answer q, r+ is assigned a refusal response, while r− is its non-refusal counterpart. We
build the dataset in multiple steps: 1) Obtain a set of high-quality and diverse questions, 2) Obtain
documents for each question, 3) Augmenting (q,D) pairs that cover diverse hallucination types,
4) Construct positive responses entailing gold claims, and 5) Construct negative (unpreferred) re-
sponses by prompting a fine-tuned model and observing its hallucinations. We relegate fine-grained
details about the dataset to Figure 2 and Appendix E.

Collecting quality questions. The dataset construction begins by collecting a set of high-quality
and diverse questions from the training splits of ASQA, QAMPARI, and ELI5, referred to as seed
samples. We first divide the questions into k clusters and use Mixtral-8x7B to assign each a quality
score from 1 to 7, based on how difficult they are to answer without additional information. Clusters
with scores of 4 or higher are selected. Next, we sample questions from the clusters of each dataset
to construct approximately 10K questions in the seed set.

Collecting D’s. Next, we collect relevant documents for each question in the seed set by querying
Wikipedia and Common Crawl, retrieving the top 100 documents. We filter out seed questions where
relevant documents are not retrieved. We then identify 5 documents that perform as well as the full
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100 in terms of EM recall, referring to these as oracle documents for question q.5 Gold claims for
each q are sourced from the respective datasets.

Augmenting (q,D) set. Using the questions and oracle documents, we create diverse samples (i.e.,
varying combinations of relevant and irrelevant documents) to trigger multiple hallucinations from
LLMs (Section 2.3). The document order is shuffled to avoid citation bias. To construct unanswer-
able questions, we select documents similar to those entailing gold claims but still irrelevant to q.
This process results in approximately 70K question-document pairs.

Obtaining r+ and r−. To generate preferred responses, by prompting GPT-4, we stitch together
the gold claims and citations6. For unanswerable questions, we assign a ground truth refusal re-
sponse. To obtain quality negative (unpreferred) responses, we fine-tune LLaMA-2-7b on the
source datasets, creating Msft. Testing Msft on the 70K dataset identified 40K responses with
hallucinations. Table 1 shows hallucination severity (ei) and frequency (wi). To obtain good neg-
ative samples, we first rank each of the 40K responses according to their severity score eq , where
eq =

∑
i ei ·wi. We then select the top 50%7 of the corresponding samples for both answerable and

unanswerable responses. We perform DPO using this set of 19k samples to obtain the final aligned
model.

5 EXPERIMENTAL SETUP

Table 1: Fraction of each hallucination amongst all the
observed hallucinations in Msft (40,985), with possi-
ble overlap. wi shows the severity computation of each
hallucination. Icondition = 1 if condition is True otherwise
it is 0. See Fig. 5 for the detailed breakdown of the last
three errors.

Hallucination Type (HT) Frequency (wi) Severity (ei)
Unwarranted Refusal 8,786 0.50 I(Ag ̸=∅,Ar=∅)
Over Responsiveness 13,067 0.50 I(Ag=∅,Ar ̸=∅)
Overcitation 12,656 0.34 1 - CP
Improper Citation 9,592 0.26 1 - CR
Inaccurate Claims 14,783 0.40 1 - F1AC

Models studied. To comprehensively mea-
sure performance of open-source models,
we perform TRUST-SCORE computations on
vanilla and TRUST-ALIGNed version of a range
of open-weight models such as LLaMA series
(LLaMA-2-7b, LLaMA-2-13b, LLaMA-2-13b,
etc.), Qwen series (Qwen-2.5-0.5b, Qwen-2.5-
7b, etc.) and Phi3.5-mini. See Appendix H.1
for more details.

Evaluation datasets. We evaluate on the
test-set of attributable factoid and long-form
question-answering tasks from ASQA (Stelmakh et al., 2023), QAMPARI (Amouyal et al., 2023),
and ELI5 (Fan et al., 2019). Additionally, we include ExpertQA (Malaviya et al., 2024) for OOD
evaluations. For each question, we append the top 5 retrieved documents. For ELI5 and ExpertQA,
the ground truth answers are decomposed into three claims. The dataset statistics are detailed in
Appendix H.2.

Baselines. Models8 trained with TRUST-ALIGN are compared against the following baselines:

• ICL (Gao et al., 2023b): Prepends two demonstrations to each query, consisting of an example
query, top-5 retrieved documents, and an inline cited answer

• PostCite (Gao et al., 2023b): Generates an uncited answer in a closed-book setting, then retrieves
most similar documents from top-5 documents using GTR for citations.

• PostAttr (Gao et al., 2023b): Similar to POSTCITE, produces an uncited response in a closed-book
setting, but uses the TRUE-NLI model to find the best matching citation among top-5 documents.

• Self-RAG (Asai et al., 2024): Trains the LLM to retrieve relevant documents on demand using
reflection tokens, enhancing generation quality. We evaluated the provided 7b and 13b model
checkpoints from HF using the default settings.

• FRONT (Huang et al., 2024b): Uses a fine-grained attribution framework to improve grounding
and citation quality. We followed the provided instructions to train a 7b model for comparison.

5Clustering and document retrieval details are in Appendix E.
6Prompt template can be found at Table 23.
7See Appendix F.8 for more details on this hyperparameter.
8All models used are instruct tuned or chat versions.
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6 RESULTS AND ANALYSIS

Table 2: LLaMA family evaluated on the ASQA, QAMPARI, and ELI5 datasets. Best values within
each family are highlighted ). AR% := Answered Ratio in %; F1AC := Answer Correctness F1;
F1GR := Grounded Refusals F1; F1GC := Grounded Citations F1; TRUST := TRUST-SCORE; Resp.
:= Responsiveness; Att-Grd. := Attribution Groundedness.

Model Type

ASQA (610 answerable, 338 unanswerable) QAMPARI (295 answerable, 705 unanswerable) ELI5 (207 answerable, 793 unanswerable)

Resp. Trustworthiness Resp. Trustworthiness Resp. Trustworthiness

AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST
F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

LLaMA-2
-7b

ICL 0.00 0.00 26.28 0.00 8.76 0.00 0.00 41.35 0.00 13.78 0.50 0.00 46.71 0.00 15.57
PostCite 10.44 0.07 35.23 0.00 11.77 34.40 0.00 57.34 9.50 22.28 0.90 1.86 44.98 5.04 17.29
PostAttr 10.44 0.07 35.23 0.00 11.77 34.40 0.00 57.34 3.78 20.37 0.90 1.86 44.98 0.00 15.61
Self-RAG 100.00 45.19 39.15 63.49 49.28 96.00 6.81 28.23 19.95 18.33 73.50 14.94 40.20 13.80 22.98
FRONT 100.00 60.47 39.15 68.86 56.16 100.00 17.27 22.78 24.26 21.44 100.00 21.66 17.15 52.72 30.51

TRUST-ALIGN (DPO) 65.30 52.48 66.12 83.94 67.51 32.30 32.03 71.67 49.42 51.04 21.60 22.54 63.27 47.35 44.39

LLaMA-2
-13b

ICL 17.41 21.52 41.40 13.83 25.58 26.50 0.44 59.57 0.00 20.00 46.40 19.97 54.81 4.73 26.50
PostCite 90.51 2.21 49.91 1.53 17.88 100.00 0.00 22.78 8.05 10.28 76.60 2.27 38.05 0.72 13.68
PostAttr 90.51 2.21 49.91 0.17 17.43 100.00 0.00 22.78 2.95 8.58 76.60 2.27 38.05 0.09 13.47
Self-RAG 100.00 48.52 39.15 69.79 52.49 72.70 2.71 48.58 26.91 26.07 22.10 12.77 58.68 24.54 32.00

LLaMA-3.2
-1b

ICL 60.23 35.95 50.94 9.96 32.28 19.20 6.32 52.64 0.38 19.78 88.40 12.87 27.10 5.23 15.07
PostCite 43.57 0.59 50.22 0.24 17.02 41.20 0.32 49.79 1.61 17.24 18.40 2.04 50.88 1.02 17.98
PostAttr 45.78 0.48 48.42 0.00 16.30 34.00 0.63 48.43 0.21 16.42 18.40 2.04 50.88 0.07 17.66
FRONT 79.11 48.22 54.48 48.29 50.33 98.60 7.57 24.54 15.32 15.81 97.20 16.11 20.76 30.19 22.35

TRUST-ALIGN (DPO) 41.67 38.64 58.61 79.35 58.87 20.00 27.22 67.92 49.42 48.19 9.60 13.20 59.35 48.21 40.25

LLaMA-3.2
-3b

ICL 1.27 2.04 27.98 53.95 27.99 34.10 16.06 59.65 12.87 29.53 21.90 18.55 55.56 30.70 34.94
PostCite 47.26 31.03 56.59 22.99 36.87 39.60 6.34 55.22 6.83 22.80 92.80 18.12 25.14 4.44 15.90
PostAttr 47.15 29.76 56.71 4.69 30.39 42.00 5.10 53.74 0.27 19.70 92.80 18.48 25.14 0.53 14.72
FRONT 95.25 63.19 49.45 57.46 56.70 92.70 12.99 32.89 19.19 21.69 86.90 19.95 32.21 41.97 31.38

TRUST-ALIGN (DPO) 77.85 59.82 66.38 84.21 70.14 48.20 29.13 70.85 45.65 48.54 17.50 18.33 62.79 55.87 45.66

LLaMA-3
-8b

ICL 1.48 3.01 28.58 86.50 39.36 3.90 5.92 48.60 20.24 24.92 0.00 0.00 44.23 0.00 14.74
PostCite 77.53 32.98 53.31 28.01 38.10 87.00 6.10 34.52 8.42 16.35 62.00 20.80 45.88 8.06 24.91
PostAttr 77.53 32.98 53.31 5.95 30.75 87.00 6.10 34.52 1.64 14.09 62.00 20.80 45.88 1.25 22.64
FRONT 99.05 62.25 41.62 66.14 56.67 100.00 13.53 22.78 20.42 18.91 99.50 18.99 17.85 44.69 27.18

TRUST-ALIGN (DPO) 56.43 53.94 65.49 88.26 69.23 22.40 35.35 70.73 58.77 54.95 15.50 20.81 63.57 50.24 44.87

TRUST-ALIGN boosts trustworthiness over baseline methods. As shown in Table 2 and Ta-
ble 3, TRUST-ALIGNed models demonstrate substantial improvements on TRUST-SCORE over the
baselines in 26 out of 27 model family and dataset configurations. Specifically, with LLaMA-3-8b,
TRUST-ALIGN outperforms FRONT by 12.56% (ASQA), 36.04% (QAMPARI), and 17.69% (ELI5)
on TRUST-SCORE. This suggests that TRUST-ALIGNed models are more capable of generating re-
sponses grounded in the documents.

TRUST-ALIGN improves models’ refusal capability. Across all 27 configurations, TRUST-
ALIGN yields substantial improvements in F1GR. In LLaMA-3-8b, TRUST-ALIGN outperforms
FRONT by 23.87% (ASQA), 47.95% (QAMPARI), and 45.72% (ELI5). This indicates that TRUST-
ALIGN substantially enhances models’ ability to correctly refuse or provide answers.

TRUST-ALIGN enhances models’ citation quality. F1GC is substantially improved over base-
lines in 24 out of 27 model family and dataset configurations after the application of TRUST-ALIGN.
Specifically, with LLaMA-3-8b, TRUST-ALIGN outperforms FRONT on F1GC by 22.12% (ASQA),
38.35% (QAMPARI), and 5.55% (ELI5). This demonstrates that aligning with TRUST-ALIGN im-
proves the model’s ability to provide citations that sufficiently and precisely support claims.

TRUST-ALIGN has mixed effects on F1AC. We observe that applying TRUST-ALIGN yields a
notable increase in F1AC for QAMPARI (9/9) but mixed performance on ELI5 (5/9) and ASQA
(2/9). The mixed performance in ASQA and ELI5 can be explained by the composition of F1AC,
which is derived from PAC and RAC (Eq. (9)).

Taking LLaMA-3.2-3b on ASQA as an example (Appendix I), TRUST-ALIGN models generally
achieve higher PAC compared to baselines (54.63% for TRUST-ALIGN vs. 52.94% for FRONT)
despite having a lower AR% (77.85% for TRUST-ALIGN vs. 95.25% for FRONT). This suggests
that our models have a higher expected value for ACq (per-sample AC recall), as the denominator
depends on the number of answered questions. This trend is observed across models and datasets.
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However, in ASQA and ELI5, our models underperform in F1AC due to the overwhelmingly ad-
verse impact of RAC. The recall of answerable questions (Rans) is lower for our model compared to
baselines (89.02% for TRUST-ALIGN vs. 98.69% for FRONT), which rarely refuse questions. As
a result, fewer terms are summed in the numerator of RAC, while the denominator remains constant
(the number of answerable questions). This leads to a lower overall F1AC score. To further analyze
the baseline models’ performance, we investigated how much of their answering ability relies on
parametric knowledge versus document-based information (Section 6.1 and Appendix F.3).

Table 3: Qwen2.5 and Phi3.5 families evaluated on the three datasets.

Model Type

ASQA (610 answerable, 338 unanswerable) QAMPARI (295 answerable, 705 unanswerable) ELI5 (207 answerable, 793 unanswerable)

Resp. Trustworthiness Resp. Trustworthiness Resp. Trustworthiness

AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST
F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

Qwen-2.5
-0.5b

ICL 29.85 20.96 47.19 0.35 22.83 11.40 2.45 50.67 0.00 17.71 82.30 13.73 33.14 0.37 15.75
PostCite 46.10 8.55 50.84 8.23 22.54 17.00 0.67 52.51 5.72 19.63 89.80 9.87 27.10 4.10 13.69
PostAttr 46.10 8.55 50.84 2.23 20.54 17.00 0.67 52.51 0.90 18.03 89.80 9.87 27.10 0.68 12.55
FRONT 100.00 42.83 39.15 45.87 42.62 99.30 11.52 23.23 15.90 16.88 99.90 13.74 17.29 27.95 19.66

TRUST-ALIGN (DPO) 71.84 50.59 61.28 52.40 54.76 17.90 15.76 61.84 29.73 35.78 21.70 13.68 60.79 22.72 32.40

Qwen-2.5
-1.5b

ICL 98.52 50.55 41.74 6.69 32.99 85.00 15.60 41.27 8.61 21.83 99.40 20.56 17.78 4.99 14.44
PostCite 71.73 16.36 52.46 15.40 28.07 11.20 3.44 51.11 13.95 22.83 91.50 15.63 26.71 5.17 15.84
PostAttr 71.73 16.36 52.46 4.45 24.42 11.20 3.44 51.11 1.07 18.54 91.50 15.63 26.71 0.62 14.32
FRONT 99.26 57.74 41.36 55.70 51.60 98.80 16.05 24.45 11.60 17.37 99.90 19.57 17.29 37.70 24.85

TRUST-ALIGN (DPO) 72.57 52.68 62.38 66.81 60.62 20.00 23.80 68.46 50.98 47.75 33.60 19.03 57.91 31.63 36.19

Qwen-2.5
-3b

ICL 27.43 37.72 51.36 51.72 46.93 22.30 23.17 63.27 41.20 42.55 68.80 29.12 46.31 34.34 36.59
PostCite 8.76 9.58 35.30 10.94 18.61 0.10 0.00 41.31 0.00 13.77 49.70 21.73 48.49 7.56 25.93
PostAttr 8.76 9.58 35.30 36.29 27.06 0.10 0.00 41.31 25.00 22.10 49.70 21.73 48.49 1.31 23.84
FRONT 97.47 55.15 44.01 62.72 53.96 79.10 20.69 48.62 25.67 31.66 93.60 18.69 25.37 37.40 27.15

TRUST-ALIGN (DPO) 49.47 55.19 63.76 78.64 65.86 48.10 35.69 70.31 45.64 50.55 13.50 22.52 64.38 42.01 42.97

Qwen-2.5
-7b

ICL 92.09 58.94 54.34 75.46 62.91 56.30 28.92 63.67 39.28 43.96 82.70 28.27 37.13 44.13 36.51
PostCite 91.46 27.52 45.93 4.19 25.88 26.70 8.59 60.16 1.05 23.27 95.60 21.82 22.23 7.03 17.03
PostAttr 91.46 27.52 45.93 17.92 30.46 26.70 8.59 60.16 13.55 27.43 95.60 21.82 22.23 0.96 15.00
FRONT 86.39 64.58 60.08 58.27 60.98 84.70 17.02 42.85 24.48 28.12 57.60 28.27 54.14 56.61 46.34

TRUST-ALIGN (DPO) 59.49 55.04 66.22 83.57 68.28 32.10 30.11 70.68 53.48 51.42 21.00 24.30 63.79 47.02 45.04

Phi3.5
-mini

ICL 63.19 50.24 51.95 42.64 48.28 70.20 11.91 43.90 12.26 22.69 81.50 27.59 37.17 30.14 31.63
PostCite 23.10 14.98 41.38 9.40 21.92 76.90 3.57 42.36 4.49 16.81 84.50 20.50 30.81 4.67 18.66
PostAttr 23.10 14.98 41.38 1.24 19.20 76.90 3.57 42.36 0.46 15.46 84.50 21.26 30.81 0.68 17.58
FRONT 99.79 63.30 39.79 71.63 58.24 100.00 11.97 22.78 21.50 18.75 96.60 21.46 21.35 61.41 34.74

TRUST-ALIGN (DPO) 66.56 52.23 64.20 85.36 67.26 30.10 36.42 73.95 53.40 54.59 24.90 23.39 67.62 47.42 46.14

TRUST-ALIGN generalizes across model families and sizes. Table 3 demonstrates that TRUST-
ALIGN improves the models’ TRUST-SCORE across various sizes and architectures. In small mod-
els like Qwen-2.5-0.5b, TRUST-ALIGN significantly outperforms ICL baselines, achieving notable
gains in ASQA (22.83% → 54.76%). Similarly, for larger models such as Qwen-2.5-7b, TRUST-
ALIGN delivers substantial improvements, as seen in ASQA (62.91% → 68.28%), highlighting its
scalability. The largest gains are observed in smaller models; for example, Phi3.5-mini shows re-
markable improvements over ICL: 18.98% (ASQA), 31.90% (QAMPARI), and 14.51% (ELI5).

Models aligned with DPO generally outperform those trained with SFT. Table 4 shows that
DPO models outperform SFT models on TRUST-SCORE in 26 out of 27 model family and dataset
configurations. In LLaMA-3.2-3b, DPO yields substantial improvements on ASQA (6.70%), QAM-
PARI (3.09%), and ELI5 (1.71%). Additionally, DPO models also attain substantially better F1GC
compared to SFT on 25 out of 27 configurations, with substantial improvements on ASQA (8.58%),
QAMPARI (7.62%), and ELI5 (2.54%) for LLaMA-3.2-3b. This highlights DPO’s effectiveness in
enhancing citation quality. While results on F1AC and F1GR are mixed, DPO yields better overall
TRUST-SCORE scores.

6.1 ANALYSIS

Data ablation. Table 5 shows that adding samples targeting each of the five hallucination types
improves TRUST-SCORE by 1.50% (ASQA), 1.78% (QAMPARI), and 2.23% (ELI5). We observe
that removing data corresponding to each hallucination type causes a notable decrease in TRUST-
SCORE, suggesting the importance of each subtype. In particular, removing refusal-related hallu-
cinations adversely affects F1GR: ↓2.79% (ASQA), ↓0.48% (QAMPARI), underscoring the impor-
tance of incorporating refusal-related data to improve a model’s ability to discern when to provide
an answer.
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Table 4: Performance of models with only SFT applied as compared to TRUST-ALIGN models. Best
values within each family are bolded).

Model Type

ASQA (610 answerable, 338 unanswerable) QAMPARI (295 answerable, 705 unanswerable) ELI5 (207 answerable, 793 unanswerable)

Resp. Trustworthiness Resp. Trustworthiness Resp. Trustworthiness

AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST
F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

LLaMA-2
-7b

SFT 80.17 53.21 63.43 79.61 65.42 31.60 33.76 71.13 46.37 50.42 29.50 21.58 63.30 39.59 41.49
TRUST-ALIGN (DPO) 65.30 52.48 66.12 83.94 67.51 32.30 32.03 71.67 49.42 51.04 21.60 22.54 63.27 47.35 44.39

LLaMA-3.2
-1b

SFT 63.82 45.61 63.91 73.10 60.87 26.00 27.98 68.20 37.96 44.71 20.50 14.56 63.93 37.28 38.59
TRUST-ALIGN (DPO) 41.67 38.64 58.61 79.35 58.87 20.00 27.22 67.92 49.42 48.19 9.60 13.20 59.35 48.21 40.25

LLaMA-3.2
-3b

SFT 68.04 49.23 65.47 75.63 63.44 27.60 28.09 70.22 38.03 45.45 14.70 15.92 62.59 53.33 43.95
TRUST-ALIGN (DPO) 77.85 59.82 66.38 84.21 70.14 48.20 29.13 70.85 45.65 48.54 17.50 18.33 62.79 55.87 45.66

LLaMA-3
-8b

SFT 68.99 52.35 66.06 80.95 66.45 24.20 33.85 71.11 48.01 50.99 23.60 22.57 65.06 46.85 44.83
TRUST-ALIGN (DPO) 56.43 53.94 65.49 88.26 69.23 22.40 35.35 70.73 58.77 54.95 15.50 20.81 63.57 50.24 44.87

Qwen-2.5
-0.5b

SFT 83.44 38.71 58.03 57.47 51.40 18.50 16.02 61.35 27.82 35.06 35.50 10.50 57.19 19.57 29.09
TRUST-ALIGN (DPO) 71.84 50.59 61.28 52.40 54.76 17.90 15.76 61.84 29.73 35.78 21.70 13.68 60.79 22.72 32.40

Qwen-2.5
-1.5b

SFT 78.27 44.23 58.75 71.08 58.02 25.50 23.89 69.66 37.68 43.74 41.30 14.14 55.35 27.69 32.39
TRUST-ALIGN (DPO) 72.57 52.68 62.38 66.81 60.62 20.00 23.80 68.46 50.98 47.75 33.60 19.03 57.91 31.63 36.19

Qwen-2.5
-3b

SFT 75.21 47.26 60.61 73.09 60.32 27.20 28.80 68.12 37.34 44.75 34.50 14.85 61.47 35.87 37.40
TRUST-ALIGN (DPO) 49.47 55.19 63.76 78.64 65.86 48.10 35.69 70.31 45.64 50.55 13.50 22.52 64.38 42.01 42.97

Qwen-2.5
-7b

SFT 65.30 50.73 64.50 82.07 65.77 31.70 33.58 70.10 49.08 50.92 25.50 20.78 64.25 46.89 43.97
TRUST-ALIGN (DPO) 59.49 55.04 66.22 83.57 68.28 32.10 30.11 70.68 53.48 51.42 21.00 24.30 63.79 47.02 45.04

Phi3.5
-mini

SFT 66.46 51.92 64.34 82.77 66.34 29.10 35.04 73.93 49.38 52.78 24.50 22.50 65.70 46.79 45.00
TRUST-ALIGN (DPO) 66.56 52.23 64.20 85.36 67.26 30.10 36.42 73.95 53.40 54.59 24.90 23.39 67.62 47.42 46.14

Table 5: Ablations of data synthesis techniques for LLaMA-2-7b on three evaluation datasets using refusal
prompting; The original error types in Section 2.3 were summarized into three main classes: answer-related
(Inaccurate Answer), citation-related (Overcitation, Improper Citation), refusal-related (Over Responsiveness,
Excessive Refusal).

ASQA QAMPARI ELI5
Resp. Trustworthiness Resp. Trustworthiness Resp. Trustworthiness

AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST
F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

DPO-LLaMA-2-7b 65.30 52.48 66.12 83.94 67.51 31.10 32.09 71.83 51.33 51.75 21.60 22.54 63.27 48.43 44.75
TRUST-ALIGN w/o. augmented instructions 79.43 53.54 63.33 81.15 66.01 32.20 33.14 70.82 45.94 49.97 29.50 23.98 63.30 40.28 42.52
TRUST-ALIGN w/o. answer HT 77.74 53.29 63.7 81.2 66.06 33.40 33.56 71.36 46.17 50.36 27.60 23.47 63.56 38.28 41.77
TRUST-ALIGN w/o. citation HT 77.32 52.55 63.88 81.51 65.98 33.10 34.13 71.40 46.91 50.81 26.70 22.65 64.33 42.81 43.26
TRUST-ALIGN w/o. refusal HT 79.11 53.55 63.33 81.85 66.24 31.10 34.40 71.35 48.12 51.29 28.30 22.93 64.05 41.18 42.72
GPT-4 as critic 70.36 54.91 65.29 78.47 66.22 25.90 30.77 70.29 48.87 49.98 23.50 17.27 62.24 42.38 40.63

We validated our data construction approach against the GPT-4-as-critic pipeline (Li et al., 2024a;
Huang et al., 2024b), where GPT-4 iteratively identifies and corrects errors to generate positive and
negative responses (details in Appendix G). In LLaMA-2-7b, TRUST-ALIGN outperforms GPT-4
critic on TRUST-SCORE, with gains of 1.29% (ASQA), 1.77% (QAMPARI), and 4.12% (ELI5).

Table 6: Effect of adding refusal sam-
ples on the ASQA.

TRUST-ALIGN Models AR% F1AC F1GR F1GC TRUST

Only Answerable DPO-LLaMA-2-7b 100 51.79 39.15 77.37 56.10
DPO-LLaMA-3-8b 100 56.54 39.15 81.39 59.03

With Refusal DPO-LLaMA-2-7b 65.30 52.48 66.12 83.94 67.51
DPO-LLaMA-3-8b 56.43 53.94 65.49 88.26 69.23

Importance of refusal samples in TRUST-ALIGN. To
verify the importance of refusal samples in our pipeline,
we removed all unanswerable questions from the training
set, creating a dataset without refusals. Table 6 shows
a significant drop in TRUST-SCORE scores without re-
fusals, including declines of 10.2% (LLaMA-3-8b) and
11.41% (LLaMA-2-7b). Notably, F1GR decreases by 26.34% (LLaMA-3-8b) and 26.97% (LLaMA-
2-7b), and F1GC by 6.87% (LLaMA-3-8b) and 6.57% (LLaMA-2-7b).

We also observe that in LLaMA-3-8b, F1AC is higher in the answerable-only setting compared to
with refusals setting. This occurs because RAC favors over-responsive models, which artificially
inflates F1AC, as discussed in main results. The resulting models answer all questions (AR% of
100%), even without supporting documents, suggesting an increased reliance on ungrounded para-
metric knowledge, as discussed in Section 6.1.

Out-of-domain analysis. Following Huang et al. (2024a), we use ExpertQA (Malaviya et al.,
2024) to assess our model’s generalizability. As shown in Table 7, TRUST-ALIGN model outper-
forms FRONT on TRUST-SCORE across all 27 open-source model family and dataset configurations.
We also observe that the open-source ICL models perform significantly worse on TRUST-SCORE as
compared to the closed-source ICL models, with a 9.79% gap between LLaMA-3-8b and GPT-
4. TRUST-ALIGN not only closes this gap but establishes a lead: TRUST-ALIGNed LLaMA-3-8b
achieves the highest TRUST score of 54.85%, surpassing 54.69% of GPT-4.
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Table 7: Generalization test results on ExpertQA using refusal prompting.

Model Type AR (%) F1AC F1GR F1GC TRUST

LLaMA-2
-7b

ICL 0.51 0.00 41.01 9.52 16.84
PostCite 5.62 4.85 44.27 5.23 18.12
PostAttr 5.62 4.85 44.27 2.26 17.13
FRONT 100 9.33 23.92 74.75 36.00

TRUST-ALIGN (DPO) 20.01 25.03 67.91 62.46 51.8

LLaMA-3.2
-1b

ICL 90 21.55 32.83 9.04 21.14
PostCite 30.84 5.48 49.1 2.67 19.08
PostAttr 48.41 8.24 47.72 1.5 19.15
FRONT 95.62 20.83 29.26 37.45 29.18

TRUST-ALIGN (DPO) 15.44 20.32 64.87 62.1 49.1

LLaMA-3.2
-3b

ICL 58.74 33.5 51.21 38.37 41.03
PostCite 82.85 25.68 38.11 5.29 23.03
PostAttr 82.85 25.45 38.58 3.4 22.48
FRONT 83.36 27.24 43.34 50.91 40.5

TRUST-ALIGN (DPO) 7.24 11.72 56.93 78.35 49.0

LLaMA-3
-8b

ICL 0.65 2.82 42.5 69.46 38.26
PostCite 15.68 14.06 50.08 7.09 23.74
PostAttr 15.68 14.06 50.08 6.29 23.47
FRONT 99.26 30.34 24.92 56.7 37.32

TRUST-ALIGN (DPO) 16.41 27.36 67.07 70.11 54.85

GPT-3.5 ICL 59.47 36.65 56.39 63.93 52.32

GPT-4 ICL 72.20 41.32 52.91 69.83 54.69

GPT-4o ICL 66.07 42.62 64.4 54.61 51.24

TRUST-ALIGN (SFT) 36.84 28.85 71.68 61.98 53.82

Claude-3.5 ICL 73.95 11.68 51.91 10.7 24.76

Model Type AR (%) F1AC F1GR F1GC TRUST

Qwen-2.5
-0.5b

ICL 78.24 21.42 38.71 0.44 20.19
PostCite 51.41 13.32 48.08 5.6 22.33
PostAttr 51.41 13.32 48.08 1.49 20.96
FRONT 99.86 18.27 24.05 34.62 25.65

TRUST-ALIGN (DPO) 32.96 18.16 63.31 35.07 38.85

Qwen-2.5
-1.5b

ICL 98.34 30.67 26.09 6.89 21.22
PostCite 62.19 22.22 48.66 16.92 29.27
PostAttr 62.19 22.22 48.66 13.15 28.01
FRONT 99.59 29.15 24.6 50.22 34.66

TRUST-ALIGN (DPO) 30.2 25.06 68.38 51.44 48.29

Qwen-2.5
-3b

ICL 68.88 35.14 49.65 42.67 42.49
PostCite 0.05 0 40.66 0 13.55
PostAttr 0.05 0 40.66 0 13.55
FRONT 95.48 25.67 29.86 44.48 33.34

TRUST-ALIGN (DPO) 17.15 20.97 65.79 60.25 49.0

Qwen-2.5
-7b

ICL 84.56 36.33 42.28 56.09 44.9
PostCite 42.14 25.58 54.9 13.77 31.42
PostAttr 42.14 25.58 54.9 12.46 30.98
FRONT 65.51 32.41 55.56 67.35 51.77

TRUST-ALIGN (DPO) 24.99 25.57 69.16 62.7 52.48

Phi3.5
-mini

ICL 85.15 37.49 40.22 36.14 37.95
PostCite 52.01 27.96 53.64 7.39 29.66
PostAttr 52.01 27.96 53.64 5.7 29.1
FRONT 97.37 28.19 27.5 65.82 40.5

TRUST-ALIGN (DPO) 26.05 27.69 69.56 61.6 52.95

In LLaMA-3-8B, TRUST-ALIGN outperforms ICL on F1GR by 16.59% and substantially outper-
forms GPT-3.5 and Claude 3.5 in both F1GC and F1GR. Although GPT-3.5 and GPT-4 achieve
higher F1AC scores, indicating better answer coverage, they rely heavily on parametric knowledge
(Section 6.1 and Appendix F.3). This leads to less grounded and less trustworthy responses, as re-
flected in lower TRUST-SCORE scores compared to TRUST-ALIGN. Similar trends are observed in
other model families.

Studying parametric knowledge access. For an LLM-in-RAG task, it is important to study the
tendency of LLM towards grounding its knowledge on the provided documents. To partially quantify
this, we compute the answer correctness score for questions that are unanswerable by the provided
documents (defined as Sparam); thus a fraction of cases where AG∩AD = ∅ but AG ̸= ∅ (more details
on the metric in Appendix F.2). In Table 10, our analysis reveals that responsive models (high AR%)
tend to rely on parametric knowledge more frequently (high Sparam). Notably, closed-source models
like GPT-4 exhibit higher parametric knowledge usage compared to open-source and TRUST-ALIGN
models. However, Sparam only partially captures the models’ utilization of parametric knowledge.
For instance, it does not account for cases where the document contains the answer, and the model
still relies on parametric knowledge to generate the correct answer (also present in the document).
This phenomenon is evident in Table 12, where on ASQA, GPT-4 achieves a significantly higher
F1AC than our models, yet its attribution groundedness score F1GC is five points lower.

7 CONCLUSION

In this study, we introduced a new holistic metric to evaluate the suitability of LLMs for RAG appli-
cations, where they are expected to ground their responses in the provided documents. We proposed
TRUST-SCORE, which comprehensively measures the quality of answers, citations, and refusal per-
formance of an LLM. Additionally, we presented TRUST-ALIGN, a method that uses a constructed
dataset to align models for improved TRUST-SCORE performance. By applying Direct Preference
Optimization (DPO) techniques, we trained LLaMA-2-7b and LLaMA-3-8b on this dataset, signifi-
cantly reducing hallucinations in an RAG environment. Our approach, TRUST-ALIGN, demonstrates
performance comparable to major closed-source models like GPT-4.
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Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

Samuel Joseph Amouyal, Tomer Wolfson, Ohad Rubin, Ori Yoran, Jonathan Herzig, and Jonathan
Berant. Qampari: An open-domain question answering benchmark for questions with many an-
swers from multiple paragraphs, 2023. URL https://arxiv.org/abs/2205.12665.

Anthropic. Introducing claude 3.5 sonnet. Anthropic News, 2024. URL https://www.
anthropic.com/news/claude-3-5-sonnet.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.
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A NUANCES OF ANSWERABILITY

Determining answerability can be challenging. To determine answerability, we use a system that
evaluates the entailment of gold claims against provided documents, referred to as the Natural Lan-
guage Inference (NLI) system. An NLI system can range from a simple exact match (EM) identifier
to an LLM or even a human evaluator, with answerability determined based on q,D and biases of
the NLI9. These biases can be useful in specific RAG applications, such as solving mathematical
problems where the documents provide a formula and the question assigns values to variables. The
choice of NLI depends on whether the RAG system requires the LLM to have mathematical under-
standing. Ideally, to prevent improper evaluations, the NLI model used to construct the gold
claims should also be used to evaluate the LLM responses.

In this paper, our focus is on evaluating the generic comprehension capabilities of LLMs without
specialized knowledge. Thus, we use two NLI mechanisms: 1) identifying whether an exact match
of claims is present in the gold claims, and 2) using a Machine Learning (ML) model to deter-
mine if the documents can entail the gold claims. The ML-based NLI model is used for multiple
purposes, such as alignment dataset construction (data/training) and evaluating generated responses
(metric/testing). For this, we adopt the NLI model from Rashkin et al. (2022). ϕ(cij , si) = 1 if cij
(premise) entails si (hypothesis); otherwise, 0. To determine answerability, we employ the TRUE-
based method (Honovich et al., 2022) to assess whether a gold claim can be entailed by a given
document.

The knowledge grounding problem. Typically, LLMs are designed to perform question-
answering tasks, where response generation heavily relies on the parametric (internal) knowledge
acquired during their pre-training, tuning, and alignment phases (OpenAI, 2023; Anthropic, 2024).
Thus, most of their knowledge is grounded in parametric memory. This makes them inherently
less suitable for RAG applications, where the knowledge generated by the LLM is expected to be
grounded in input documents. RAG is analogous to a reading comprehension task, where the an-
swers must come from the provided passage (documents in RAG) rather than the prior knowledge of
the person taking the test. Thus, any reliance on parametric knowledge can result in statements that
are not fully grounded in the documents, including providing answers to unanswerable questions.
Our investigation shows that state-of-the-art models, such as GPT-4 and Claude-3.5-Sonnet, overtly
rely on parametric knowledge even when used in a RAG setting.10

B ANSWERABILITY: A CASE STUDY

Prior works (Liu et al., 2023; Gao et al., 2023b; Ye et al., 2024; Huang et al., 2024a; Li et al.,
2024a) have employed substring matching to indicate entailment. While this syntactic approach is
fast, it often proves inadequate in complex, long contexts. A case study is presented in Table 8. To
address the limitations of this superficial entailment, we adopt a TRUE-based method (Honovich
et al., 2022), which combines the strengths of both syntactic and semantic approaches. Specifically,
we enhance the process by using the TRUE model, a T5-11B model (Raffel et al., 2020) fine-tuned
for the NLI task, to verify, from a semantic perspective, whether a substring match corresponds to
meaningful entailment within document passages. The input to the TRUE model is the concatenation
of a premise and a hypothesis, and the output is an entailment score between 0 and 1, indicating the
degree to which the premise entails the hypothesis. We treat the corresponding documents as the
premise, and to minimize ambiguity, the associated question is concatenated with each gold answer
as the hypothesis. In cases where the TRUE model does not yield a positive entailment score despite
a substring match, we rely on the TRUE judgment as the final label. However, if the substring match
fails, we bypass TRUE calculation, thus reducing the computational cost of relying solely on TRUE
for semantic entailment.

9For EM, the bias is that a q is answerable if an exact match for claims is present in D.
10We show a detailed analysis in Appendices F.2 and F.3.
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Table 8: Case study showcasing the limitations of substring matching and necessity of TRUE judge-
ment.

Question How many state parks are there in Virginia?
Gold Answer 38
Retrieved document Virginia has 30 National Park Service units, such as Great Falls Park and

the Appalachian Trail, and one national park, the Shenandoah National
Park. With over 500 miles of trails, including 38 miles of the iconic
Appalachian Trail, it’s a paradise for hikers, nature lovers, and those
seeking serene mountain landscapes.

Substring match Substring is matched and as such the question is answerable.
TRUE Judgement Not entailed as such the question is unanswerable given the document.

C RELATED WORKS

C.1 ATTRIBUTABLE RETRIEVAL AUGMENTED GENERATION

Retrieval Augmented Generation (RAG) has been widely studied for reducing the knowledge gap
and providing more referenced information to enhance answer generation (Karpukhin et al., 2020;
Lewis et al., 2021; Gao et al., 2023c). However, LLMs are prone to being misled by irrelevant
information, leading to hallucinations and less factual outputs (Shi et al., 2023; Yoran et al., 2024;
Xu et al., 2023). This challenge has spurred research into attributable RAG, which aims to verify
model outputs by identifying supporting sources. Rashkin et al. (2022) first introduced the concept
of Attributable to Identified Sources (AIS) to evaluate attribution abilities. Subsequently, Gao et al.
(2023b) adapted this approach to verify generated content with citations, improving the reliability
of RAG systems. Simultaneously, Press et al. (2024) and Song et al. (2024) explored related as-
pects: citation attribution for paper identification and the verifiability of long-form generated text,
respectively. Further fine-grained evaluations have been examined, such as assessing the degree
of support (Zhang et al., 2024b) and the granularity of claims (Xu et al., 2024). Recent studies
(Buchmann et al., 2024; Hsu et al., 2024) have also investigated attribution ability by disentangling
the confounding effects of retrievers and LLMs. Unlike existing works, we design TRUST-SCORE
to prioritize trustworthiness in LLMs by ensuring that generated responses are strictly grounded in
the provided documents, thereby minimizing the generation of unverifiable content. This focus on
verifiable accuracy strengthens the reliability of LLM outputs and enhances user trust.

C.2 ENHANCE GROUNDED TEXT GENERATION IN ATTRIBUTED LARGE LANGUAGE MODELS

To enhance grounded text generation, various attributed LLMs have been proposed, falling into two
main paradigms: training-free and training-based. For training-free methods: 1) In-context learning
(Gao et al., 2023b) is used to generate in-line citations with few-shot demonstrations. 2) Post-hoc
attribution (Gao et al., 2023a; Li et al., 2024b) first generates an initial response and then retrieves ev-
idence as attribution. 3) Ji et al. (2024) demonstrate that using chain-of-thought reasoning improves
the quality of text generated with citations. For training-based methods: 1) Asai et al. (2024); Slo-
bodkin et al. (2024); Xia et al. (2024); Ye et al. (2024) apply supervised fine-tuning (SFT) to LLMs,
training them to identify useful information from documents and guide cited text generation with
them. 2) Beyond simple SFT, recent studies model the task as preference learning, employing Re-
inforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022) and Direct Preference
Optimization (DPO) (Rafailov et al., 2024a). Huang et al. (2024a) proposed a method to improve at-
tribution generation using fine-grained rewards and Proximal Policy Optimization (PPO) (Schulman
et al., 2017), while Li et al. (2024a); Huang et al. (2024b) introduced the modified DPO framework
to enhance fine-grained attribution abilities. 3) While many approaches rely on external documents
provided by the user or retrieved during generation, Khalifa et al. (2024); Zhang et al. (2024a) fo-
cus on tuning LLMs to cite sources from pre-training data using learned parametric knowledge.
In contrast to previous approaches, we introduce TRUST-ALIGN, which advances alignment data
generation through a multi-step process that disentangles answer generation from citation quality.
This separation enables TRUST-ALIGN to simultaneously improve the quality of answer generation,
citation accuracy, and refusal precision. Additionally, TRUST-ALIGN addresses a broader range of
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hallucination errors, including inappropriate refusals, thereby enhancing the overall trustworthiness
and reliability of the model’s outputs.

D METRICS

In this section, we elaborate on how we compute metrics that are components of TRUST-SCORE.

D.1 RESPONSE TRUTHFULNESS

Truthfulness captures the model’s ability to answer or refuse a question correctly by computing
the grounded refusal (F1GR) and the factual accuracy by computing the answer-calibrated answer
correctness score (F1AC).

Grounded Refusal [F1GR]: A macro-averaged F1 score that measures the LLM’s ability in cor-
rectly refusing to answer a question (F1ref) and correctly providing an answer when required (F1ans).

• F1ref: This metric evaluates a model’s ability to correctly refuse unanswerable questions.
We calculate it based on how accurately the model identifies and refuses these questions.
Let Ag and ¬Ag represent the sets of ground truth answerable and unanswerable questions,
respectively, and Ar and ¬Ar denote the sets of questions where the model provided an
answer and refused to answer, respectively. F1ref is computed from precision Pref and recall
Rref:

Pref =
|¬Ar ∩ ¬Ag|

|¬Ar|
(1)

Rref =
|¬Ar ∩ ¬Ag|

|¬Ag|
(2)

F1ref =
2Pref · Rref

Pref + Rref
, (3)

where Pref measures the proportion of correctly refused unanswerable questions among
all refused questions, and Rref measures the proportion of correctly refused unanswerable
questions out of all unanswerable questions. Here, | · | denote the cardinality of the set, thus
Pref, Rref, and F1ref are scalar values.

• F1ans: This metric evaluates a model’s ability to correctly answer answerable questions.
It is computed based on the precision Pans and recall Rans for non-refusal responses to
answerable questions:

Pans =
|Ar ∩Ag|

|Ar|
(4)

Rans =
|Ar ∩Ag|

|Ag|
(5)

F1ans =
2Pans · Rans

Pans + Rans
(6)

F1GR (Grounded Refusals) provides an overall assessment of the model’s refusal capabilities by
computing the macro-average of F1ref and F1ans:

F1GR =
1

2
(F1ref + F1ans) (7)

F1ref evaluates the model’s ability to correctly refuse unanswerable questions, while F1ans assesses
its ability to correctly answer answerable ones. By penalizing both incorrect refusals and incor-
rect non-refusals, F1GR offers a balanced evaluation of the model’s over-responsiveness and under-
responsiveness
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Answer Correctness (Answer Calibrated) [F1AC]: Given a question q and the corresponding
gold claims AG = {ag1, . . . , agn}, we define the claims obtainable from the provided documents
as AD = {ad1, . . . , adn} and the claims generated in the response r as AR = {ar1, . . . , arn}. ACq

disregards the claims that cannot be inferred from D (answer calibration), and the exact match recall
scores is computed on the remaining claims, i.e., AG ∩AD:

ACqi =
|AG ∩AD ∩AR|

|AG ∩AD|
(8)

For the whole dataset with multiple questions {q1 . . . qk}, one can compute the average:

AC =
1

k

∑
qi∈Ag∩Ar

ACqi (9)

Where Ag denote the set of questions that are answerable using the provided documents, fully or
partially; Ar denote the set of questions that are answered by the model (non-refusal). There are two
variants of AC we study— precision-oriented PAC with denominator k = |Ar| (number of answered
questions). Second variant, recall-oriented RAC with denominator k = |Ag| (number of answerable
questions). Here | · | denotes the cardinality of the set. We denote the aggregated score by

F1AC =
2 PAC · RAC

PAC + RAC
. (10)

The primary reason for adjusting the conventional Answer Correctness (AC) metric to account for
the presence of answers in retrieved documents is to avoid rewarding models for generating correct
answers without locating them in the provided documents. This approach discourages models from
relying solely on their pre-trained knowledge to answer questions, instead encouraging them to find
and ground their answers within the provided documents.

D.2 ATTRIBUTION GROUNDEDNESS

Attribution or citation groundedness measures the relevance of generated citations to their corre-
sponding statements, both individually and collectively. A citation ci,j is deemed ”relevant” when
the statement it cites can be inferred from the cited document. The collective importance of ci-
tations is assessed using a statement-wise recall metric, while the individual importance of each
citation is evaluated using a precision metric. Given that a generated response r consists of multiple
statements S and their corresponding citations C, we first compute statement-wise citation recall
and per-citation precision. These scores are then averaged to obtain sample-wise scores, which are
finally averaged to produce dataset-wide scores.

Grounded Citation F1 [F1GC]: For a given statement si, statement-wise citation recall is com-
puted by:

Rsi
cite = ϕ({ci,1, . . . , ci,j}, si) (11)

where ϕ({ci,1, . . . , ci,j}, si) → {0, 1} is a function that determines whether the concatenation of all
cited documents fully supports the statement si. Next, we compute precision for a generated citation
ci,j for statement si as:

Pcj
cite = ϕ(ci,j , si) (12)

OR ¬ϕ({ci,k | k ̸= j}, si)

Thus, citation precision is 0 if and only if the cited document ci,j does not entail the statement si,
while all other citations collectively entail si without ci,j .
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As an aggregate measure, we report F1GC, which computes the F1 score using cumulative precision
and recall over the answered questions only (non-refusals):

Rcite =
1

|Ar|
∑
S∈As

r

1

|S|
∑
si∈S

Rsi
cite (13)

Pcite =
1

|Ar|
∑

C∈Ac
r

1

|C|
∑
cj∈C

Pcj
cite (14)

F1GC =
2 · Pcite · Rcite

Pcite + Rcite
(15)

Where Ar denotes the number of samples answered by the model, S denotes the set of statements
in a generated response, and As

r denotes the set of responses (including only statements, ignoring
citations) in the dataset. Similarly, C denotes the set of citations in a generated response, and Ac

r
denotes the set of responses (including only citations, ignoring statements) in the dataset.

TRUST-SCORE: Finally, we combine the metrics to produce a single trustworthiness score, which
allows us to rank models based on their trustworthiness. This score is calculated as the average of
each component metric.

TRUST-SCORE =
1

3
(F1GR + F1AC + F1GC) (16)

E THE TRUST-ALIGN DATASET

To align LLMs towards trustworthiness, we propose a new approach, TRUST-ALIGN. The approach
constructs an LLM trustworthiness alignment dataset, where each sample in the dataset consists
of a question q, a set of retrieved documents D, and a pair of positive (preferred) and negative
(unpreferred) responses (r+, r−). The positive response corresponds to an answer that encompasses
expected gold claims for q and corresponding citations referring to the documents. If D is not
sufficient to answer q, r+ is assigned a refusal response, while r− is its non-refusal counterpart.
We build the dataset in multiple steps: 1) Obtain a set of high-quality and diverse questions, 2)
Obtain documents for each question, 3) Augmenting (q,D) pairs that cover diverse hallucination
types, 4) Construct positive responses entailing gold claims, and 5) Construct negative (unpreferred)
responses by prompting a fine-tuned model and observing its hallucinations.

E.1 COLLECTING QUALITY QUESTIONS

The dataset construction process begins with gathering a diverse set of high-quality, challenging
questions from the training splits of source datasets, including ASQA, QAMPARI, and ELI5. To
collect seed samples, we first divide the questions in a dataset into k clusters using a Hugginface
pipeline11. After identifying the diverse clusters, we use Mixtral-8x7B with the prompt described in
Table 24 to assign each a quality score ranging from 1 to 7. The quality of a cluster is determined
by how difficult it is to answer the questions without requiring additional information i.e. a higher
score corresponds to a high difficulty. We then select clusters with a quality score of 4 or higher and
sample the desired number of questions from these top clusters. Suppose we have three clusters,
C1, C2, C3, with respective sizes N1, N2, N3, where Nc = N1 +N2 +N3. To sample Ns questions
from the clusters, we sample Ns× Ci

Nc
questions from cluster Ci. If this number exceeds the available

questions in the cluster, we randomly sample the remaining questions from the filtered-out clusters
(those with a quality score below 4). This process ensures that the seed set prioritizes both high
quality and diversity. For this paper, we set Ns to 3K, 3K, and 4K for ASQA, QAMPARI, and ELI5,
respectively, resulting in approximately 10K questions in the seed set.

E.2 COLLECTING D’S

For each seed question q that is obtained from ASQA and QAMPARI, we used gtr-t5-xxl (Ni
et al., 2022) to retrieve the top 100 relevant documents D from the 2018-12-20 Wikipedia snapshot.

11https://github.com/huggingface/text-clustering/
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For the ELI5 dataset, we employed BM25 in conjunction with Sphere (Piktus et al., 2021), a filtered
version of Common Crawl, as it better encompasses the wide range of topics present in ELI5. We
filter seed questions for which the retriever fails to retrieve relevant documents.

We utilize TRUE-NLI to derive the entailment pattern for each document. This pattern represents
the set of gold claims that the document supports. The TRUE model takes as input a concatenation
of a premise and a hypothesis, producing an entailment score (0 or 1) that indicates whether the
premise entails the hypothesis. In our approach, the documents serve as the premise, while the
hypothesis is formed by combining the relevant question with each corresponding gold claim to
reduce ambiguity. We take the union of the entailment patterns across documents to assess the
answerability of each question—if the pattern contains at least one supporting claim, the question is
considered answerable.

Following Gao et al. (2023b), we identify 5 documents that are equally effective for the model
as the 100 documents in terms of achieving the Exact Match (EM) recall value; we refer to such
documents as oracle documents for question q. Notably, to compute EM, gold claims are obtained
from respective source datasets.

E.3 AUGMENTING (q,D) SET

Now that we have the questions and the most relevant (oracle) documents, our goal is to create sam-
ples of diverse types (i.e., different proportions of relevant documents for the same question) that
can trigger multiple hallucinations from LLMs (Section 2.3). As illustrated in Fig. 3, for answerable
questions, we first utilize the identified entailment patterns to generate all possible combinations of
documents, then select k combinations that cover diverse patterns. To create samples with unan-
swerable questions, we select documents that are similar to gold-claim-entailing documents but do
not entail any gold claims. To minimize the risk of introducing bias in citation indices, we shuffle the
order of documents in each sample. As a result, we generate approximately 70K question-document
pairs.

After obtaining (q,D) pairs for the alignment dataset, we obtain positive and negative responses
(r+, r−) for each pair—an essential component of the dataset signaling the model’s preferred and
unpreferred responses. To achieve this, we introduce a response generation pipeline.

E.4 OBTAINING r+

We develop an automated data labeling pipeline that synthesizes natural responses from gold claims
and maps each statement to the corresponding documents for embedded in-line citations. The gold
claims are obtained from the source datasets (ASQA, QAMPARI, ELI5) and calibrated to the pro-
vided documents, i.e., filtering out claims that cannot be derived from D. We first split the questions
into answerable and unanswerable samples based on whether the provided documents entail the
gold claims. For an answerable sample, consisting of a question q, a set of documents D, and a list
of (calibrated) gold claims, we prompt GPT-4 to generate a natural response by stitching together
the gold claims using a template (Table 23). Please refer to the subsection below for more details

Document Recombination

Doc 1
[1,0,0]

Doc 4
[1,0,1]
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Doc 5
[0,0,0]
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[0,0,1]
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[1,0,0]

Doc 1
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Doc 2
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[0,0,1]
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Doc 3
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Figure 3: Document recombination process in augmented prompt curation.
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on how the prompt is structured for each dataset. The prompt template asks GPT-4 to label each
gold claim used with its index from the provided list (e.g., ”[Gold Claim X]”), allowing for later
matching of claims to documents. For unanswerable questions, a refusal response is assigned. To
generate citations corresponding to each statement generated, we map the ”[Gold Claim X]” labels
to the appropriate documents. First, we extract all such labels from a sentence (which may contain
multiple claims and labels). Then, we greedily identify the smallest combination of documents that
covers these claims, minimizing over-citation. Details of this process is illustrated in Fig. 4.

Claim-document mapping

Matt Prater

Ove Johansson

Doc 1
[1,0,1]

Doc 4
[1,0,0]

Doc 5
[0,0,0]

Doc 2
[1,0,1]

Doc 3
[1,0,0]

Union

Ronaldo Cristiano
Matt Prater

Ove Johansson[1,0,1]
Calibration
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[1,0,1]

[Gold Claim 1]

[Gold Claim 3]

... Matt Prater at 64 yards

[Gold Claim 2]. ... Ove Johansson

in a 1976... [Gold Claim 1].GPT-4
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{'1':0,'2':2}
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tokenizer

Matt Prater at 64
yards

[Gold Claim 2]Extract
claim label

[Gold Claim 2]

[2]

[Gold Claim 2]
[Gold Claim 1]

[Gold Claim 2]

ans_idx = {2}
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claim idx

{'1':0,
'2':2}

Check doc combinations can
cover minimally in greedy

fashion

Transformed
claim idx

Doc 1
[1,0,1]

Matt Prater at 64
yards [1]

Figure 4: Claim-document-mapping process.

Details on prompt structure for each dataset. For ASQA, we include the question q, a list of
(calibrated) gold claims, and their corresponding supporting documents D as additional context. For
ELI5, we follow Gao et al. (2023b) by decomposing each labeled response into three claims, which
serve as a set of ground truth answers. Since the claim labels already provide sufficient context,
we only fit the question and calibrated claims into the template. For QAMPARI, since its response
format aligns with its labeled ground truth format (a list of entities), no additional action is required.

E.5 OBTAINING r−

To create high-quality preference data, we aim to obtain quality negative (unpreferred) responses.
We first fine-tune LLaMA-2-7b on the training set of the source datasets12, creating Msft. We then
test Msft on the above-obtained dataset with approximately 70K questions and identify that 40K
responses exhibit hallucinations. Table 9 shows the severity computation (ei) and the frequency
of each hallucination type (wi). Thus, we can compute hallucination severity for each sample as
eq =

∑
i ei · wi.

Table 9: Fraction of each hallucination amongst all the observed hallucinations in Msft (40,985), with possi-
ble overlap. wi shows the severity computation of each hallucination. Icondition = 1 if condition is True otherwise
it is 0. See Fig. 5 for the detailed breakdown of the last three errors.

Hallucination type Frequency (wi) Severity (ei)
Unwarranted Refusal 8,786 0.50 I(Ag ̸=∅,Ar=∅)
Over Responsiveness 13,067 0.50 I(Ag=∅,Ar ̸=∅)
Overcitation 12,656 0.34 1 - CP
Improper Citation 9,592 0.26 1 - CR
Inaccurate Claims 14,783 0.40 1 - F1AC

To obtain good negative samples, we first rank each of the 40K responses according to their severity
score eq . We then select the top 50% of the corresponding samples for both answerable and unan-
swerable responses. Thus, we demonstrate the alignment data construction phase of TRUST-
ALIGN, i.e., obtaining 19K samples with all the desired attributes (q,D, r+, r−). We perform
DPO using this set of 19k samples to obtain the final aligned model.

12Seed questions, corresponding oracle documents, and the gold answers (r+) are concatenated together
using the refusal prompt in Table 25.
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Figure 5: Statistics of hallucinations from the output of LLaMA-2-7b SFT model prompted using
70K (q,D) samples obtained in Step-2 of TRUST-ALIGN.

F ADDITIONAL ANALYSIS

F.1 REVISED METRICS ARE LESS BIASED
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Figure 6: Comparison of AC regular and AC calibrated (F1AC) across models on ASQA. EM regu-
lar/calibrated is synonymous with AC regular/calibrated.

Fig. 6 shows the performance of our models on EM regular and EM calibrated. In ASQA, our
measure of Answer Correctness (AC) was Exact Match (EM) and thus EM regular/calibrated is
synonymous with AC regular/calibrated. As seen across the models, AC regular tends to unduly
penalize our models for refusals, resulting in baselines performing disproportionately better than
our models. By measuring AC on both the answerable and answered set for F1AC, we arrive at an
AC metric that is more fair in the presence of refusals. By correcting for the bias toward answering at
all costs, we are able to reveal more balanced perspective on model performance as demonstrated by
a reduction in the performance gap (e.g. in LLaMA-2-7b, LLaMA-3-8b, LLaMA-3.2-1b, LLaMA-
3.2-3b) or even revealing our model’s stronger performance as compared to baseline (e.g. Phi-3.5

24



Published as a conference paper at ICLR 2025

mini, Qwen-2.5-1.5b, Qwen2.5-3b). The ability to grade the model more fairly underscores the need
for our calibrated metrics.

F.2 UTILIZATION OF PARAMETRIC KNOWLEDGE

For an LLM used for an RAG task, it is important to study the tendency of LLM towards grounding
its knowledge on the provided documents. To partially quantify this, we compute an uncalibrated
answer correctness (AC) score for questions that are unanswerable by the provided documents; thus
AG ∩AD = ∅ but AG ̸= ∅,

Sparam =
1

|Nr|
∑

qi∈Nr

|(AR − (AR ∩AD)) ∩AG|
|AR|

(17)

Where, AG, AD, and AR are claims in the ground truth answer, claims present in the documents,
and the claims generated in the response, respectively. Nr is the number of answered questions.

In Table 10, our analysis reveals that responsive models tend to rely on parametric knowledge more
frequently. Notably, closed-source models like GPT-4 exhibit higher parametric knowledge usage
compared to our models. However, this metric only partially captures the models’ utilization of
parametric knowledge. For instance, cases where models correctly generate gold claims without
proper grounding may also indicate reliance on parametric knowledge. This phenomenon is evident
in Table 12, where on ASQA, GPT-4 achieves a significantly higher F1AC than our models, yet its
attribution groundedness score F1GC is five points lower.

Table 10: Detection of parametric knowledge usage under refusal prompting.

Model ASQA QAMPRARI ELI5
AR (%) Sparam AR (%) Sparam AR (%) Sparam

ICL-LLaMA-2 7B 0.00 0.00 0.00 0.00 0.50 0.00
ICL-LLaMA-3 8B 1.48 1.79 3.90 16.92 0.00 0.00
ICL-GPT-3.5 71.20 9.74 65.30 11.45 49.00 7.89
ICL-GPT-4 86.81 12.71 73.40 13.05 61.50 9.05
ICL-Claude-3.5 84.60 12.99 69.80 12.55 59.00 1.76

TRUST-ALIGN (DPO-LLaMA-2-7B) 65.30 8.15 31.10 8.45 21.60 5.56
TRUST-ALIGN (DPO-LLaMA-3-8B) 56.42 8.65 23.10 8.97 15.50 7.26

F.3 THE SOURCE OF LLM HALLUCINATIONS

Model errors can be categorized into two primary sources:

1. Parametric knowledge-based hallucination: Errors arising from the model’s internal
knowledge representation.

2. Information extraction failures: Inability to accurately extract relevant information from
provided documents.

To quantify these error types, we employ the following methodology:

• For the non-refused questions with errors, calculate the proportion of the incorrect answers
that are:

◦ Present in the provided documents
◦ Absent from the provided documents

For answers absent from the documents, we can attribute the error to parametric knowledge-based
hallucination. For answers present in the documents, the specific source of the error remains inde-
terminate as it can be attributed to both.

The substring matching (Gao et al., 2023b) is used here for searching for the existence of incorrect
answers in the documents. As the model’s response only on QAMPARI can be decomposed into
atomic facts, we chose to perform this analysis on it. Specifically, for every answered question,

25



Published as a conference paper at ICLR 2025

we calculate the proportion of incorrect answers present in or absent from the documents using the
equations below:

Presence =
1

|Ne|
∑

qi∈Ae

|Ae
R ∩AD|
|Ae

R|
(18)

Absence =
1

|Ne|
∑

qi∈Ae

|Ae
R − (Ae

R ∩AD)|
|Ae

R|
(19)

Where Ae denotes the set of answerable questions that answered by the model with one or more
incorrect answers; AD, Ae

R are facts present in the documents and erroneous facts generated in the
response, respectively.

The findings are presented in Table 11. Our analysis reveals that, with the exception of LLaMA-2
7B which provides no responses, all other ICL-based models exhibit a higher tendency to pro-
duce erroneous answers based on their parametric knowledge compared to our models. Notably,
Claude-3.5 demonstrates a more frequent reliance on its parametric knowledge, which elucidates its
significantly lower TRUST-SCORE score in Table 12.

In summary, our investigation indicates that baseline models, including GPT-4 and GPT-3.5, are
more susceptible to hallucinations stemming from their parametric knowledge.

Table 11: The proportions of erroneous answers present in or absent from the documents.

Model QAMPARI
Presence (%) Absence (%)

ICL-LLaMA-2 7B 0.00 0.00
ICL-LLaMA-3 8B 84.41 15.59
ICL-GPT-3.5 85.04 14.96
ICL-GPT-4 89.3 10.7
ICL-Claude-3.5 72.18 27.82

TRUST-ALIGN (DPO-LLaMA-2-7B) 93.26 6.74
TRUST-ALIGN (DPO-LLaMA-3-8B) 95.63 4.37

F.4 TRUST-ALIGN ENHANCES TRUSTWORTHINESS MORE ROBUSTLY THAN PROMPTING

Aligning with TRUST-ALIGN leads to more significant improvements in TRUST-SCORE compared
to using prompting alone. While adding a refusal prompt has inconsistent effects on TRUST-SCORE
and its subcomponents, it tends to be more beneficial in more capable models, such as LLaMA-2-
13b and LLaMA-3-8b.

Relying solely on prompting to teach refusal is ineffective, as models’ responsiveness becomes
overly sensitive to the prompt. Under the default prompt, models rarely refuse (AR% close to
100), while adding a refusal prompt in ICL drastically reduces AR%, often to near zero, indicating
indiscriminate refusal. This lack of nuanced refusal ability is also seen in post hoc methods. At
both extremes, TRUST-SCORE scores suffer due to errors in correctly refusing questions and lower
citation groundedness scores. In contrast, TRUST-ALIGN enables models to identify and correctly
answer appropriate questions, resulting in AR% closer to the maximum answerable percentage and
improvements in F1GR.

It’s important to note that responsiveness should not be the primary metric for comparing RAG
systems when the retrieved documents are the same. The TRUST score rewards accurate answers,
appropriate refusals, and correct citations while penalizing failures. Systems with low responsive-
ness will score poorly on TRUST, regardless of their overall response rate.

As shown in Table 19, Table 20, and Table 21, for PostCite, PostAttr, and Self-RAG, adding a refusal
prompt results in minimal changes in TRUST-SCORE (e.g., ASQA Self-RAG with LLaMA-2-13b:
51.69% vs. 52.49%). Subcomponent analysis shows little difference in F1GR (42.74% vs. 39.15%),
indicating that the refusal prompt does not effectively help models distinguish between answerable
and unanswerable questions. These findings highlight the instability of relying on prompting to
enhance trustworthiness and underscore the robustness of our system in achieving this goal.
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F.5 COMPARISON WITH CLOSED-SOURCE MODELS

We continue our comparison of trustworthiness against competitive closed-source models utilizing
in-context learning techniques. As shown in Table 12, our aligned models outperform GPT-3.5
(69.23 vs. 67.64) and Claude-3.5 (69.23 vs. 64.36) on the ASQA dataset, and substantially out-
perform GPT-3.5 (55.31 vs. 38.95), GPT-4 (55.31 vs. 40.35), and Claude-3.5 (55.31 vs. 39.78)
on QAMPARI. However, the responsiveness of current closed-source models remains much higher
than that of our models: even with a refusal prompt, ICL-GPT-4 still answers a significant fraction
of questions (86.81% on ASQA, 73.40% on QAMPARI). As discussed in Section 6, this tendency
allows GPT-4 to achieve higher F1AC scores on ASQA, but it negatively impacts its attribution
groundedness: its F1GC scores on both datasets are lower than those of our models. Similarly, GPT-
4’s F1GR scores on both datasets are also lower. On QAMPARI, the F1AC scores of all closed-source
models are lower than those of our models.

Moreover, there still remains a gap between our models and the closed-source models on the ELI5
dataset. Our models’ TRUST-SCORE is 2.45 points lower than that of the advanced ICL-GPT-4,
and specifically, the F1AC and F1GC scores are lower. For higher F1AC, as discussed in Section 6,
it is due to a higher number of its answered answerable questions with comparable EMα

AC. As
for higher F1GC, We hypothesize that this gap could be attributed to the information density of the
extracted claims utilized in constructing the alignment data (Section 4). Specifically, the three claims
derived from the decomposition process may either be redundant or inadequate to fully encapsulate
the information inherent in the original labelled response. In some cases, the decomposed claims
may even fail to align with the original facts. First, insufficient information can lead the model
to learn to extract fewer facts from the document, thereby reducing the answerability by covering
fewer correct answers after training. Second, redundant information can impair grounded citation
learning, as it repeats the same information across different claims, making the model less capable
of performing precise citations from the corresponding documents. This issue is illustrated in the
case study presented in Table 13.

This experiment reveals that proprietary models demonstrate greater responsiveness compared to
our models. While GPT-4 achieves superior F1AC scores, it underperforms in terms of F1GC and
F1GR, suggesting limitations in its ability to ground responses and refuse unanswerable questions.
Overall, GPT-3.5 and GPT-4 outperform our models in utilizing retrieved documents for long-
form question answering, primarily due to the limited capacity of our base model.

Table 12: Our models vs closed source: AR% := Answered Ratio in %; F1AC := Answer Correctness
F1 (Calibrated); F1GR := Grounded refusals F1; F1GC := Grounded Citation F1; TRUST := TRUST
score. R := Refusal prompt is used. D := Default prompt is used.

ASQA QAMPARI ELI5
Responsiveness Trustworthiness Responsiveness Trustworthiness Responsiveness Trustworthiness

AR (%) Truthfullness Attr. Grdness TRUST AR (%) Truthfullness Attr. Grdness TRUST AR (%) Truthfullness Attr. Grdness TRUST
Prompt F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

Closed-source Models
ICL-GPT-3.5 R 71.20 52.91 66.07 83.94 67.64 65.30 26.57 58.49 31.80 38.95 49.00 32.38 58.27 57.29 49.31
ICL-GPT-4 R 86.81 62.96 61.85 84.35 69.72 73.40 30.13 55.46 35.45 40.35 61.50 33.05 53.11 61.84 49.33
ICL-Claude-3.5 R 84.60 59.97 64.77 68.35 64.36 69.80 28.40 58.10 32.83 39.78 59.00 11.34 54.00 12.43 25.92

ICL-GPT-3.5 D 94.41 55.03 52.48 78.04 61.85 94.50 20.30 29.54 21.22 23.69 93.50 23.88 24.68 46.28 31.61
ICL-GPT-4 D 92.72 62.37 54.17 79.70 65.41 87.70 26.19 40.03 30.02 32.08 82.80 29.09 37.02 48.33 38.15
ICL-Claude-3.5 D 82.49 54.20 66.49 58.88 59.86 69.90 0.00 57.40 0.00 19.13 56.60 11.56 56.03 11.22 26.27

TRUST-ALIGN Models
DPO-LLaMA-2-7b R 65.30 52.48 66.12 83.94 67.51 31.10 32.09 71.83 51.33 51.75 21.60 22.54 63.27 48.43 44.75
DPO-LLaMA-3-8b R 56.43 53.94 65.49 88.26 69.23 23.10 35.94 71.11 58.87 55.31 15.50 22.81 64.00 53.84 46.88
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Table 13: A case study of the failure of decomposition.

Insufficient case

Question: Why do burns blister and why do burn wounds remain warm
long after the injury occurred?
Label: Burn blisters occur when the second layer of the skin is
damaged, they occur to protect the underlying skin layers from more
damage and infection. You could see it as the bodys/skins natural
bandage, so never pop them. The skin remain warm because of the
increased blood in the area to repair and replace the damaged skin.

Decomposed claims:
1. Burn blisters occur when the second layer of skin is damaged.
2. Burn wounds remain warm due to increased blood flow to the area
to repair and replace damaged skin.

Missing points:
1. Protection and Infection: The first claim does not mention that
the blisters protect the underlying skin from more damage and
infection, which is a significant part of the explanation in the
answer.
2. Never Pop Them: The answer advises against popping blisters,
which is a preventive measure not mentioned in the claims.

Redundant case

Question: How do fitness trackers know that you actually sleeping
but not just laying there resting, being awake?
Label: Your heart beats slows down when you sleep, they will use a
mixture of heart rate and how long you haven’t moved to determine how
you’ve slept

Decomposed claims: 1. The combined factors of heart rate and
inactivity determine sleep assessment.
2. Fitness trackers consider the duration of inactivity to assess
sleep.
3. A slowed heart rate is an indicator of sleep that fitness
trackers monitor.

Redundant point: The first claim has already summarised the core
statement, and the last two claims just expand it and give more
details

F.6 ADAPTABILITY WITH DIFFERENT ALIGNMENT TECHNIQUES

To demonstrate the robustness of our synthesized alignment data across different training methods,
Table 14 also includes the performance of SFT and SIMPO (Meng et al., 2024) methods. Compared
to the SFT baseline, which only utilizes the positive data points in the alignment pairs to fine-tune
the base model, preference optimization methods, such as DPO and SIMPO, consistently show per-
formance improvements, highlighting the versatility of our data pipeline. Unlike the SFT approach,
DPO and SIMPO demonstrate improved TRUST scores, albeit with a reduction in responsiveness.
This decrease in responsiveness is actually a favorable outcome, as it indicates that the models are
less likely to attempt to answer questions for which they lack sufficient information.

Table 14: Results using different alignment methods on the ASQA dataset.

Alignment TRUST-ALIGN Model Responsiveness (AR%) F1AC F1GR F1GC TRUST

DPO LLaMA-2-7b 65.30 52.48 66.12 83.94 67.51
LLaMA-3-8b 56.43 53.94 65.49 88.26 69.23

SIMPO LLaMA-2-7b 72.47 53.19 66.44 82.21 67.28
LLaMA-3-8b 57.38 49.84 64.13 86.86 66.94
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F.7 EVALUATION DATA CREATION WITHOUT USING TRUE

The determination of question answerability in our dataset is based on a combination of substring
matching and TRUE criteria, as detailed in Section 2. Additionally, we developed an alternative ver-
sion of the evaluation data that relies solely on substring matching, disregarding the TRUE criterion.
This relaxation of answerability constraints results in an increased number of answerable questions.
The findings from this analysis are presented in Table 15. It is worth noting that the overall trends
observed in this analysis align with those reported in Table 2, which employs the combined approach
of substring matching followed by TRUE verification.

Table 15: Results on ASQA, QAMPARI evaluation datasets where the data are created without
using TRUE; AR% := Answered Ratio in %; F1AC := Answer Correctness F1 (Calibrated); F1GR
:= Grounded refusals F1; F1GC := Citation Grounded F1; TRUST := TRUST-SCORE. R := Refusal
prompt is used. D := Default prompt is used.

ASQA (779 answerable, 169 unanswerable) QAMPARI (586 answerable, 414 unanswerable)

Responsiveness Trustworthiness Responsiveness Trustworthiness

AR (%) Truthfullness Attr. Grdness TRUST AR (%) Truthfullness Attr. Grdness TRUST
Prompt F1AC F1GR F1GC F1AC F1GR F1GC

LLaMA-2-7b
ICL R 0.00 0.00 15.13 0.00 5.04 0.00 0.00 29.28 0.00 9.76
PostCite R 10.44 0.13 24.91 0.00 8.35 34.40 0.00 52.57 9.50 20.69
PostAttr R 10.44 0.13 24.91 0.00 8.35 34.40 0.00 52.57 3.78 18.78
Self-RAG R 100.00 44.40 45.11 63.49 51.00 96.00 9.64 44.15 19.95 24.58

ICL D 94.30 51.13 54.01 44.86 50.00 93.60 13.31 43.37 3.88 20.19
PostCite D 88.71 2.64 54.63 0.98 19.42 56.30 0.00 52.85 7.73 20.19
PostAttr D 87.24 2.71 55.63 0.43 19.59 51.10 0.00 52.45 4.70 19.05
Self-RAG D 98.00 47.22 46.27 56.59 50.03 96.20 12.13 40.83 15.44 22.80

LLaMA-2-13b
ICL R 17.41 19.29 31.22 14.14 21.55 26.50 0.63 53.67 0.00 18.10
PostCite R 90.51 2.04 56.40 1.53 19.99 100.00 0.00 36.95 8.05 15.00
PostAttr R 90.51 2.04 56.40 0.17 19.54 100.00 0.00 36.95 2.95 13.30
Self-RAG R 100.00 48.10 45.11 69.79 54.33 72.70 4.90 60.20 26.91 30.67

ICL D 97.57 51.18 50.16 9.40 36.91 97.80 0.05 41.05 0.00 13.70
PostCite D 89.77 0.07 54.96 0.00 18.34 63.00 0.00 53.22 7.14 20.12
PostAttr D 89.24 0.07 55.01 0.00 18.36 58.50 0.00 52.31 4.56 18.96
Self-RAG D 97.68 49.10 48.47 63.39 53.65 96.30 6.04 41.17 21.06 22.76

LLaMA-3-8b
ICL R 1.48 2.12 17.09 89.14 36.12 3.90 4.77 35.42 20.24 20.14
PostCite R 77.53 34.32 54.76 28.01 39.03 87.00 9.90 47.98 8.42 22.10
PostAttr R 77.53 34.32 54.76 5.95 31.68 87.00 9.90 47.98 1.64 19.84

ICL D 89.66 58.83 64.47 62.12 61.81 70.80 7.48 61.03 4.81 24.44
PostCite D 97.26 37.48 49.41 17.89 34.93 92.00 3.35 45.43 11.14 19.97
PostAttr D 97.47 37.44 48.95 3.18 29.86 93.00 3.32 46.03 5.65 18.33

TRUST-ALIGN Models
DPO-LLaMA-2-7b R 65.30 47.85 61.60 84.95 64.80 32.30 27.80 63.60 49.42 46.94
DPO-LLaMA-3-8b R 56.43 48.18 57.60 88.84 64.87 22.40 26.57 56.84 58.77 47.39
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F.8 EFFECT OF DATA SIZE ON DPO PERFORMANCE
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Figure 7: Influence of the proportion of augmented training samples on TRUST-SCORE in LLaMA-
3-8b.

During the bulk of our experiments, we chose to utilize the top 50% of augmented samples to form
the training dataset for DPO alignment due to cost-effectiveness. Here, we investigate whether vary-
ing the quantity and difficulty of the samples would influence the final model performance. Fig. 7
shows how the amount of training samples affect the final performance of TRUST-ALIGN model.
Notably, selecting the top 25% of augmented samples achieved the highest performance on QAM-
PARI (57.73) and ELI5 (47.55). The absence of a clear trend suggesting that ”more data is better”
can be attributed to the nature of the data itself. Although document recombination can gener-
ate a large number of samples, those with lower hallucination severity scores tend to have limited
complexity and high information redundancy. As a result, these additional samples do not provide
substantial new or challenging information for the model to learn from, limiting their effectiveness
in improving model performance. When training with the top 50% of augmented samples, the model
may be experiencing overfitting, which could explain the observed decline in performance. There-
fore, it is likely that even better performance could be attained by carefully tuning the amount of
augmented data used. This finding underscores a limitation of our pipeline, revealing that the diver-
sity of document content plays a crucial role in determining the quality of the augmented samples.

F.9 FINE-TUNING GPT-4O

We fine-tuned GPT-4o using our SFT dataset. The results reported in Table 16 indicate the consistent
improvement in trustworthiness scores of GPT-4o as a result of supervised fine-tuning.

Table 16: Performance of supervised fine-tuned GPT-4o.

Model Type

ASQA (610 answerable, 338 unanswerable) QAMPARI (295 answerable, 705 unanswerable) ELI5 (207 answerable, 793 unanswerable)

Resp. Trustworthiness Resp. Trustworthiness Resp. Trustworthiness

AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST AR (%) Truthfullness Att-Grd. TRUST
F1AC F1GR F1GC F1AC F1GR F1GC F1AC F1GR F1GC

GPT-4o ICL 84.49 62.92 61.40 73.66 65.88 60.40 14.29 75.20 20.43 33.69 66.1 35.25 68.33 37.71 41.58
TRUST-ALIGN (SFT) 74.26 59.22 68.62 87.54 72.09 34.6 41.56 77.15 53.64 56.99 25.5 24.1 68.34 56.09 48.99

G GPT-4 BASED DATA PIPELINE

For the GPT-4 data pipeline, we employ GPT-4 to simulate a critic that performs two key tasks in
succession. First, it identifies and revises mistakes or supplements missing information in the given
response based on correct answers. Second, it validates the attribution of statement-level citations
and corrects them accordingly. The detailed instruction is provided in Table 26.

Coverage critiques. To ensure that the correct answers are accurately reflected in the given re-
sponse, we prompt GPT-4 with the corresponding question, correct answers, and reference facts
(documents that support the provided correct answers) as context. GPT-4 is then asked to locate
specific mistakes or identify any missing correct answers in the given response. After identifying
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coverage-related issues, GPT-4 is instructed to minimally revise the original response to correct
these issues based on the detected problems. This minimal revision approach is intended to generate
more precise data for alignment learning.

Citation critiques. Based on the revised content, we further tokenize it into individual statements
to enable a more fine-grained citation check in later stages. We format all documents in the in-
struction as holistic facts and instruct GPT-4 to determine the attribution of each statement relative
to these facts. We define three levels of attribution: SUPPORT, OPPOSE, and IRRELEVANT. We
then compare GPT-4’s attribution results to the original attributions in the response, modifying the
original attributions wherever they do not align with GPT-4’s critiques. Finally, we concatenate all
citation-revised statements to form the final revised response.

H EXPERIMENTAL SETUP

H.1 IMPLEMENTATION DETAILS

For all experiments involving our tuned models and baselines, we provided the top 5 retrieved doc-
uments as context and used decoding temperatures of 0.1 and 0.5, respectively, with other settings
consistent with those in Gao et al. (2023b). We evaluated three representative open-source model
families: the LLaMA series 13(Touvron et al., 2023; Dubey et al., 2024), the Qwen series 14 (Yang
et al., 2024), and Phi-3.5-mini (Abdin et al., 2024), and three proprietary model families: GPT-4
(OpenAI et al., 2024), GPT-3.5 (Brown et al., 2020) 15, and Claude-3.5-Sonnet 16. We perform the
full parameter fine-tuning for better performance. For supervised fine-tuning (SFT), we trained the
models for 2 epochs with a learning rate of 2e-5. For direct preference optimization (DPO) align-
ment, we trained the models for 2 epochs with a beta value of 0.5. All experiments were conducted
on NVIDIA A40 40G GPUs.

H.2 DATASET DETAILS

Following Liu et al. (2023); Gao et al. (2023b), to form D, we divide large text documents into
100-word passages and limit the number of citations Ci for each claim to a maximum of three. If the
response is empty, it is excluded from evaluation. We provide statistics of our evaluation in Table 17.

Table 17: Statistics of the evaluation dataset.

ASQA QAMPARI ELI5 ExpertQA

Total # of Samples 948 1000 1000 2169
# Answerable Samples 610 295 207 682
# Unanswerable Samples 338 705 793 1487

ASQA (Stelmakh et al., 2023). This long-form factoid dataset features ambiguous queries from
AmbigQA (Li et al., 2023), requiring multiple short answers to address different aspects. It includes
comprehensive long-form answers that combine these short responses.

QAMPARI (Amouyal et al., 2023). This factoid QA dataset is derived from Wikipedia, with
answers consisting of lists of entities gathered from various passages.

ELI5 (Fan et al., 2019). This dataset is a long-form QA collection based on the Reddit forum
“Explain Like I’m Five” (ELI5). Most ELI5 questions require the model to utilize knowledge from
multiple passages to formulate a complete answer. The ELI5 dataset is frequently used in related
research due to its challenging nature (Nakano et al., 2021; Menick et al., 2022; Jiang et al., 2023).

13LLaMA-2-7b, LLaMA-2-13b, LLaMA-2-70b, LLaMA-3.2-1b, LLaMA-3.2-3b, LLaMA-3-8b
14Qwen-2.5-0.5b, Qwen-2.5-1.5b, Qwen-2.5-3b, Qwen-2.5-7b
15We utilize the latest version on the AzureOpenAI Service: https://learn.microsoft.com/

en-us/azure/ai-services/openai/concepts/models
16https://www.anthropic.com/news/claude-3-5-sonnet
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ExpertQA (Malaviya et al., 2024). This dataset spans various topics and requires domain-
specific knowledge to solve long-form questions. To further verify the generalizability of our ap-
proach, we test our best model and some of the baselines on this unseen dataset.

H.3 BASELINES

Table 18: A case study illustrating the necessity of GPT-4o matching for detecting refusals in models
prompted with default prompt.

Question: Who killed the man in thelma and louise?

Answer: "In the movie T̈helma and Louise,ẗhe man who is killed is not
explicitly identified as being killed by any specific character. The
movie ends with a shootout and a crash, and it is unclear who
survives or who is responsible for the deaths. The search results
you provided do not provide any clear answers to this question.

Fuzzy match judgement: Not refusal
Human judgement: Refusal
GPT-4o judgement: Refusal

H.3.1 IN-CONTEXT LEARNING (ICL)

Following Gao et al. (2023b), we prepend with two demonstrations, each consisting of a query, top-5
retrieved passages, and an answer with inline citations.

H.3.2 POST-HOC SEARCH (POSTCITE)

Following Gao et al. (2023b), we first prompt the model under a closed book setting i.e. without
any retrieved passages, to obtain an uncited answer. Then, GTR is used to find the best matching
citation among the top-5 retrieved passages for every statement.

H.3.3 POST-HOC ATTRIBUTE (POSTATTR)

Similar to PostCite, we first obtain model response under a closed book setting. Then we use the
TRUE NLI model to find the best matching citation among top-5 retrieved passages.

H.3.4 SELF-RAG

Self-RAG trains the LLM to retrieve documents on demand using special reflection tokens and
enhances generation quality through self-reflection. We compare our results against the 7b and 13b
models released, using the default settings as described in (Asai et al., 2024).

H.3.5 FRONT

FRONT (Huang et al., 2024b) utilizes a fine-grained attribution training framework that first grounds
specific supporting quotes, and then generates responses with citations based on those quotes. It
tunes the LLM with automatically collected data based on ChatGPT and quality filtering. We repro-
duce its 7b model for the evaluation.

H.4 REFUSAL DETECTION

We employed two methods to measure refusals robustly. In a refusal prompt, models were explic-
itly instructed to respond only with the phrase: ”I apologize, but I couldn’t find an answer to your
question in the search results.” without providing any further explanation. As the models generally
complied with this pattern, we were able to apply fuzzy matching17 to detect the phrase above indi-
cating refusal. For models responding to a default prompt, refusals did not adhere to a fixed pattern,

17Fuzz Partial Ratio was used to mitigate the impact of string length.
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making detection more challenging. Two human annotators verified that fuzzy matching yielded
poor performance Table 18. Hence, GPT-4o was employed as an evaluator to classify whether an
answer should be considered a refusal. The specific prompt used is provided in Table 27.

I DETAILED RESULTS

Table 19, Table 20, Table 21 and Table 22 show the full results of our experiments.

J PROMPT TEMPLATES

Table 23, Table 24, Table 25, Table 26 and Table 27 show the prompts used in our experiments.
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Table 19: Detailed ASQA results.

Prompt AR% ACreg PAC RAC F1AC Rref Pref F1ref Rans Pans F1ans F1GR Rcite Pcite F1GC TRUST-SCORE

Qwen-2.5-0.5b
ICL R 29.85 7.26 33.06 15.34 20.96 74.56 37.89 50.25 32.30 69.61 44.12 47.19 0.35 0.35 0.35 22.83

PostCite R 46.10 4.72 10.24 7.34 8.55 57.40 37.96 45.70 48.03 67.05 55.97 50.84 8.23 8.23 8.23 22.54
PostAttr R 46.10 4.72 10.24 7.34 8.55 57.40 37.96 45.70 48.03 67.05 55.97 50.84 2.23 2.23 2.23 20.54
FRONT R 100.00 27.19 35.19 54.69 42.83 0.00 0.00 0.00 100.00 64.35 78.31 39.15 47.55 44.30 45.87 42.62

SFT R 83.44 20.12 34.28 44.45 38.71 27.81 59.87 37.98 89.67 69.15 78.09 58.03 61.93 53.61 57.47 51.40
TRUST-ALIGN (DPO) R 71.84 25.98 47.95 53.53 50.59 42.31 53.56 47.27 79.67 71.37 75.29 61.28 52.98 51.84 52.40 54.76

TRUST-ALIGN (DPO-25%) R 77.00 22.03 39.36 47.10 42.88 37.28 57.80 45.32 84.92 70.96 77.31 61.32 59.25 57.56 58.39 54.20
Qwen-2.5-1.5b

ICL R 98.52 32.70 41.78 63.98 50.55 2.66 64.29 5.11 99.18 64.78 78.37 41.74 5.47 8.62 6.69 32.99
PostCite R 71.73 9.80 15.51 17.30 16.36 31.66 39.93 35.31 73.61 66.03 69.61 52.46 15.40 15.40 15.40 28.07
PostAttr R 71.73 9.80 15.51 17.30 16.36 31.66 39.93 35.31 73.61 66.03 69.61 52.46 4.45 4.45 4.45 24.42
FRONT R 99.26 38.16 47.58 73.40 57.74 2.07 100.00 4.06 100.00 64.82 78.66 41.36 53.48 58.11 55.70 51.60

SFT R 78.27 23.09 40.30 49.02 44.24 33.14 54.37 41.18 84.59 69.54 76.33 58.75 75.67 67.01 71.08 58.02
TRUST-ALIGN (DPO) R 72.57 27.57 49.70 56.05 52.69 42.90 55.77 48.49 81.15 71.95 76.27 62.38 68.06 65.61 66.81 60.63

TRUST-ALIGN (DPO-25%) R 76.48 25.08 45.08 53.57 48.96 39.05 59.19 47.06 85.08 71.59 77.75 62.41 76.30 74.72 75.50 62.29
Qwen-2.5-3b

ICL R 27.43 33.55 63.11 26.90 37.72 84.02 41.28 55.36 33.77 79.23 47.36 51.36 42.49 66.08 51.72 46.93
PostCite R 8.76 13.58 39.96 5.44 9.58 93.79 36.65 52.70 10.16 74.70 17.89 35.30 10.94 10.94 10.94 18.61
PostAttr R 8.76 13.58 39.96 5.44 9.58 93.79 36.65 52.70 10.16 74.70 17.89 35.30 36.29 36.29 36.29 27.06
FRONT R 97.47 34.56 45.78 69.35 55.15 5.03 70.83 9.39 98.85 65.26 78.62 44.01 64.80 60.78 62.72 53.96

SFT R 75.21 24.28 43.85 51.25 47.26 38.17 54.89 45.03 82.62 70.69 76.19 60.61 75.99 70.40 73.09 60.32
TRUST-ALIGN (DPO) R 49.47 23.72 63.48 48.81 55.19 71.01 50.10 58.75 60.82 79.10 68.77 63.76 78.77 78.52 78.64 65.86

TRUST-ALIGN (DPO-25%) R 61.92 22.07 50.36 48.46 49.39 55.92 52.35 54.08 71.80 74.62 73.18 63.63 81.63 79.19 80.39 64.47
Qwen-2.5-7b

ICL R 92.09 35.79 50.06 71.64 58.94 17.46 78.67 28.57 97.38 68.04 80.11 54.34 77.62 73.42 75.46 62.91
PostCite R 91.46 20.91 23.44 33.31 27.52 9.76 40.74 15.75 92.13 64.82 76.10 45.93 4.19 4.19 4.19 25.88
PostAttr R 91.46 20.91 23.44 33.31 27.52 9.76 40.74 15.75 92.13 64.82 76.10 45.93 17.92 17.92 17.92 30.46
FRONT R 86.39 41.77 56.34 75.64 64.58 27.51 72.09 39.83 94.10 70.09 80.34 60.08 61.45 55.41 58.27 60.98

SFT R 65.30 24.25 50.36 51.10 50.73 53.25 54.71 53.97 75.57 74.47 75.02 64.50 85.79 78.67 82.07 65.77
TRUST-ALIGN (DPO) R 59.49 25.15 57.28 52.96 55.04 62.13 54.69 58.17 71.48 77.30 74.28 66.22 84.33 82.83 83.57 68.28

TRUST-ALIGN (DPO-25%) R 58.44 23.56 55.14 50.08 52.49 63.61 54.57 58.74 70.66 77.80 74.05 66.40 87.60 85.17 86.37 68.42
Phi3.5-mini

ICL R 63.19 38.58 50.70 49.78 50.24 39.35 38.11 38.72 64.59 65.78 65.18 51.95 40.49 45.03 42.64 48.28
PostCite R 23.10 21.76 28.36 10.18 14.98 76.92 35.67 48.73 23.11 64.38 34.02 41.38 9.40 9.40 9.40 21.92
PostAttr R 23.10 21.76 28.36 10.18 14.98 76.92 35.67 48.73 23.11 64.38 34.02 41.38 1.24 1.24 1.24 19.20
FRONT R 99.79 41.59 52.06 80.74 63.30 0.59 100.00 1.18 100.00 64.48 78.41 39.79 74.60 68.89 71.63 58.24

SFT R 66.46 24.75 51.10 52.77 51.92 51.78 55.03 53.35 76.56 74.13 75.32 64.34 87.38 78.62 82.77 66.34
TRUST-ALIGN (DPO) R 66.56 24.81 51.36 53.13 52.23 51.48 54.89 53.13 76.56 74.01 75.26 64.20 87.88 82.99 85.36 67.26

TRUST-ALIGN (DPO-25%) R 66.14 25.46 53.51 55.00 54.25 54.44 57.32 55.84 77.54 75.44 76.48 66.16 87.13 81.63 84.29 68.23
LLaMA-2-7b

ICL R 0.00 12.78 0.00 0.00 0.00 100.00 35.65 52.57 0.00 0.00 0.00 26.28 0.00 0.00 0.00 8.76
PostCite R 10.44 8.49 0.25 0.04 0.07 90.53 36.04 51.56 10.98 67.68 18.90 35.23 0.00 0.00 0.00 11.77
PostAttr R 10.44 8.49 0.25 0.04 0.07 90.53 36.04 51.56 10.98 67.68 18.90 35.23 0.00 0.00 0.00 11.77

Self-RAG R 100.00 28.87 37.13 57.71 45.19 0.00 0.00 0.00 100.00 64.35 78.31 39.15 59.27 68.35 63.49 49.28
FRONT R 100.00 40.72 49.69 77.22 60.47 0.00 0.00 0.00 100.00 64.35 78.31 39.15 68.45 69.27 68.86 56.16

ICL D 94.30 32.29 42.06 62.79 50.38 11.54 72.22 19.90 97.54 66.55 79.12 49.51 44.21 43.14 43.67 47.85
PostCite D 88.71 1.91 1.98 2.73 2.30 16.27 51.40 24.72 91.48 66.35 76.91 50.82 0.98 0.98 0.98 18.03
PostAttr D 87.24 1.91 2.01 2.73 2.32 18.05 50.41 26.58 90.16 66.51 76.55 51.56 0.43 0.43 0.43 18.10

Self-RAG D 98.00 30.11 38.63 59.41 46.82 2.37 42.11 4.48 98.20 64.48 77.84 41.16 50.69 64.05 56.59 48.19

SFT R 80.17 29.21 47.96 59.76 53.21 36.69 65.96 47.15 89.51 71.84 79.71 63.43 83.36 76.18 79.61 65.42
TRUST-ALIGN (DPO) R 65.30 25.04 52.10 52.87 52.48 55.33 56.84 56.07 76.72 75.61 76.16 66.12 85.35 82.57 83.94 67.51

TRUST-ALIGN (DPO-25%) R 71.31 27.17 51.32 56.87 53.95 48.82 60.66 54.10 82.46 74.41 78.23 66.16 84.37 82.07 83.20 67.77
LLaMA-2-13b

ICL R 17.41 9.17 50.54 13.67 21.52 86.39 37.29 52.10 19.51 72.12 30.71 41.40 10.94 18.81 13.83 25.58
PostCite R 90.51 1.88 1.89 2.66 2.21 14.20 53.33 22.43 93.11 66.20 77.38 49.91 1.53 1.53 1.53 17.88
PostAttr R 90.51 1.88 1.89 2.66 2.21 14.20 53.33 22.43 93.11 66.20 77.38 49.91 0.17 0.17 0.17 17.43

Self-RAG R 100.00 30.82 39.87 61.96 48.52 0.00 0.00 0.00 100.00 64.35 78.31 39.15 66.42 73.52 69.79 52.49

ICL D 97.57 33.31 40.57 62.35 49.16 5.03 73.91 9.42 99.02 65.30 78.70 44.06 7.22 13.25 9.35 34.19
PostCite D 89.77 0.06 0.03 0.04 0.04 15.09 52.58 23.45 92.46 66.27 77.21 50.33 0.00 0.00 0.00 16.79
PostAttr D 89.24 0.06 0.03 0.04 0.04 16.57 54.90 25.45 92.46 66.67 77.47 51.46 0.00 0.00 0.00 17.17

Self-RAG D 97.68 31.36 40.53 61.73 48.93 3.85 59.09 7.22 98.52 64.90 78.26 42.74 58.31 69.44 63.39 51.69
LLaMA-3.2-1b

ICL R 60.23 33.07 37.17 34.80 35.95 41.12 36.87 38.88 60.98 65.15 63.00 50.94 7.92 13.42 9.96 32.28
PostCite R 43.57 1.04 0.73 0.49 0.59 59.76 37.76 46.28 45.41 67.07 54.15 50.22 0.24 0.24 0.24 17.02
PostAttr R 45.78 0.76 0.58 0.41 0.48 54.44 35.80 43.19 45.90 64.52 53.64 48.42 0.00 0.00 0.00 16.30
FRONT R 79.11 27.23 43.72 53.76 48.22 27.51 46.97 34.70 82.79 67.33 74.26 54.48 47.15 49.48 48.29 50.33

SFT R 63.82 21.19 45.80 45.42 45.61 54.14 53.35 53.74 73.77 74.38 74.07 63.91 77.55 69.13 73.10 60.87
TRUST-ALIGN (DPO) R 41.67 15.06 49.16 31.83 38.64 73.96 45.21 56.12 50.33 77.72 61.09 58.61 80.93 77.84 79.35 58.87

TRUST-ALIGN (DPO-25%) R 51.69 17.93 49.80 40.01 44.37 67.46 49.78 57.29 62.30 77.55 69.09 63.19 80.41 77.68 79.02 62.19
LLaMA-3.2-3b

ICL R 1.27 0.63 52.78 1.04 2.04 99.41 35.90 52.75 1.64 83.33 3.22 27.98 53.47 54.44 53.95 27.99
PostCite R 47.26 16.56 36.64 26.91 31.03 63.91 43.20 51.55 53.44 72.77 61.63 56.59 22.99 22.99 22.99 36.87
PostAttr R 47.15 15.76 35.18 25.78 29.76 64.20 43.31 51.73 53.44 72.93 61.68 56.71 4.69 4.69 4.69 30.39
FRONT R 95.25 40.68 52.94 78.37 63.19 10.95 82.22 19.32 98.69 66.67 79.58 49.45 60.04 55.09 57.46 56.70

SFT R 68.04 23.75 47.89 50.64 49.23 51.48 57.43 54.29 78.85 74.57 76.65 65.47 80.23 71.52 75.63 63.44
TRUST-ALIGN (DPO) R 77.85 31.81 54.63 66.09 59.82 42.31 68.10 52.19 89.02 73.58 80.56 66.38 85.00 83.43 84.21 70.14

TRUST-ALIGN (DPO-25%) R 62.45 23.28 50.74 49.24 49.98 56.80 53.93 55.33 73.11 75.34 74.21 64.77 83.95 77.08 80.37 65.04
LLaMA-3-8b

ICL R 1.48 0.69 67.14 1.54 3.01 99.70 36.08 52.99 2.13 92.86 4.17 28.58 92.86 80.95 86.50 39.36
PostCite R 77.53 22.15 30.17 36.36 32.98 27.51 43.66 33.76 80.33 66.67 72.86 53.31 28.01 28.01 28.01 38.10
PostAttr R 77.53 22.15 30.17 36.36 32.98 27.51 43.66 33.76 80.33 66.67 72.86 53.31 5.95 5.95 5.95 30.75

ICL D 89.66 36.41 49.83 70.17 58.28 20.41 70.41 31.65 95.25 68.35 79.59 55.62 61.40 61.77 61.59 58.50
PostCite D 97.26 27.65 28.91 43.69 34.80 4.73 61.54 8.79 98.36 65.08 78.33 43.56 17.89 17.89 17.89 32.08
PostAttr D 97.47 27.65 28.84 43.69 34.75 4.14 58.33 7.73 98.36 64.94 78.23 42.98 3.18 3.18 3.18 26.97
FRONT R 99.05 41.78 51.34 79.03 62.25 2.37 88.89 4.61 99.84 64.86 78.63 41.62 65.89 66.40 66.14 56.67

SFT R 68.99 25.22 50.59 54.24 52.35 51.18 58.84 54.75 80.16 74.77 77.37 66.06 86.09 76.38 80.95 66.45
TRUST-ALIGN (DPO) R 56.43 23.53 57.72 50.63 53.94 64.79 53.03 58.32 68.20 77.76 72.66 65.49 88.93 87.60 88.26 69.23

TRUST-ALIGN (DPO-25%) R 56.75 25.06 60.15 53.05 56.38 64.20 52.93 58.02 68.36 77.51 72.65 65.33 85.64 84.71 85.17 68.96
Closed-source Models

GPT-3.5 R 71.20 27.30 50.36 55.72 52.91 48.82 60.44 54.01 82.30 74.37 78.13 66.07 84.66 83.24 83.94 67.64
GPT-4 R 86.81 37.93 54.81 73.95 62.96 28.99 78.40 42.33 95.57 70.84 81.37 61.85 85.82 82.93 84.35 69.72

Claude-3.5 R 84.60 36.29 52.79 69.41 59.97 34.02 78.77 47.52 94.92 72.19 82.01 64.77 67.29 69.43 68.35 64.36

GPT-3.5 D 94.41 34.67 46.27 67.88 55.03 14.20 90.57 24.55 99.18 67.60 80.40 52.48 78.13 77.95 78.04 61.85
GPT-4 D 92.72 41.13 52.58 76.65 62.37 16.86 82.61 28.01 98.03 68.03 80.32 54.17 79.48 79.92 79.70 65.41

Claude-3.5 D 82.49 32.68 47.64 62.86 54.20 37.87 77.11 50.79 93.77 73.15 82.18 66.49 57.41 60.44 58.88 59.86
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Table 20: Detailed QAMPARI results.

Prompt AR% ACreg PAC RAC F1AC Rref Pref F1ref Rans Pans F1ans F1GR Rcite Pcite F1GC TRUST-SCORE

Qwen-2.5-0.5b
ICL R 11.40 4.39 1.70 2.45 90.07 71.67 79.82 14.92 38.60 21.52 50.67 0.00 0.00 0.00 17.71

PostCite R 17.00 0.92 0.53 0.67 84.82 72.05 77.92 21.36 37.06 27.10 52.51 5.72 5.72 5.72 19.63
PostAttr R 17.00 0.92 0.53 0.67 84.82 72.05 77.92 21.36 37.06 27.10 52.51 0.90 0.90 0.90 18.03
FRONT R 99.30 7.47 25.14 11.52 0.57 57.14 1.12 98.98 29.41 45.34 23.23 15.08 16.82 15.90 16.88

SFT R 18.50 20.78 13.03 16.02 87.80 75.95 81.45 33.56 53.51 41.25 61.35 27.35 28.31 27.82 35.06
TRUST-ALIGN (DPO) R 17.90 20.86 12.66 15.76 88.65 76.13 81.91 33.56 55.31 41.77 61.84 29.70 29.75 29.73 35.78

TRUST-ALIGN (DPO-25%) R 17.40 23.95 14.13 17.77 88.94 75.91 81.91 32.54 55.17 40.94 61.42 31.98 32.36 32.17 37.12
Qwen-2.5-1.5b

ICL R 85.00 10.51 30.28 15.61 19.86 93.33 32.75 96.61 33.53 49.78 41.27 8.47 8.76 8.61 21.83
PostCite R 11.20 6.24 2.37 3.44 90.50 71.85 80.10 15.25 40.18 22.11 51.11 13.95 13.95 13.95 22.83
PostAttr R 11.20 6.24 2.37 3.44 90.50 71.85 80.10 15.25 40.18 22.11 51.11 1.07 1.07 1.07 18.54
FRONT R 98.80 10.42 34.88 16.05 1.56 91.67 3.07 99.66 29.76 45.83 24.45 10.34 13.20 11.60 17.37

SFT R 25.50 25.77 22.27 23.89 85.67 81.07 83.31 52.20 60.39 56.00 69.66 37.41 37.96 37.68 43.74
DPO R 20.00 29.45 19.97 23.80 90.07 79.38 84.39 44.07 65.00 52.53 68.46 50.79 51.17 50.98 47.75

TRUST-ALIGN (DPO-25%) R 18.40 36.89 23.01 28.34 91.49 79.04 84.81 42.03 67.39 51.77 68.29 51.65 52.25 51.95 49.53
Qwen-2.5-3b

ICL R 22.30 26.91 20.34 23.17 85.11 77.22 80.97 40.00 52.91 45.56 63.27 40.21 42.25 41.20 42.55
PostCite R 0.10 0.00 0.00 0.00 99.86 70.47 82.63 0.00 0.00 0.00 41.31 0.00 0.00 0.00 13.77
PostAttr R 0.10 0.00 0.00 0.00 99.86 70.47 82.63 0.00 0.00 0.00 41.31 25.00 25.00 25.00 22.10
FRONT R 79.10 14.20 38.07 20.69 28.65 96.65 44.20 97.63 36.41 53.04 48.62 25.21 26.16 25.67 31.66

SFT R 27.20 30.02 27.68 28.80 83.26 80.63 81.93 52.20 56.62 54.32 68.12 37.12 37.56 37.34 44.75
TRUST-ALIGN (DPO) R 48.10 28.79 46.94 35.69 66.81 90.75 76.96 83.73 51.35 63.66 70.31 45.51 45.77 45.64 50.55

TRUST-ALIGN (DPO-25%) R 17.50 40.53 24.04 30.18 92.34 78.91 85.10 41.02 69.14 51.49 68.29 47.67 47.74 47.71 48.73
Qwen-2.5-7b

ICL R 56.30 22.04 42.05 28.92 55.74 89.93 68.83 85.08 44.58 58.51 63.67 38.82 39.76 39.28 43.96
PostCite R 26.70 9.04 8.18 8.59 79.15 76.13 77.61 40.68 44.94 42.70 60.16 1.05 1.05 1.05 23.27
PostAttr R 26.70 9.04 8.18 8.59 79.15 76.13 77.61 40.68 44.94 42.70 60.16 13.55 13.55 13.55 27.43
FRONT R 84.70 11.47 32.94 17.02 21.13 97.39 34.73 98.64 34.36 50.96 42.85 24.48 24.48 24.48 28.12

SFT R 31.70 32.41 34.83 33.58 80.43 83.02 81.70 60.68 56.47 58.50 70.10 48.93 49.23 49.08 50.92
DPO R 32.10 28.89 31.44 30.11 80.43 83.51 81.94 62.03 57.01 59.42 70.68 53.48 53.48 53.48 51.42

TRUST-ALIGN (DPO-25%) R 29.00 32.02 31.48 31.75 83.83 83.24 83.53 59.66 60.69 60.17 71.85 55.71 56.15 55.93 53.18
Phi3.5-mini

ICL R 70.20 8.46 20.14 11.92 31.35 74.16 44.07 73.90 31.05 43.73 43.90 10.66 14.43 12.26 22.69
PostCite R 76.90 2.47 6.45 3.57 25.67 78.35 38.68 83.05 31.86 46.05 42.36 4.49 4.49 4.49 16.81
PostAttr R 76.90 2.47 6.45 3.57 25.67 78.35 38.68 83.05 31.86 46.05 42.36 0.46 0.46 0.46 15.46
FRONT R 100.00 7.75 26.27 11.97 0.00 0.00 0.00 100.00 29.50 45.56 22.78 19.15 24.49 21.50 18.75

SFT R 29.10 35.28 34.80 35.04 84.96 84.49 84.72 62.71 63.57 63.14 73.93 49.13 49.63 49.38 52.78
DPO R 30.10 36.06 36.79 36.42 84.11 84.84 84.47 64.07 62.79 63.42 73.95 53.26 53.55 53.40 54.59

TRUST-ALIGN (DPO-25%) R 30.10 35.32 36.04 35.68 84.82 85.55 85.19 65.76 64.45 65.10 75.14 52.21 52.82 52.52 54.45
LLaMA-2-7b

ICL R 0.00 0.00 0.00 0.00 100.00 70.50 82.70 0.00 0.00 0.00 41.35 0.00 0.00 0.00 13.78
PostCite R 34.40 0.00 0.00 0.00 70.21 75.46 72.74 45.42 38.95 41.94 57.34 9.50 9.50 9.50 22.28
PostAttr R 34.40 0.00 0.00 0.00 70.21 75.46 72.74 45.42 38.95 41.94 57.34 3.78 3.78 3.78 20.37

Self-RAG R 96.00 4.45 14.49 6.81 5.25 92.50 9.93 98.98 30.42 46.53 28.23 17.92 22.50 19.95 18.33
FRONT R 100.00 11.18 37.89 17.27 0.00 0.00 0.00 100.00 29.50 45.56 22.78 24.20 24.32 24.26 21.44

ICL D 93.60 5.49 17.51 8.36 8.23 90.63 15.08 97.97 30.88 46.95 31.02 3.83 3.93 3.88 14.42
PostCite D 56.30 0.00 0.00 0.00 45.67 73.68 56.39 61.02 31.97 41.96 49.18 7.73 7.73 7.73 18.97
PostAttr D 51.10 0.00 0.00 0.00 50.21 72.39 59.30 54.24 31.31 39.70 49.50 4.70 4.70 4.70 18.07

Self-RAG D 96.20 5.04 16.45 7.72 4.40 81.58 8.34 97.63 29.94 45.82 27.08 13.25 18.50 15.44 16.75

SFT R 31.60 32.63 34.96 33.76 81.13 83.63 82.36 62.03 57.91 59.90 71.13 46.25 46.49 46.37 50.42
TRUST-ALIGN (DPO) R 32.30 30.64 33.55 32.03 80.85 84.19 82.49 63.73 58.20 60.84 71.67 49.34 49.50 49.42 51.04

TRUST-ALIGN (DPO-25%) R 31.50 32.50 34.70 33.56 81.13 83.50 82.30 61.69 57.78 59.67 70.99 52.01 52.19 52.10 52.22
LLaMA-2-13b

ICL R 26.50 0.47 0.42 0.44 79.01 75.78 77.36 39.66 44.15 41.79 59.57 0.00 0.00 0.00 20.00
PostCite R 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 29.50 45.56 22.78 8.05 8.05 8.05 10.28
PostAttr R 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 29.50 45.56 22.78 2.95 2.95 2.95 8.58

Self-RAG R 72.70 1.90 4.69 2.71 32.91 84.98 47.44 86.10 34.94 49.71 48.58 25.73 28.20 26.91 26.07

ICL D 97.80 0.00 0.00 0.00 3.12 100.00 6.05 100.00 30.16 46.35 26.20 0.00 0.00 0.00 8.73
PostCite D 63.00 0.00 0.00 0.00 39.01 74.32 51.16 67.80 31.75 43.24 47.20 7.14 7.14 7.14 18.11
PostAttr D 58.50 0.00 0.00 0.00 43.69 74.22 55.00 63.73 32.14 42.73 48.86 4.56 4.56 4.56 17.81

Self-RAG D 96.30 2.39 7.80 3.66 4.40 83.78 8.36 97.97 30.01 45.95 27.15 19.46 22.95 21.06 17.29
LLaMA-3.2-1b

ICL R 19.20 8.01 5.22 6.32 82.55 72.03 76.93 23.39 35.94 28.34 52.64 0.26 0.71 0.38 19.78
PostCite R 41.20 0.27 0.38 0.32 59.15 70.92 64.50 42.03 30.10 35.08 49.79 1.61 1.61 1.61 17.24
PostAttr R 34.00 0.59 0.67 0.63 65.11 69.55 67.25 31.86 27.65 29.61 48.43 0.21 0.21 0.21 16.42
FRONT R 98.60 4.92 16.44 7.57 1.70 85.71 3.34 99.32 29.72 45.75 24.54 14.77 15.91 15.32 15.81

SFT R 26.00 29.87 26.32 27.98 84.40 80.41 82.35 50.85 57.69 54.05 68.20 37.92 38.01 37.96 44.71
DPO R 20.00 33.69 22.84 27.22 89.79 79.12 84.12 43.39 64.00 51.72 67.92 49.42 49.42 49.42 48.19

TRUST-ALIGN (DPO-25%) R 21.90 34.83 25.85 29.68 89.22 80.54 84.66 48.47 65.30 55.64 70.15 49.31 49.31 49.31 49.71
LLaMA-3.2-3b

ICL R 34.10 14.98 17.31 16.06 71.91 76.93 74.34 48.47 41.94 44.97 59.65 12.19 13.63 12.87 29.53
PostCite R 39.60 5.53 7.43 6.34 64.11 74.83 69.06 48.47 36.11 41.39 55.22 6.83 6.83 6.83 22.80
PostAttr R 42.00 4.34 6.17 5.10 60.99 74.14 66.93 49.15 34.52 40.56 53.74 0.27 0.27 0.27 19.70
FRONT R 92.70 8.56 26.90 12.99 9.93 95.89 17.99 98.98 31.50 47.79 32.89 18.47 19.96 19.19 21.69

SFT R 27.60 29.06 27.19 28.09 84.11 81.91 83.00 55.59 59.42 57.44 70.22 37.83 38.24 38.03 45.45
DPO R 48.20 23.48 38.36 29.13 67.09 91.31 77.35 84.75 51.87 64.35 70.85 45.43 45.88 45.65 48.54

TRUST-ALIGN (DPO-25%) R 18.30 39.01 24.20 29.87 91.49 78.95 84.76 41.69 67.21 51.46 68.11 49.79 50.15 49.97 49.32
LLaMA-3-8b

ICL R 3.90 25.36 3.35 5.92 97.87 71.80 82.83 8.14 61.54 14.37 48.60 17.22 24.53 20.24 24.92
PostCite R 87.00 4.08 12.05 6.10 14.04 76.15 23.71 89.49 30.34 45.32 34.52 8.42 8.42 8.42 16.35
PostAttr R 87.00 4.08 12.05 6.10 14.04 76.15 23.71 89.49 30.34 45.32 34.52 1.64 1.64 1.64 14.09

ICL D 70.80 4.12 9.89 5.82 35.60 85.96 50.35 86.10 35.88 50.65 50.50 4.45 5.23 4.81 20.38
PostCite D 92.00 1.60 5.24 2.45 8.37 73.75 15.03 92.88 29.78 45.10 30.07 11.14 11.14 11.14 14.55
PostAttr D 93.00 1.58 5.24 2.43 7.80 78.57 14.19 94.92 30.11 45.71 29.95 5.65 5.65 5.65 12.68
FRONT R 100.00 8.76 29.68 13.53 0.00 0.00 0.00 100.00 29.50 45.56 22.78 20.77 20.07 20.42 18.91

SFT R 24.20 37.56 30.81 33.85 87.66 81.53 84.48 52.54 64.05 57.73 71.11 47.78 48.24 48.01 50.99
TRUST-ALIGN (DPO) R 22.40 40.95 31.09 35.35 89.08 80.93 84.81 49.83 65.63 56.65 70.73 58.58 58.96 58.77 54.95

TRUST-ALIGN (DPO-25%) R 24.40 43.56 36.03 39.44 88.37 82.41 85.28 54.92 66.39 60.11 72.70 61.03 61.10 61.06 57.73
Closed-source Models

GPT-3.5 R 65.30 19.29 42.69 26.57 45.25 91.93 60.65 90.51 40.89 56.33 58.49 30.75 32.92 31.80 38.95
GPT-4 R 73.40 21.12 52.55 30.13 37.30 98.87 54.17 98.98 39.78 56.75 55.46 34.44 36.51 35.45 40.35

Claude-3.5 R 69.80 20.20 47.79 28.40 41.70 97.35 58.39 97.29 41.12 57.80 58.10 32.23 33.46 32.83 39.78

GPT-3.5 D 94.50 13.32 42.68 20.30 6.81 87.27 12.63 97.63 30.48 46.45 29.54 20.97 21.47 21.22 23.69
GPT-4 D 87.70 17.50 52.01 26.19 17.45 100.00 29.71 100.00 33.64 50.34 40.03 29.66 30.39 30.02 32.08

Claude-3.5 D 69.90 0.00 0.00 0.00 41.13 96.35 57.65 96.27 40.63 57.14 57.40 0.00 0.00 0.00 19.13
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Table 21: Detailed ELI5 results.

Prompt AR% ACreg PAC RAC F1AC Rref Pref F1ref Rans Pans F1ans F1GR Rcite Pcite F1GC TRUST-SCORE

Qwen-2.5-0.5b
ICL R 82.30 5.40 8.59 34.14 13.73 19.04 85.31 31.13 87.44 21.99 35.15 33.14 0.30 0.49 0.37 15.75

PostCite R 89.80 7.10 6.07 26.33 9.87 10.97 85.29 19.44 92.75 21.38 34.75 27.10 4.10 4.10 4.10 13.69
PostAttr R 89.80 7.10 6.07 26.33 9.87 10.97 85.29 19.44 92.75 21.38 34.75 27.10 0.68 0.68 0.68 12.55
FRONT R 99.90 6.93 8.29 40.02 13.74 0.13 100.00 0.25 100.00 20.72 34.33 17.29 29.86 26.28 27.95 19.66

SFT R 35.50 2.23 8.31 14.25 10.50 68.85 84.65 75.94 52.17 30.42 38.43 57.19 22.11 17.56 19.57 29.09
TRUST-ALIGN (DPO) R 21.70 1.83 13.36 14.01 13.68 82.85 83.91 83.38 39.13 37.33 38.21 60.79 23.89 21.66 22.72 32.40

TRUST-ALIGN (DPO-25%) R 26.40 1.70 9.09 11.59 10.19 78.31 84.38 81.23 44.44 34.85 39.07 60.15 25.60 24.07 24.81 31.72
Qwen-2.5-1.5b

ICL R 99.40 12.00 12.42 59.66 20.56 0.63 83.33 1.25 99.52 20.72 34.30 17.78 5.07 4.90 4.99 14.44
PostCite R 91.50 12.23 9.58 42.35 15.63 9.84 91.76 17.77 96.62 21.86 35.65 26.71 5.17 5.17 5.17 15.84
PostAttr R 91.50 12.23 9.58 42.35 15.63 9.84 91.76 17.77 96.62 21.86 35.65 26.71 0.62 0.62 0.62 14.32
FRONT R 99.90 9.63 11.81 57.00 19.57 0.13 100.00 0.25 100.00 20.72 34.33 17.29 37.08 38.35 37.70 24.85

SFT R 41.30 3.50 10.61 21.18 14.14 62.93 85.01 72.32 57.49 28.81 38.39 55.35 32.10 24.35 27.69 32.39
TRUST-ALIGN (DPO) R 33.60 3.57 15.38 24.96 19.03 70.87 84.64 77.14 50.72 31.25 38.67 57.91 32.54 30.78 31.63 36.19

TRUST-ALIGN (DPO-25%) R 30.40 3.57 16.67 24.48 19.83 74.91 85.34 79.79 50.72 34.54 41.10 60.44 38.43 37.08 37.75 39.34
Qwen-2.5-3b

ICL R 68.80 11.77 18.94 62.96 29.12 36.19 91.99 51.95 87.92 26.45 40.67 46.31 29.64 40.81 34.34 36.59
PostCite R 49.70 13.73 15.39 36.96 21.73 52.08 82.11 63.73 56.52 23.54 33.24 48.49 7.56 7.56 7.56 25.93
PostAttr R 49.70 13.73 15.39 36.96 21.73 52.08 82.11 63.73 56.52 23.54 33.24 48.49 1.31 1.31 1.31 23.84
FRONT R 93.60 8.47 11.41 51.61 18.69 7.94 98.44 14.70 99.52 22.01 36.05 25.37 39.00 35.92 37.40 27.15

SFT R 34.50 2.83 11.88 19.81 14.85 71.88 87.02 78.73 58.94 35.36 44.20 61.47 39.81 32.64 35.87 37.40
TRUST-ALIGN (DPO) R 13.50 2.20 28.52 18.60 22.52 91.80 84.16 87.82 33.82 51.85 40.94 64.38 42.96 41.10 42.01 42.97

TRUST-ALIGN (DPO-25%) R 17.50 2.33 20.86 17.63 19.11 88.40 84.97 86.65 40.10 47.43 43.46 65.05 50.38 45.76 47.96 44.04
Qwen-2.5-7b

ICL R 82.70 12.20 17.67 70.61 28.27 21.31 97.69 34.99 98.07 24.55 39.26 37.13 45.61 42.76 44.13 36.51
PostCite R 95.60 19.87 13.27 61.27 21.82 5.04 90.91 9.56 98.07 21.23 34.91 22.23 7.03 7.03 7.03 17.03
PostAttr R 95.60 19.87 13.27 61.27 21.82 5.04 90.91 9.56 98.07 21.23 34.91 22.23 0.96 0.96 0.96 15.00
FRONT R 57.60 7.97 19.21 53.46 28.27 49.18 91.98 64.09 83.57 30.03 44.19 54.14 59.31 54.15 56.61 46.34

SFT R 25.50 3.00 18.82 23.19 20.78 80.96 86.17 83.49 50.24 40.78 45.02 64.25 50.56 43.71 46.89 43.97
TRUST-ALIGN (DPO) R 21.00 3.30 24.13 24.48 24.30 84.74 85.06 84.90 43.00 42.38 42.69 63.79 47.30 46.75 47.02 45.04

TRUST-ALIGN (DPO-25%) R 19.80 3.10 22.05 21.10 21.57 86.13 85.16 85.64 42.51 44.44 43.46 64.55 50.21 49.79 50.00 45.37
phi3.5-mini

ICL R 81.50 13.03 17.30 68.12 27.59 22.07 94.59 35.79 95.17 24.17 38.55 37.17 29.35 30.98 30.14 31.63
PostCite R 84.50 18.73 12.76 52.09 20.50 16.27 83.23 27.22 87.44 21.42 34.41 30.81 4.67 4.67 4.67 18.66
PostAttr R 84.50 18.73 13.23 54.03 21.26 16.27 83.23 27.22 87.44 21.42 34.41 30.81 0.68 0.68 0.68 17.58
FRONT R 96.60 9.03 13.03 60.79 21.46 4.04 94.12 7.74 99.03 21.22 34.95 21.35 64.31 58.77 61.41 34.74

SFT R 24.50 3.30 20.75 24.56 22.50 82.47 86.62 84.50 51.21 43.27 46.90 65.70 51.78 42.68 46.79 45.00
TRUST-ALIGN (DPO) R 24.90 3.47 21.42 25.76 23.39 82.98 87.62 85.23 55.07 45.78 50.00 67.62 50.40 44.78 47.42 46.14

TRUST-ALIGN (DPO-25%) R 23.50 3.33 22.34 25.36 23.76 83.10 86.14 84.60 48.79 42.98 45.70 65.15 49.08 41.80 45.15 44.69
LLaMA-2-7b

ICL R 0.50 2.63 0.00 0.00 0.00 100.00 79.70 88.70 2.42 100.00 4.72 46.71 0.00 0.00 0.00 15.57
PostCite R 0.90 6.33 22.22 0.97 1.86 99.12 79.31 88.12 0.97 22.22 1.85 44.98 5.04 5.04 5.04 17.29
PostAttr R 0.90 6.33 22.22 0.97 1.86 99.12 79.31 88.12 0.97 22.22 1.85 44.98 0.00 0.00 0.00 15.61

Self-RAG R 73.50 6.80 9.57 33.98 14.94 29.13 87.17 43.67 83.57 23.54 36.73 40.20 12.34 15.65 13.80 22.98
FRONT R 100.00 9.57 13.07 63.12 21.66 0.00 0.00 0.00 100.00 20.70 34.30 17.15 52.44 53.01 52.72 30.51

ICL D 95.30 12.03 12.07 55.56 19.83 5.55 93.62 10.48 98.55 21.41 35.17 22.82 15.73 16.92 16.30 19.65
PostCite D 83.90 8.13 7.45 30.19 11.95 16.14 79.50 26.83 84.06 20.74 33.27 30.05 4.90 4.90 4.90 15.63
PostAtr D 84.00 8.13 7.44 30.19 11.94 15.89 78.75 26.44 83.57 20.60 33.05 29.74 0.93 0.93 0.93 14.20

Self-RAG D 97.90 8.13 7.97 37.68 13.16 2.40 90.48 4.67 99.03 20.94 34.57 19.62 9.01 12.05 10.31 14.36

SFT R 29.50 3.80 18.36 26.17 21.58 77.05 86.67 81.58 54.59 38.31 45.02 63.30 45.25 35.19 39.59 41.49
TRUST-ALIGN (DPO) R 21.60 3.30 22.07 23.03 22.54 83.98 84.95 84.46 43.00 41.20 42.08 63.27 48.46 46.29 47.35 44.39

TRUST-ALIGN (DPO-25%) R 24.20 3.63 21.35 24.96 23.02 81.84 85.62 83.69 47.34 40.50 43.65 63.67 47.59 44.60 46.05 44.25
LLaMA-2-13b

ICL R 46.40 6.90 14.44 32.37 19.97 58.39 86.38 69.68 64.73 28.88 39.94 54.81 3.79 6.28 4.73 26.50
PostCite R 76.60 2.27 1.44 5.31 2.27 25.73 87.18 39.73 85.51 23.11 36.38 38.05 0.72 0.72 0.72 13.68
PostAttr R 76.60 2.27 1.44 5.31 2.27 25.73 87.18 39.73 85.51 23.11 36.38 38.05 0.09 0.09 0.09 13.47

Self-RAG R 22.10 2.40 12.37 13.20 12.77 81.59 83.06 82.32 36.23 33.94 35.05 58.68 22.09 27.60 24.54 32.00

ICL D 96.50 13.07 12.71 59.26 20.93 3.91 88.57 7.49 98.07 21.04 34.64 21.06 2.45 3.25 2.80 14.93
PostCite D 7.00 0.57 7.14 2.42 3.62 92.18 78.60 84.85 3.86 11.43 5.78 45.31 4.73 4.73 4.73 17.89
PostAttr D 6.70 0.57 7.46 2.42 3.66 93.44 79.42 85.86 7.25 22.39 10.95 48.41 0.71 0.71 0.71 17.59

Self-RAG D 98.00 9.73 7.38 34.94 12.19 2.02 80.00 3.94 98.07 20.71 34.20 19.07 5.71 8.06 6.68 12.65
LLaMA-3.2-1b

ICL R 88.40 5.87 7.94 33.90 12.87 11.73 80.17 20.46 88.89 20.81 33.73 27.10 4.05 7.38 5.23 15.07
PostCite R 18.40 3.43 2.17 1.93 2.04 81.97 79.66 80.80 19.81 22.28 20.97 50.88 1.02 1.02 1.02 17.98
PostAttr R 18.40 3.50 2.17 1.93 2.04 81.97 79.66 80.80 19.81 22.28 20.97 50.88 0.07 0.07 0.07 17.66
FRONT R 97.20 6.63 9.77 45.89 16.11 3.40 96.43 6.58 99.52 21.19 34.94 20.76 30.82 29.58 30.19 22.35

SFT R 20.50 2.00 14.63 14.49 14.56 85.25 85.03 85.14 42.51 42.93 42.72 63.93 41.83 33.62 37.28 38.59
TRUST-ALIGN (DPO) R 9.60 1.27 20.83 9.66 13.20 93.82 82.30 87.68 22.71 48.96 31.02 59.35 48.96 47.48 48.21 40.25

TRUST-ALIGN (DPO-25%) R 13.80 1.63 19.93 13.29 15.95 90.67 83.41 86.89 30.92 46.38 37.10 61.99 42.45 40.12 41.25 39.73
LLaMA-3.2-3b

ICL R 21.90 3.83 18.04 19.08 18.55 80.45 81.69 81.07 30.92 29.22 30.05 55.56 32.21 29.34 30.70 34.94
PostCite R 92.80 16.33 11.08 49.68 18.12 8.20 90.28 15.03 96.62 21.55 35.24 25.14 4.44 4.44 4.44 15.90
PostAttr R 92.80 16.33 11.30 50.64 18.48 8.20 90.28 15.03 96.62 21.55 35.24 25.14 0.53 0.53 0.53 14.72
FRONT R 86.90 7.73 12.35 51.85 19.95 15.76 95.42 27.06 97.10 23.13 37.36 32.21 41.90 42.04 41.97 31.38

SFT R 14.70 1.67 19.16 13.61 15.92 90.04 83.70 86.76 32.85 46.26 38.42 62.59 59.18 48.53 53.33 43.95
TRUST-ALIGN (DPO) R 17.50 2.23 20.00 16.91 18.33 87.52 84.12 85.78 36.71 43.43 39.79 62.79 57.14 54.66 55.87 45.66

TRUST-ALIGN (DPO-25%) R 4.10 0.50 22.36 4.43 7.40 98.11 81.13 88.81 12.56 63.41 20.97 54.89 60.98 57.72 59.31 40.53
LLaMA-3-8b

ICL R 0.00 0.00 0.00 0.00 0.00 100.00 79.30 88.46 0.00 0.00 0.00 44.23 0.00 0.00 0.00 14.74
PostCite R 62.00 10.80 13.87 41.55 20.80 40.86 85.26 55.24 72.95 24.35 36.52 45.88 8.06 8.06 8.06 24.91
PostAttr R 62.00 10.80 13.87 41.55 20.80 40.86 85.26 55.24 72.95 24.35 36.52 45.88 1.25 1.25 1.25 22.64
FRONT R 99.50 9.17 11.47 55.15 18.99 0.63 100.00 1.25 100.00 20.80 34.44 17.85 44.90 44.48 44.69 27.18

ICL D 84.60 11.90 14.74 60.23 23.69 17.65 90.91 29.57 93.24 22.81 36.66 33.11 31.32 30.74 31.03 29.28
PostCite D 98.90 17.40 11.49 54.91 19.00 1.26 90.91 2.49 99.52 20.83 34.45 18.47 6.33 6.33 6.33 14.60
PostAttr D 98.90 17.40 11.49 54.91 19.00 1.13 81.82 2.24 99.03 20.73 34.28 18.26 1.02 1.02 1.02 12.76

SFT R 23.60 3.27 21.19 24.15 22.57 82.98 86.13 84.52 48.79 42.80 45.60 65.06 51.77 42.79 46.85 44.83
TRUST-ALIGN (DPO) R 15.50 2.77 24.30 18.20 20.81 89.66 84.14 86.81 35.27 47.10 40.33 63.57 50.75 49.74 50.24 44.87

TRUST-ALIGN (DPO-25%) R 16.00 3.10 28.54 22.06 24.89 89.28 84.29 86.71 36.23 46.88 40.87 63.79 54.17 53.80 53.98 47.55
Closed-source Models

GPT-3.5 R 49.00 8.47 23.03 54.51 32.38 58.26 90.59 70.91 76.81 32.45 45.62 58.27 56.57 58.03 57.29 49.31
GPT-4 R 61.50 10.50 22.09 65.62 33.05 45.65 94.03 61.46 88.89 29.92 44.77 53.11 61.33 62.35 61.84 49.33

Claude-3.5 R 59.00 2.87 7.66 21.82 11.34 48.05 92.93 63.34 85.99 30.17 44.67 54.00 11.64 13.34 12.43 25.92

GPT-3.5 D 93.50 14.33 14.58 65.86 23.88 7.57 92.31 13.99 97.58 21.60 35.38 24.68 46.46 46.10 46.28 31.61
GPT-4 D 82.80 15.00 18.18 72.71 29.09 21.19 97.67 34.82 98.07 24.52 39.23 37.02 48.20 48.47 48.33 38.15

Claude-3.5 D 56.60 3.40 7.89 21.58 11.56 51.07 93.32 66.01 85.99 31.45 46.05 56.03 10.22 12.43 11.22 26.27

36



Published as a conference paper at ICLR 2025

Table 22: Detailed ExpertQA results.

Prompt AR% ACreg PAC RAC F1AC Rref Pref F1ref Rans Pans F1ans F1GR Rcite Pcite F1GC TRUST-SCORE

Qwen-2.5-0.5b
ICL R 78.24 10.14 15.02 37.37 21.42 21.59 68.01 32.77 77.86 31.29 44.64 38.71 0.33 0.69 0.44 20.19

PostCite R 51.41 7.93 10.73 17.55 13.32 48.69 68.69 56.99 51.61 31.57 39.18 48.08 5.53 5.67 5.6 22.33
PostAttr R 51.41 7.93 10.73 17.55 13.32 48.69 68.69 56.99 51.61 31.57 39.18 48.08 1.4 1.58 1.49 20.96
FRONT R 99.86 9.56 12.01 38.15 18.27 0.13 66.67 0.27 99.85 31.44 47.82 24.05 36.72 32.75 34.62 25.65

TRUST-ALIGN (DPO) R 32.96 4.1 17.74 18.6 18.16 75.52 77.24 76.37 51.47 49.09 50.25 63.31 35.55 34.6 35.07 38.85
Qwen-2.5-1.5b

ICL R 98.34 20.3 20.24 63.29 30.67 2.08 86.11 4.07 99.27 31.74 48.1 26.09 6.59 7.22 6.89 21.22
PostCite R 62.19 14.64 16.73 33.09 22.22 40.28 73.05 51.93 67.6 34.17 45.4 48.66 15.32 18.89 16.92 29.27
PostAttr R 62.19 14.64 16.73 33.09 22.22 40.28 73.05 51.93 67.6 34.17 45.4 48.66 11.41 15.53 13.15 28.01
FRONT R 99.59 16.23 19.17 60.73 29.15 0.61 100 1.2 100 31.57 47.99 24.6 49.36 51.12 50.22 34.66

TRUST-ALIGN (DPO) R 30.2 5.71 25.57 24.56 25.06 81.24 79.79 80.51 55.13 57.4 56.25 68.38 52.25 50.65 51.44 48.29
Qwen-2.5-3b

ICL R 68.88 20.43 25.59 56.06 35.14 35.98 79.26 49.49 79.47 36.28 49.82 49.65 35.53 53.4 42.67 42.49
PostCite R 0.05 6.26 0.00 0.00 0.00 99.93 68.54 81.31 0.00 0.00 0.00 40.66 0.00 0.00 0.00 13.55
PostAttr R 0.05 6.26 0.00 0.00 0.00 99.93 68.54 81.31 0.00 0.00 0.00 40.66 0.00 0.00 0.00 13.55
FRONT R 95.48 13.6 17.06 51.81 25.67 5.85 88.78 10.98 98.39 32.4 48.75 29.86 46.28 42.81 44.48 33.34

TRUST-ALIGN (DPO) R 17.15 3.53 29.7 16.2 20.97 92.06 76.18 83.37 37.24 68.28 48.2 65.79 61.29 59.25 60.25 49
Qwen-2.5-7b

ICL R 84.56 20.18 24.92 67.01 36.33 20.24 89.85 33.04 95.01 35.33 51.51 42.28 55.82 56.36 56.09 44.9
PostCite R 42.14 13.76 22.34 29.94 25.58 61.6 72.99 66.81 50.29 37.53 42.98 54.9 13.31 14.27 13.77 31.42
PostAttr R 42.14 13.76 22.34 29.94 25.58 61.6 72.99 66.81 50.29 37.53 42.98 54.9 11.92 13.06 12.46 30.98
FRONT R 65.51 12.36 23.99 49.98 32.41 42.77 85.03 56.91 83.58 40.11 54.21 55.56 70.72 64.28 67.35 51.77

TRUST-ALIGN (DPO) R 24.99 5.51 28.87 22.95 25.57 86.48 79.04 82.59 50 62.92 55.72 69.16 63.38 62.04 62.7 52.48
phi3.5-mini

ICL R 85.15 23.12 25.66 69.5 37.49 18.43 85.09 30.29 92.96 34.33 50.14 40.22 35.06 37.28 36.14 37.95
PostCite R 52.01 21.89 22.43 37.1 27.96 52.12 74.45 61.31 61 36.88 45.97 53.64 7.52 7.26 7.39 29.66
PostAttr R 52.01 21.89 22.43 37.1 27.96 52.12 74.45 61.31 61 36.88 45.97 53.64 5.75 5.64 5.7 29.1
FRONT R 97.37 14.25 18.65 57.75 28.19 3.43 89.47 6.61 99.12 32.01 48.39 27.5 68.61 63.24 65.82 40.5

TRUST-ALIGN (DPO) R 26.05 5.52 30.56 25.32 27.69 85.74 79.49 82.5 51.76 62.48 56.62 69.56 65.13 58.44 61.6 52.95
LLaMA-2-7b

ICL R 0.51 2.75 0.00 0.00 0.00 99.46 68.54 81.15 0.44 27.27 0.87 41.01 9.09 10 9.52 16.84
PostCite R 5.62 14.62 15.98 2.86 4.85 94.28 68.49 79.34 5.43 30.33 9.2 44.27 5.26 5.19 5.23 18.12
PostAttr R 5.62 14.62 15.98 2.86 4.85 94.28 68.49 79.34 5.43 30.33 9.2 44.27 2.27 2.25 2.26 17.13
FRONT R 100 4.17 6.13 19.5 9.33 0.00 0.00 0.00 100 31.44 47.84 23.92 78.99 70.93 74.75 36

TRUST-ALIGN (DPO) R 20.01 4.34 32.18 20.48 25.03 90.45 77.52 83.49 42.82 67.28 52.33 67.91 63.98 61.02 62.46 51.8
LLaMA-3.2-1b

ICL R 90 13.97 14.54 41.62 21.55 10.56 72.35 18.43 91.2 31.86 47.23 32.83 7.16 12.25 9.04 21.14
PostCite R 30.84 12.09 5.53 5.43 5.48 68.59 68 68.3 29.62 30.19 29.9 49.1 2.6 2.75 2.67 19.08
PostAttr R 48.41 10.97 6.79 10.46 8.24 51.04 67.83 58.25 47.21 30.67 37.18 47.72 1.45 1.54 1.5 19.15
FRONT R 95.62 10.27 13.84 42.08 20.83 5.38 84.21 10.11 97.8 32.16 48.4 29.26 38.04 36.87 37.45 29.18

TRUST-ALIGN (DPO) R 15.44 3.14 30.85 15.15 20.32 93.28 75.63 83.53 34.46 70.15 46.21 64.87 62.74 61.48 62.1 49.1
LLaMA-3.2-3b

ICL R 58.74 17.46 25.72 48.04 33.5 44.86 74.53 56 66.57 35.64 46.42 51.21 35.09 42.34 38.37 41.03
PostCite R 82.85 24.16 17.71 46.68 25.68 18.29 73.12 29.26 85.34 32.39 46.95 38.11 5.34 5.24 5.29 23.03
PostAttr R 82.85 24.75 17.56 46.26 25.45 18.63 74.46 29.8 86.07 32.67 47.36 38.58 3.39 3.4 3.4 22.48
FRONT R 83.36 12.03 18.76 49.73 27.24 21.72 89.47 34.96 94.43 35.62 51.73 43.34 51.21 50.62 50.91 40.5

TRUST-ALIGN (DPO) R 7.24 1.34 31.32 7.21 11.72 98.05 72.47 83.34 18.77 81.53 30.51 56.93 80.25 76.54 78.35 49
LLaMA-3-8b

ICL R 0.65 0.28 70.24 1.44 2.82 99.87 68.91 81.55 1.76 85.71 3.45 42.5 68.93 70 69.46 38.26
PostCite R 15.68 4.87 21.13 10.53 14.06 85.27 69.33 76.48 17.74 35.59 23.68 50.08 7.15 7.03 7.09 23.74
PostAttr R 15.68 4.87 21.13 10.53 14.06 85.27 69.33 76.48 17.74 35.59 23.68 50.08 6.29 6.28 6.29 23.47
FRONT R 99.26 16.67 19.97 63.05 30.34 0.94 87.5 1.86 99.71 31.58 47.97 24.92 57.2 56.21 56.7 37.32

TRUST-ALIGN (DPO) R 17.29 4.38 39.89 20.82 27.36 93.48 76.67 84.24 37.98 72.75 49.9 67.07 70.55 69.67 70.11 54.85
Closed-source Models

GPT-3.5 R 59.47 24.53 28.01 52.98 36.65 48.02 81.23 60.36 75.81 40.08 52.43 56.39 63.19 64.68 63.93 52.32
GPT-4 R 72.20 25.92 29.66 68.11 41.32 35.98 88.72 51.2 90.03 39.21 54.63 52.91 70 69.66 69.83 54.69

Claude-3.5 R 73.95 6.19 8.32 19.57 11.68 34.03 89.56 49.32 91.35 38.84 54.51 51.91 9.76 11.84 10.7 24.76
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Table 23: GPT-4 prompting templates used for generating natural response based on gold claims for
ASQA and ELI5.

Type Template
ASQA Please provide a high-quality answer to the given

question using the provided document. The answer must
include all the answer labels, and each answer label used
should be marked with its index immediately after it in
the format [Answer Label X], where X is the index of the
answer label in the provided list starting from 1. For
example, [Answer Label 1]. Ensure the answer is coherent
and natural and does not exceed four statements. You
cannot make up any factual information based on your
imagination: The additional information added from
the given document should be relevant to the question
and grounded by the document, but must not contain any
factual information that cannot be inferred from the
given answer labels. (e.g., if the answer label does not
mention a specific year, you cannot introduce a specific
year in the final answer).
Question: {question}
Document: {passage}
{answers}
Output:

ELI5 Given a problem and some claims as answer tags, please
generate a high-quality response. The response needs to
follow the following requirements:
1. Use only all of the claims: Ensure that the response
contains and only contains information from the given
claims, without introducing any new information.
Guarantee covering all claims in the response.
2. Each statement must contain valuable information:
Every statement must either directly originate from the
claims or infer from the claims, avoiding any irrelevant
and unuseful information included in the response. You
can use each claim only for one time.
3. Condense and combine: If there are similarities
between claims, merge them into a comprehensive statement
to make the response more concise. For example, if two
claims both mention similar aspect of health benefits,
they can be merged into one statement.
4. Fluent and natural: Ensure that the statements in
the response are coherent and natural, using connecting
words and maintaining logical order between statements.
5. Answer tags in response: Indicate each claim
immediately after the corresponding content in the
response with the format [Claim X], where X is the index
of the claim in the provided list starting from 1. For
example, [Claim 1].
Question: {question}
{claims}
Generated Response:
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Table 24: Prompt used for acquiring domain labels and knowledge demanding score.

Prompt
The examples below are questions from the same cluster. Identify a single short topic they share
in common, for example: Philosophy, Lifestyle, Linear Algebra, Biochemistry, Economics, etc.
Additionally, evaluate if the topics in the examples are broadly suitable as knowledge-demanding
questions that require additional research or grounding. Exclude any sensitive, inappropriate, or
irrelevant content, such as sex, explicit violence, ads & scams, and other NSFW subjects. Consider
a wide range of content, including scientific, educational, historical, cultural, and practical
applications. Provide a rating from 1 to 7 based on the topic’s dependence on additional knowledge
or search materials: a score of 1 indicates the question can be answered with common sense alone,
without needing any additional information lookup; a score of 5 means the topic requires a combination
of common sense and additional lookup, roughly an equal split between the two; a score of 7 indicates
that answering the question directly would be difficult, and without additional information, the answer
would likely be incorrect. The output format should be like this: Topic: the topic, Demanding value
rating: score.

Table 25: Two types of instruction templates used as model input; answers are included only for
tuning purposes.

Type Prompt
Default Instruction: Write an accurate, engaging, and concise

answer for the given question using only the provided
search results (some of which might be irrelevant) and
cite them properly. Use an unbiased and journalistic
tone. Always cite for any factual claim. When citing
several search results, use [1][2][3]. Cite at least one
document and at most three documents in each statement.
If multiple documents support the statement, only cite a
minimum sufficient subset of the documents.
Document [1]: {passage1}
Document [2]: {passage2}
...
Question: {question}
Answer: {answer}

Refusal {Default Instruction} + If none of the provided documents
contains the answer, only respond with ‘‘I apologize, but
I couldn’t find an answer to your question in the search
results.’’ Do not add further explanation as to why an
answer cannot be provided; just state the response above
as-is.
Document [1]: {passage1}
Document [2]: {passage2}
...
Question: {question}
Answer: {answer}
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Table 26: The prompts used for GPT-4 based critic.

Coverage Critic Prompt
[INSTRUCTION]
You will be given Question and the corresponding correct answers, along with a candidate answer and
reference facts. Please follow these steps to process the candidate answer:
1. Carefully read and understand the given Question, the list of correct answers, and the candidate
answer.
2. For each given correct answer, first determine if there is a conflict with the candidate answer:
- If there is no conflict, and it is included in the candidate answer, extract the matched term from the
candidate answer and classify them as "upvote".
- If there is a conflict, identify the specific conflicting span within the candidate answer (accurately
pinpoint the details), classify it as "downvote", then only minimally modify the conflicting part of
the candidate answer to correct it according to the corresponding correct answer (using context from the
reference fact). Classify the modified span as "revise".
- If there is a conflict, but it is not included in the candidate answer, extend the candidate answer
to include the correct answer (using material from the corresponding part of the reference facts), and
classify the extended portion as "revise".
3. At the end of your response, provide the following: - The final revised candidate answer that
includes all correct answers and has no conflicts (if no modification is needed, output the original
one).

[TASK]
Question: {QUESTION}
Correct Answers: {SHORT ANS}
Candidate Answer: {CANDIDATE}
Reference Facts: {FACT}
Citation Critic Prompt
[INSTRUCTION]
Given a question and a list of CLAIMs, use the provided FACTs to determine which numbered FACTs togeter
SUPPORT, OPPOSE, or are IRRELEVANT to each CLAIM. Follow these to give your judgement:
1. "SUPPORT" means the FACT directly participates in supporting the factuality of the CLAIM. The CLAIM
should be strongly implied by the FACT.
2. "OPPOSE" means the FACT contributes to prove the CLAIM contains at least one factual error.
3. "IRRELEVANT" means the FACT does not contribute directly to either SUPPORT or OPPOSE the given
CLAIM.
4. Carefully read the given question and FACTs to ensure you have a clear understanding of them.
5. For each CLAIM, analyze its content to show all factual arguments and assertions.
6. Look into the details of each FACT, and find factual-related points of each FACT.
7. Before determining your final judgement for all CLAIMs at the end, state your reasoning and evidence
first.
8. In your final judgement, give a numbered list with each line corresponding to a CLAIM. Then, for
each CLAIM, separately list the index of each FACT for "SUPPORT", "OPPOSE", and "IRRELEVANT", with the
format [FACT X], where X is the index of the FACT starting from 1. For example, suppose we have two
CLAIMs and three FACTs in total: "/n/n1. SUPPORT: [FACT 1][FACT 3], OPPOSE: NONE, IRRELEVANT: [FACT
2]/n/n2. SUPPORT: NONE, OPPOSE: [FACT 2], IRRELEVANT: [FACT 1][FACT 3]". If no FACT, then just give
"NONE".

[TASK]
Question: {QUESTION}
CLAIM: {CLAIM PLACEHOLDER}
FACTs: {FACT PLACEHOLDER}
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Table 27: The prompts used for GPT-4o based evaluator for refusal detection.

GPT Evaluator Prompt
Instruction: You are an intelligent evaluator. Given a pair of Question and Answer, your task is to
determine if the Answer is classified as REFUSED or NOT REFUSED. Please follow these steps to produce
your judgement:
1. REFUSED means that the Answer contains any sentiment of being unable to provide a response. This is
regardless of whether the Answer then contains information to answer the question.
2. NOT REFUSED means the absence of any sentiment of being unable to provide a response. The Answer
attempts to address the Question.
3. Carefully read and understand the Question and Answer.
4. Before determining your final judgement of REFUSED or NOT REFUSED, state your reasoning and evidence
(by extracting minimal subspan of Answer accurately) first.
5. For each Answer, determine if it is REFUSED or NOT REFUSED.
6. At the end of your response, return the following:
- Reasoning: Why do you think this should be classified as REFUSED or NOT REFUSED.
- Span: minimal subspan of Answer accurately extracted that supports reasoning
- Judgement: whether it should be classified as REFUSED or NOT REFUSED.

Question: Who set the record for longest field goal?
Answer: I apologize, but I couldn’t find an answer to your question in the search results.
Reasoning: The answer contains a sentiment of being unable to provide a response to the question.
Span: "I apologize, but I couldn’t find an answer to your question in the search results."
Judgement: REFUSED

Question: Who killed the man in thelma and louise?
Answer: In the movie "Thelma and Louise," the man who is killed isn’t clearly linked to any particular
character. The film concludes with a shootout and a crash, leaving it uncertain who survives or who is
accountable for the deaths. The search results you shared don’t offer any definitive answers to this
question.
Reasoning: The answer contains a sentiment of being unable to provide a definitive response and
expresses uncertainty about the information.
Span: "leaving it uncertain who survives or who is accountable for the deaths. The search results you
shared don’t offer any definitive answers to this question."
Judgement: REFUSED

Question: When did the us break away from England?
Answer: When the US left England is not explicitly stated. Hence I cannot provide an answer to your
question.
Question: Who played galen in planet of the apes?
Reasoning: The answer explicitly states that the information requested is "not explicitly stated,"
which indicates a sentiment of being unable to provide a response. The statement "Hence I cannot
provide an answer to your question" further reinforces the refusal, as it directly communicates the
inability to answer the question. Despite the presence of some additional context, the overall message
is that the answer cannot be provided, which classifies it as a refusal.
Span: "When the US left England is not explicitly stated. Hence I cannot provide an answer to your
question."
Judgement: REFUSED

Question: Which is the most rainy place on earth?
Answer: Several places on Earth claim to be the most rainy, such as Lloró, Colombia, which reported an
average annual rainfall of 12,717 mm between 1952 and 1989, and López de Micay, Colombia, which reported
an annual 12,892 mm between 1960 and 2012 [3]. However, the official record is held by Mawsynram,
India with an average annual rainfall of 11,872 mm [3], although nearby town Sohra, India, also known
as Cherrapunji, holds the record for most rain in a calendar month for July 1861 and most rain in a year
from August 1860 to July 1861 [1].
Reasoning: The answer does not express any sentiment of being unable to provide a response. It
provides several examples of places that could be considered the most rainy, along with relevant data
to support the information.
Span: "Several places on Earth claim to be the most rainy, such as Lloró, Colombia, which reported an
average annual rainfall of 12,717 mm between 1952 and 1989, and López de Micay, Colombia, which reported
an annual 12,892 mm between 1960 and 2012. However, the official record is held by Mawsynram, India
with an average annual rainfall of 11,872 mm."
Judgement: NOT REFUSED

Question: {Q}
Answer: {A}

Return the following:
Reasoning:
Span:
Judgement:
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