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OPEN-SOURCING

The code can be found at https://anonymous.4open.science/r/ICLR-7052/

PSEUDO-CODES OF NOISE IN GRADIENT AND NOISE IN MODEL METROPOLIS ALGORITHMS

Algorithm 10 shows the pseudocode for the NiG-MpBH algorithm, and Algorithm 10 shows the
pseudocode for the NiM-MpBH algorithm. The main difference in these algorithms over the Mono-
tonic BH versions shown in the main paper is that the monotonicity requirement is replaced with
a probabilistic one, the Metropolis criterion. An additional user parameter, « is utilized for these
algorithms. This parameter essentially determines how high of an increase in the loss function is al-
lowed with some probability, as shown in lines 12 and 10, respectively. Decreases in loss are always
accepted, but the Metropolis criterion allows the algorithm to allow temporary increases in loss to
enhance its exploration probability and so increase the likelihood that better minima will be found
further in the loss landscape. Please note that lines 16-18 and 14-16, respectively, are only essential
for uses of these algorithms when the lowest-loss model is desired to be attracted. These lines are
not essential. One typically monitors the training loss trajectory. In our particular setup in the main
paper, we sample a fixed number of lowest-loss models from an optimization trajectory.

Algorithm 10: NiG-MpBH

Input: f(w),T > 0,e 20,7 > 0,n,p,
Output: Wy,
(w, At) < LelSearch(f,w,T,m,€)
t+—t+ At
Whest < W
while ¢t < T do
g« Vf(wy)
g + PerturbGradient(g, p)
WwW—1-g
10: (W, At) < LelSearch(f,w,,m,¢€)
1 6 < f(we) — f(w)
12:  iféy < 0OR exp(—ds/a) > rand(0,1) then
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13: W — W,

14: t«t+ At

15:  end if

16:  if f(w) < f(Wpest) then
17: Whest < W

18:  end if

19: end while
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Algorithm 11: NIM-MpBH

Input: f(w), T > 0,e 20,7 > 0,n,p,

Output: wy:

(w, At) < LelSearch(f,w,T,m,€)

tt+ At

Whest < W

while ¢ < T do
w < PerturbModel(w, p)
(WC7 At) F LCl(:f’ W7 T7 /r]’ E)
5f A f(wc) - f(W)

if 6 < 0OR exp(—ds/c) > rand(0,1) then

W — W,
t+t+ At
end if
if f(w) < f(Wpest) then
Whest < W
end if
end while

LOCATIONS OF GLOBAL AND LOCAL MINIMA OF SYNTHETIC LOSS FUNCTIONS

We show performance on three selected synthetic functions in the main paper, but our evaluation
considers six functions: Himmelblau (shown in the main paper), Three-Hump Camel (shown in the
main paper), Six-Hump Camel (shown in the main paper), Beale, Rastrigin, and Rosenbrock. Below
we show the contour plots for each of these functions as well as list their global and local minima if

present.

Figure 4: Himelblau

The Himmelblau function has four global

minima:
1. f(3.0,2.0)=0.0
2. f(—2.805118,3.131312) = 0.0
3. f(—3.779310, —3.283186) =
.0
4. f(3.584428,—1.848126) = 0.0

Figure 5: Three-Hump Camel

The Three-Hump camel function has a
global minimum and two local minima:

1. £(0,0)=0
2. f(1.7475,—0.8737) ~ 0.2986
3. f(—1.7475,0.8737) ~ 0.2986




Figure 6: Six-Hump Camel

The Six-Hump Camel function has two
global minima and four local minima:

1. f(—0.0898,0.7126) = —1.0316
£(0.0898, —0.7126) = —1.0316
£(—2.8051,—0.0312) ~ 63.848
(0.9805,1.8367) ~ —11.5
£(1.8839, —1.5252) ~ —3.14
£(—1.8658,1.4900) ~ —2.64
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Figure 7: Beale

The Beale function has one global
minimum but a very broad plateau where
optimization algorithms can get stuck
(and many shallow local minima):

1. £(3,0.5) =0

Figure 8: Rastrigin

The Rastrigin function has one global
minimum and four local minima that are
regularly distributed.
. f(—5.12,5.12) = 529.537341
. f(5.12,—5.12) = 529.537341
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Figure 9: Rosenbrock

The Rosenbrock function is a non-convex
function. The global minimum is inside a
long, narrow, parabolic-shaped flat valley.
To find the valley is trivial, nut to
converge to the global minimum,
however, is difficult.

1. f(1,1) =0




We show here the stationary distribution for Beale, Rastrigin, and Rosenbrock functions (the main
paper shows for the other three functions).

Algorithms Beale Rosenbrock Rastrigin

GM | Else || GM | Else || GM1 | LM1 | LM2 | LM3 | LM4 | Else
GD 66 34 34 66 0 2.6 2.6 0 0 94.8
NiG-GD 68 32 30 70 0 5 6 0 0 89
NiM-GD 78 22 58 42 0 6.5 235 |0 0 70
SAM 75 25 55 45 0 7 25 0 0 68
NiG-BH 77 23 42 58 0 7 24 0 0 69
NiM-BH 75 25 52 48 0 8.2 198 | O 0 72
NiG-MBH 78 22 38 62 0 8 24 0 0 68
NiM-MBH 71 29 42 58 0 7.7 236 |0 0 68.7
NiG-MpBH || 79 58 42 58 0 6.3 240 |0 0 69.7
NiM-MpBH | 80 56 44 56 0 7.9 253 |0 0 66.8

Table 5: The stationary distribution (reported in % for each entry) for the Beale, Rosenbrock, and Rastrigin
function for each algorithm. The locations of the global minima (GM) and local minima (LM) for each function
are listed above. The top three optimizers with the highest convergence to the global minimum on a given
function are highlighted in bold font. For Rastrigin, where all optimizers have a very hard time converging to
any minima, we highlight in bold font the top three optimizers that have the lowest percentage of end-points
not converged to any of the minima (in the ‘Else’ category).



VISUALIZATION OF STATIONARY DISTRIBUTIONS

Figure 10 shows 50 end-points (sampled from 500) of selected algorithms on three selected synthetic
functions.

Six Hump Camel

Figure 10: Stationary distribution of the optimization trajectory end-points by GD, NiG-GD (Jin et al., 2017),
SAM (Foret et al., 2021), and NiG-BH. Distribution is shown for only 50 trajectories for each algorithm for a
clear visual presentation.



STATISTICAL SIGNIFICANCE TESTING
We first compare SetA to SetB in terms of test set performance and then in terms of training loss.

Comparing Test Set Performance

Mann-Whitney U Test on Base Algorithms: The Mann-Whitney-U test results on the
hyperparameter-optimized algorithms are in the main paper. Table 6 reports the results on the base
algorithms, with no hyperparameter optimization.

Algorithm CIFAR10 CIFAR100 GoEmotions | TweetEval
Resnet50 Resnet50

SGD 0.2315 0.19332 0.2875 0.4621
NiG-SGD 0.2989 0.5429 0.4632 0.1654
NiM-SGD 0.6543 0.7563 0.6129 0.3219
SAM 0.0978 0.01073 0.1984 0.2861
NiG-BH 0.3569 0.0285 0.8328 0.3951
NiM-BH 0.6153 0.0472 0.6143 0.5178
NiG-MpBH || 0.5421 0.1295 0.73256 0.01984
NiM-MpBH || 0.6549 0.3219 0.2837 0.3542

Table 6: P-values are reported for the Mann-Whitney U test when comparing SetA to SetB for each
algorithm over each of the real-world tasks. P-values less than 0.05 are highlighted in bold font.

T-Test on Hyperparameter-Optimized Algorithms

Table 7 reports results on t-tests on the hyperparameter-optimized algorithms. We test for the null
hypothesis that two independent samples have identical average (expected) values. This test assumes
that the populations have identical variances. With few exceptions, all p-values are under 0.05, so
the null hypothesis cannot be rejected.

Algorithm CIFAR10 CIFAR100 GoEmotions | TweetEval
Resnet50 Resnet50

SGD 0.2314 0.3156 0.7563 0.54623
NiG-SGD 0.4961 0.5753 0.72134 0.1823
NiM-SGD 0.0421 0.1291 0.2961 0.1962
SAM 0.7532 0.6982 0.6432 0.5391
NiG-BH 0.3612 0.18326 0.03135 0.1837
NiM-BH 0.6318 0.1938 0.7128 0.8723
NiG-MpBH || 0.1834 0.7391 0.1935 0.02743
NiM-MpBH || 0.13293 0.6254 0.5312 0.5193

Table 7: P-values are reported for the Mann-Whitney U test when comparing SetA to SetB for each
algorithm over each of the real-world tasks. P-values less than 0.05 are highlighted in bold font.

T-test on Base Algorithms

Table 8 reports results on t-tests on the base versions of the algorithms (with no hyperparameter
optimization). With few exceptions, all p-values are under 0.05, so the null hypothesis cannot be
rejected.

Comparing Training Loss

Mann-Whitney U Test on Tuned Algorithms: Table 9 reports this statistical test results on compar-
ing the loss distributions corresponding to SetA and SetB for each of the (hyperparameter-optimized)
algorithms/optimizers. With few exceptions, all p-values are under 0.05, so the null hypothesis can-
not be rejected; that is, there are no statistically-significant differences between SetA and SetB in
terms of loss, either.

T-Test on Tuned Algorithms: Table 10 reports this statistical test results on comparing the loss
distributions corresponding to SetA and SetB for each of the (hyperparameter-optimized) algo-



Algorithm CIFAR10 CIFAR100 GoEmotions | TweetEval
Resnet50 Resnet50

SGD 0.8764 0.14019 0.2345 0.5972
NiG-SGD 0.8195 0.8423 0.8744 0.4426
NiM-SGD 0.8345 0.7425 0.34556 0.4585
SAM 0.7213 0.76894 0.6754 0.6764
NiG-BH 0.5678 0.01245 0.45354 0.53254
NiM-BH 0.9134 0.8325 0.3958 0.6467
NiG-MpBH || 0.6753 0.34869 0.6543 0.3958
NiM-MpBH || 0.7423 0.38245 0.5649 0.2867

Table 8: P-values are reported for the Mann-Whitney U test when comparing SetA to SetB for each
algorithm over each of the real-world tasks. P-values less than 0.05 are highlighted in bold font.

Algorithm CIFAR10 CIFAR100 GoEmotions | TweetEval
Resnet50 Resnet50
SGD 0.2164 0.0021 0.2123 0.2952
NiG-SGD 0.092 0.2385 0.0615 0.3152
NiM-SGD 0.1574 0.0612 0.1286 0.2032
SAM 0.0001 0.0048 0.3810 0.2357
NiG-BH 0.02858 0.1426 0.0318 0.5412
NiM-BH 0.3745 0.1854 0.0325 0.2548
NiG-MpBH || 0.0345 0.0238 0.3740 0.2145
NiM-MpBH | 0.00141 0.0217 0.1865 0.5402

Table 9: P-values are reported for the Mann-Whitney U test when comparing the loss distributions of SetA to
SetB for each algorithm over each of the real-world tasks. P-values less than 0.05 are highlighted in bold font.

rithms/optimizers. With few exceptions, all p-values are under 0.05, so the null hypothesis cannot
be rejected.

Algorithm CIFAR10 CIFAR100 GoEmotions | TweetEval
Resnet50 Resnet50
SGD 0.5631 0.7415 0.3534 0.1983
NiG-SGD 0.6512 0.1853 0.0916 0.4325
NiM-SGD 0.3259 0.7122 0.3214 0.0851
SAM 0.0015 0.0384 0.1120 0.2352
NiG-BH 0.1523 0.2854 0.3214 0.0254
NiM-BH 0.2145 0.3847 0.0978 0.3021
NiG-MpBH || 0.1854 0.0631 0.2654 0.5546
NiM-MpBH || 0.2541 0.0361 0.3845 0.4153

Table 10: P-values are reported for the T test when comparing the loss distributions of SetA to SetB for each
algorithm over each real-world task. P-values less than 0.05 are highlighted in bold font.



BOXPLOT PRESENTATIONS OF DISTRIBUTION OF ACCURACY AND MACRO-F1 OF MODEL
POPULATIONS OF VARIOUS OPTIMIZERS ON REAL-WORLD TASKS

Figures 11-14 show the distribution of performance on the held-out test set of the 50 models selected
by loss (to which we refer as SetA in the main manuscript) for each of the optimizers on each of the
real-world tasks. On CIFAR10 (RestNet50) and CIFAR100 (ResNet50) the metric of performance
is test set accuracy. On GoEmotions (BERT) and TweetEval (BERT) the metric of performance is
macro-F1. Figures 15-18 do so for SetB.
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Figure 11: The distribution of test set accuracy of the 50 models extracted from each optimizer based
on low-loss (to which we refer as SetA in the main paper) is shown here for each optimizer for the

CIFARI10 (ResNet50) task.
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Figure 12: The distribution of test set accuracy of the 50 models extracted from each optimizer based
on low-loss (to which we refer as SetA in the main paper) is shown here for each optimizer for the
CIFAR100 (ResNet50) task.
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Figure 13: The distribution of macro-F1 score of the 50 models extracted from each optimizer based
on low-loss (to which we refer as SetA in the main paper) is shown here for each optimizer for the
GoEmotions (BERT) task.
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Figure 14: The distribution of macro-F1 score of the 50 models extracted from each optimizer based
on low-loss (to which we refer as SetA in the main paper) is shown here for each optimizer for the
TweetEval (BERT) task.
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Figure 15: The distribution of test set accuracy of the 50 models extracted from each optimizer based
on test set accuracy (to which we refer as SetB in the main paper) is shown here for each optimizer
for the CIFAR10 (ResNet50) task.
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Figure 16: The distribution of test set accuracy of the 50 models extracted from each optimizer based
on test set loss (to which we refer as SetB in the main paper) is shown here for each optimizer for
the CIFAR100 (ResNet50) task.
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Figure 17: The distribution of test set macro-F1 of the 50 models extracted from each optimizer
based on test set macro-F1 (to which we refer as SetB in the main paper) is shown here for each
optimizer for the GoEmotions (BERT) task.
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Figure 18: The distribution of test set macro-F1 of the 50 models extracted from each optimizer

based on test set macro-F1 (to which we refer as SetB in the main paper) is shown here for each
optimizer for the TweetEval (BERT) task.
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BOXPLOT PRESENTATIONS OF DISTRIBUTION OF TRAINING LOSS OF MODEL POPULATIONS
OF VARIOUS OPTIMIZERS ON REAL-WORLD TASKS

Figures 19-22 show the distribution of performance on the training loss of the 50 models selected
by loss (to which we refer as SetA in the main manuscript) for each of the optimizers on each of the
real-world tasks. Figures 23-26 do so for SetB.
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Figure 19: The distribution of training set loss of the 50 models extracted from each optimizer based
on training set loss (to which we refer as SetA in the main paper) is shown here for each optimizer
for the CIFAR 10 (ResNet50) task.
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Figure 20: The distribution of training set loss of the 50 models extracted from each optimizer based
on training set loss (to which we refer as SetA in the main paper) is shown here for each optimizer
for the CIFAR 100 (ResNet50) task.

0.0012
o
0.0010
0.0008
» 0.0006
9

0.0004
0.0002

0.0000{ o 2 T';'

' ' L S
o < ey W & o ® N
© \\\\6 $®k Da \4\\1\ $\6 g,\ekh \4\\@“

Figure 21: The distribution of training set loss of the 50 models extracted from each optimizer based
on training set loss (to which we refer as SetA in the main paper) is shown here for each optimizer
for the GoEmotions (BERT) task.
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Figure 22: The distribution of training set loss of the 50 models extracted from each optimizer based
on training set loss (to which we refer as SetA in the main paper) is shown here for each optimizer
for the TweetEval (BERT) task.
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Figure 23: The distribution of training set loss of the 50 models extracted from each optimizer
based on test set performance (to which we refer as SetB in the main paper) is shown here for each
optimizer for the CIFAR 10 (ResNet50) task.
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Figure 24: The distribution of training set loss of the 50 models extracted from each optimizer
based on test set performance (to which we refer as SetB in the main paper) is shown here for each

optimizer for the CIFAR 100 (ResNet50) task.
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Figure 25: The distribution of training set loss of the 50 models extracted from each optimizer
based on test set performance (to which we refer as SetB in the main paper) is shown here for each

optimizer for the GoEmotions (Bert) task.
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Figure 26: The distribution of training set loss of the 50 models extracted from each optimizer
based on test set performance (to which we refer as SetB in the main paper) is shown here for each
optimizer for the TwwetEval(Bert) task.

17




EXPANDED ANALYSIS ON VARIOUS ARCHITECTURES

We expand the analysis presented in the main paper to different architectures. For a given optimizer,
for each world task and for a particular model architecture, we compare SetA to SetB to relate be-
tween optimization and generalization in the statistical sense. Tables below report p-values obtained
with the Mann-Whitney U test. In the main paper we report analysis with ResNet50 for CIFAR10
and CIFAR100. Here we expand to consider ResNet18, ResNet32, ResNet100, Wide-ResNet (40 X
10), and PyramidNet. In the main paper we report analysis with BERT for the NLP tasks GoEmo-
tions and TweetEval. Here we include DistillBERT and RoBERTa. Hypothesis testing shows that
the null hypothesis cannot be rejected, and so our findings are not impacted by different model

architectures.

We report one table per optimizer in the interest of clarity. With few exceptions, all p-values are
under 0.05, so the null hypothesis cannot be rejected. That is, the results reported in the main paper

extend over model architectures, as well.

Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.2514 0.1635 - -

ResNet 32 0.1164 0.0954 - -

ResNet 100 0.0962 0.1535 - -

Wide-Resnet (40 X 10) 0.1824 0.0759 - -

PyramidNet 0.0658 0.2975 - -
DistilBERT - - 0.07645 0.03241
RoBERTa - - 0.04211 0.07531

Table 11: Mann-Whitney U test comparing SetA to SetB for SGD over each real-world task over several model

architectures. P-values < 0.05 are highlighted in bold font.

Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval
ResNet 18 0.2154 0.1639 - -
ResNet 32 0.08751 0.06834 - -
ResNet 100 0.1134 0.0861 - -
Wide-Resnet (40 X 10) 0.2159 0.0618 - -
PyramidNet 0.01534 0.0615 - -
DistilBERT - - 0.2317 0.1851
RoBERTa - - 0.0517 0.04531

Table 12: Mann-Whitney U test comparing SetA to SetB for SAM over each real-world task. P-values < 0.05

are highlighted in bold font.

Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.1854 0.1125 - -

ResNet 32 0.09645 0.1531 - -

ResNet 100 0.2231 0.06543 - -

Wide-Resnet (40 X 10) 0.0314 0.1741 - -

PyramidNet 0.3129 0.05213 - -
DistilBERT - - 0.1692 0.0414
RoBERTa - - 0.0134 0.0951

Table 13: Mann-Whitney U test comparing SetA to SetB for NiG-SGD over each real-world task. P-values
< 0.05 are highlighted in bold font.
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Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.1642 0.0851 - -

ResNet 32 0.0613 0.3142 - -

ResNet 100 0.0832 0.1325 - -

Wide-Resnet (40 X 10) 0.1751 0.2162 - -

PyramidNet 0.0835 0.1923 - -
DistilBERT - - 0.9761 0.0856
RoBERTa - - 0.0873 0.2143

Table 14: Mann-Whitney U test comparing SetA to SetB for NiM-SGD over each real-world task. P-values
< 0.05 are highlighted in bold font.
Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval
ResNet 18 0.1672 0.0332 - -
ResNet 32 0.3511 0.0867 - -
ResNet 100 0.1845 0.2071 - -
Wide-Resnet (40 X 10 ) 0.1172 0.0313 - -
PyramidNet 0.2512 0.1102 - -
DistilBERT - - 0.0983 0.02143
RoBERTa - - 0.1524 0.04531
Table 15: Mann-Whitney U test comparing SetA to SetB for NiG-BH over each real-world task. P-values

< 0.05 are highlighted in bold font.

Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.0751 0.0855 - -

ResNet 32 0.2137 0.1980 - -

ResNet 100 0.0631 0.1124 - -

Wide-Resnet (40 X 10) 0.0923 0.2513 - -

PyramidNet 0.0985 0.0245 - -
DistilBERT - - 0.0213 0.2261
RoBERTa - - 0.0198 0.0678

Table 16: Mann-Whitney U test comparing SetA to SetB for NiM-BH over each real-world task. P-values

< 0.05 are highlighted in bold font.

Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.0763 0.1712 - -

ResNet 32 0.1870 0.0764 - -

ResNet 100 0.3129 0.0413 - -

Wide-Resnet (40 X 10) 0.1321 0.0571 - -

PyramidNet 0.1439 0.0591 - -
DistilBERT - - 0.2254 0.0848
RoBERTa - - 0.1427 0.2185

Table 17: Mann-Whitney U test comparing SetA to SetB for NiG-MpBH over each real-world task
< 0.05 are highlighted in bold font.
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Architecture Problems
CIFAR 10 | CIFAR 100 | GoEmotions | TweetEval

ResNet 18 0.1293 0.0878 - -

ResNet 32 0.0587 0.1859 - -

ResNet 100 0.2391 0.1187 - -

Wide-Resnet (40 X 10) 0.1781 0.0763 - -

PyramidNet 0.1534 0.2871 - -
DistilBERT - - 0.2143 0.0885
RoBERTa - - 0.0912 0.1065

Table 18: Mann-Whitney U test comparing SetA to SetB for NiM-MpBH over each real-world task. P-values
< 0.05 are highlighted in bold font.
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We now relate the generalization performance of SetA for each optimizer on each task on each
model architecture. As in the main paper, the average accuracy (or macro-F1 for NLP tasks) and
standard deviation are reported for SetA in each setting. These summary statistics are juxtaposed to
the summary statistics over SetB in each setting.

(0.949, 0.0.012)

(0.786, 0.018)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
(0.930,0.012) | (0.753, 0.032) - 5
ResNet 18 (0.911,0.004) | (0.762,0.011) . ;
(0.921,0.003) | (0.759, 0.023) N -
ResNet 32 (0.932,0.002) | (0.761,0.015) . ;
ResNet 100 (0.947,0.005) | (0.787, 0.022) - .

Wide-Resnet (40 X 10)

(0.967, 0.021)
(0.971,0.019)

(0.813,0.028)
(0.819, 0.017)

PyramidNet-110

(0.961, 0.005)
(0.971, 0.003)

(0.812,0.015)
(0.817,0.013)

DistilBERT

(0503, 0.053)
(0.506, 0.038)

(0.602, 0.035)
(0.607, 0.327)

RoBERTa

(0.494, 0.033)
(0.502, 0.016)

(0.613,0.027)
(0.619, 0.025)

Table 19: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for SGD. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the NLP
tasks, summary statistics are for macro-F1.

(0.955, 0.004)

(0.791, 0.028)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
(0.911,0.015) | (0.761, 0.025) - N
ResNet 18 (0.909,0.005) | (0.759, 0.018) - -
(0.921,0.018) | (0.769, 0.022) - N
ResNet 32 (0.927,0.014) | (0.751, 0.008) - .
ResNet 100 (0.945, 0.005) | 0.788, 0.017) - N

Wide-Resnet (40 X 10)

0.961, 0.011)
(0.966, 0.012)

0.8123, 0.027)
(0.823,0.021)

PyramidNet

(0.965, 0.005)
(0.971,0.013)

(0.8210.015)
(0.823,0.011)

DistilBERT

(0.515, 0.032)
(0.521,0.011)

(0.611, 0.041)
(0.621,0.012)

RoBERTa

(0.512,0.013)
(0.525, 0.026)

(0.621, 0.019)
(0.626, 0.031)

Table 20: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for SAM. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the NLP
tasks, summary statistics are for macro-F1.
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(0.945, 0.007)

(0.788, 0.021)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
0.912,0.012) | (0.756, 0.018) - -
ResNet 13 (0.909.0.005) | (0.755.0.011) ] ]
(0.921, 0.009) | (0.761, 0.018) - -
ResNet 32 (0.925. 0.004) | (0.763, 0.022) ] ]
ResNet 100 (0.932,0.015) | (0.781, 0.015) - -

Wide-Resnet (40 X 10)

(0.955, 0.013)
(0.959, 0.004)

(0.791, 0.021)
(0.795,0.011)

PyramidNet

(0.961, 0.013)
(0.959, 0.009)

(0.797, 0.011)
(0.787,0.017)

DistilBERT

(0.511, 0.023)
(0.516, 0.026)

(0.599, 0.021)
(0.601, 0.021)

RoBERTa

(0.512,0.015)
(0.532, 0.006)

(0.609, 0.005)
(0.611,0.018)

Table 21: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NiG-SGD. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the

NLP tasks, summary statistics are for macro-F1.

(0.511, 0.013)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
ReNetIs | (osgr0013) | ©751,000) | - Z
ResNet32 | (Go0s 0009 | (0798.0028) | - i
ResNet 100 | (051501007 | (0776.0015) | - i
Wide-Resnet A0 X 10) | (095" 0011) | (0788,0000) | - i
R A I
: S| e
RoBERTa - - (0.517,0.009) | (0.609, 0.017)

(0.613, 0.023)

Table 22: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NiM-SGD. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the

NLP tasks, summary statistics are for macro-F1.
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(0.552,0.011)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
ST | I
T e :
ResNet100 | (9045’ 0011) | @787.0020 | - Z
e 10) | Q00T 0L 00 :
e L
: — [eE e
ROBERTa - - (0.553,0.026) | (0.63,0.018)

(0.632, 0.010)

Table 23: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NiG-BH. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the

NLP tasks, summary statistics are for macro-F1.

(0.951, 0.022)

(0.786, 0.011)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
(0.922,0.012) | (0.762,0.027) - -
ResNet 18 (0.929.0.012) | (0.771,0.024) ] ]
(0.925,0.012) | (0.769, 0.021) - -
ResNet 32 (0.928. 0.014) | (0.773.0.021) ] ]
ReaNet 100 (0.947,0.008) | (0.785, 0.016) - -

Wide-Resnet (40 X 10 )

(0.961, 0.007)
(0.969, 0.024)

(0.811, 0.022)
(0.823, 0.005)

(0.961, 0.028)

(0.831, 0.024)

(0.552, 0.028)

PyramidNet (0.965.0.014) | (0.835.0.029) ; ;

— - - (0521, 0.022) | (0.632, 0.011)
DistilBERT ; ; (0.533.0.031) | (0.6350.011)
Fpp— - - (0,544, 0.021) | (0.638,0.022)

(0.639, 0.021)

Table 24: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NiM-BH. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On the

NLP tasks, summary statistics are for macro-F1.
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(0.531, 0.008)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
T LA R
N 5 S
ReNet 100 || (0036 goi) | (077,002 | - :
Wide-Resnet 0X 10) | (0.020" 0.03) | (0.7950.027) | - :
T 5
DistilBERT i i Egjgiéj 81853 (((())662252(())(())1297))
ROBERT: - - (0.528,0.014) | (0.625, 0.027)

(0.631, 0.032)

Table 25: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NiG-MpBH. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On
the NLP tasks, summary statistics are for macro-F1.

(0.922, 0.008)

(0.786, 0.020)

Architecture Problems
CIFAR 10 CIFAR 100 GoEmotions TweetEval
(0.901,0.011) | (0.767,0.023) - -
ResNet 18 (0.905.0.010) | (0.765,0.019) ] ]
(0911, 0.021) | (0.767, 0.031) - -
ResNet 32 (0.921.0.018) | (0.769. 0.020) ] ]
oot 100 (0.925,0.021) | (0.787, 0.031) - -

Wide-Resnet (40 X 10)

(0.944,0.028)
(0.949, 0.011)

(0.809,0.022)
(0.809, 0.029)

(0.957, 0.011)

(0.821, 0.027)

(0.534, 0.022)

PyramidNet (0.954.0.026) | (0.833, 0.024) - ;

— - - (0521, 0.023) | (0.611,0.029)
DistilBERT ] ; (0.533,0.011) | (0.620,0.021)
Fpp—— - - (0.531,0.026) | (0.622, 0.018)

(0.625, 0.026)

Table 26: For each architecture, we relate the average accuracy and standard deviation over SetA (top row)
and SetB (bottom row) for NIM-MpBH. ‘(, )’ relates ‘(average, standard deviation)’ over models in a set. On
the NLP tasks, summary statistics are for macro-F1.
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