
A Omitted Proofs414

We define the multicalibration error of p̃ wrt C under D as415

MCED(f, C) = max
c2C

E
v⇠Dp̃

���� E
D|v

[c(x)(y � v)]

����

�
.

We define the swap multicalibration error of p̃ wrt C under D as416

sMCED(p̃, C) = E
v⇠Dp̃


max
c2C

���� E
D|v

[c(x)(y � v)]

����

�

A.1 Properties of Swap Notions of Supervised Learning417

Proof of Claim 2.4. We let `v = ` for all v 2 Im(p̃), so that k(v) = k`(v). We pick the hypothesis418

hv = argmin
h2H

E
D|v

[`(y, h(x))]

The swap omniprediction guarantee reduces to419

E
v2Dp̃

[ E
D|v

[`(y, k`(v))] = E
D

[`(y, k`(p̃(x)))]  E
v⇠Dp̃

min
h2H

E
D|v

[`(y, h(x))] + �.

This implies that f = k` � p̃ is a swap agnostic learner for every ` 2 L since we allow the choice of h420

to depend on p̃(x) which is more informative than f(x) = k`(p̃(x)). ⌅421

Proof of Claim 2.7. We have422

sMCED(p̃, C) = E
v⇠Dp̃


max
c2C

���� E
D|v

[c(x)(y⇤
� v)]

����

�

� max
c2C

E
v⇠Dp̃

���� E
D|v

[c(x)(y � v)]

����

�
= MCED(p̃, C)

since the expectation of the max is higher than the max of expectations. Bounding the RHS by ↵ is423

equivalent to (C,↵)-multicalibration. ⌅424

Proof of Claim 2.9. The `1 bound is immediate from the definition of p̄. We bound the swap425

multicalibration error of tf . We have p̄(x) = j� iff p̃(x) 2 Bj , so that |p̃(x) � j�|  � holds426

conditioned on this event. So427

sMCED(p̄, C) =
X

j2[m]

Pr[p̄(x) = j�] max
c2C

���E
D

[c(x)(y � j�)|p̄(x) = j�]
���

=
X

j2[m]

Pr[p̃(x) 2 Bj ] max
c2C

���E
D

[c(x)(y � j�)|p̃(x) 2 Bj ]
���



X

j2[m]

Pr[p̃(x) 2 Bj ]

✓
� +max

c2C

���E
D

[c(x)(y � p̃(x))|p̃(x) 2 Bj ]
���
◆

 � +
X

j2[m]

Pr[p̃(x) 2 Bj ] max
c2C

���E
D

[c(x)(y � p̃(x))|p̃(x) 2 Bj ]
��� (15)

Let us fix a bucket Bj and a particular c 2 C. For � � ↵ to be specified later we have428

|E[c(x)(y � p̃(x))|p̃(x) 2 Bj ]|  Pr[c(x)(y � p̃(x)) � �|p̃(x) 2 Bj ] + � Pr[c(x)(y � f(x))  �|p̃(x) 2 Bj ]


Pr[p̃(x) 2 Bad�(c, f) \Bj ]

Pr[p̃(x) 2 Bj ]
+ �


Pr[p̃(x) 2 Bad�(c, f)]

Pr[p̃(x) 2 Bj ]
+ �


↵/�

Pr[p̃(x) 2 Bj ]
+ �.
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Since this bound holds for every c, it holds for the max over c 2 C conditioned on p̃(x) 2 Bj . Hence429

X

j2[m]

Pr[p̃(x) 2 Bj ] max
c2C

���E
D

[c(x)(y � p̃(x))|p̃(x) 2 Bj ]
��� 

X

j2[m]

Pr[p̃(x) 2 Bj ]

✓
↵/�

Pr[p̃(x) 2 Bj ]
+ �

◆


↵

��
+ �,

where we use m = 1/�. Plugging this back into Equation (15) gives430

sMCED(p̄, C) = E
v⇠p̄D


max
c2C

���� E
D|v

[c(x)(y � v)]

����

�


↵

��
+ � + �.

Taking � =
p

↵/� gives the desired claim. ⌅431

A.2 Omitted Proofs from Main Result432

Proof of Lemma 3.2. We will show that for p, p0 2 [0, 1] and t0 2 I`, we have433

`(p, t0)� `(p0, t0)  |p� p
0
|B.

By the definition of `(p, t), we have434

`(p, t0)� `(p0, t0) = (p� p
0)`(0, t0) + (1� p� 1 + p

0)`(1, t0)

= (p� p
0)(`(0, t0)� `(1, t0))

Taking absolute values and using the Boundedness property gives the desired claim. ⌅435

Proof of Claim 3.4. Suppose that h 2 Lin(C,W ) of the form h(x) =
P

c2C
wc · c(x). From436

Claim 2.7, we know that the multicalibration violation for c 2 C is bounded by ↵(v) for every437

v 2 Im(p̃).438

|E[h(x)(y � v) | p̃(x) = v]| =

�����E
"
X

c2C

wc · c(x)(y � v) | p̃(x) = v

#�����



 
X

c2C

|wc|

!
·max

c2C

|E[c(x)(y � v) | p̃(x) = v]|

W · ↵(v)

The inequalities follow by Holder’s inequality and the assumed bound on the weight of W for439

h 2 Lin(C,W ). ⌅440

Proof of Claim 3.5. Recall that Cov[y, z] = E[yz]�E[y]E[z]. For any h 2 Lin(C,W ) we have441

|Cov[y, h(x)|p̃(x) = v]| = |E[h(x)(y �E[y])|p̃(x) = v]|

= |E[h(x)(y � v)|p̃(x) = v]|+ |E[(v � y)|p̃(x) = v]|

 (W + 1)↵(v)

where we use the fact that h 2 Lin(C,W ) and 1 2 C. Since y 2 {0, 1}, this implies the claimed442

bounds by standard properties of covariance (see [15, Corollary 5.1]). ⌅443

Proof of Lemma 3.6. For any y 2 {0, 1},444

E
D|v

[`(y, h(x))|(p̃(x),y) = (v, y)] = E
D|v

[`(y, h(x))|(p̃(x),y) = (v, y)]

� `(y,E[h(x)|(p̃(x),y) = (v, y)]) (16)
= `(y, µ(h : v, y))

� `(y,⇧`(µ(h : v, y))). (17)
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where Equation (16) uses Jensen’s inequality, and Equation (17) uses the optimality of projection for445

nice loss functions. Further, by the 1-Lipschitzness of ` on I`, and of ⇧` on R446

`(y,⇧`(µ(h : v, y)))� `(y,⇧`(µ(h : v)))  |⇧`(µ(h : v, y))�⇧`(µ(h : v))|

 |µ(h : v, y)� µ(h : v)| (18)

Hence we have447

E
D|v

[`(y,⇧`(µ(h : v))]� E
D|v

[`(y, h(x))]

=
X

y2{0,1}

Pr[y = y|p̃(x) = v] (`(y,⇧`(µ(h : v)))�E[`(y, h(x))|(p̃(x),y) = (v, y)])



X

y2{0,1}

Pr[y = y|p̃(x) = v] (`(y,⇧`(µ(h : v)))� `(y,⇧`(µ(h : v, y)))) (By Equation (17))



X

y2{0,1}

Pr[y = y|p̃(x) = v] |µ(h : v, y)� µ(h : v)| (by Equation (18))

 2(W + 1)↵(v). (By Equation (9))

⌅448

B Details on Algorithm449

Here, we give a high-level overview of the MCBoost algorithm of [20] and weak agnostic learning.450

Definition B.1 (Weak agnostic learning). Suppose D is a data distribution supported on X ⇥ [�1, 1].451

For a hypothesis class C, a weak agnostic learner WAL solves the following promise problem: for452

some accuracy parameter ↵ > 0, if there exists some c 2 C such that453

E
(x,z)⇠D

[c(x) · z] � ↵

then WAL↵ returns some h : X ! R such that454

E
(x,z)⇠D

[h(x) · z] � poly(↵).

For the sake of this presentation, we are informal about the polynomial factor in the guarantee of455

the weak agnostic learner. The smaller the exponent, the stronger the learning guarantee (i.e., we456

want WAL↵ to return a hypothesis with correlation with z as close to ⌦(↵) as possible). Standard457

arguments based on VC-dimension demonstrate that weak agnostic learning is statistically efficient.458

B.1 MCBoost459

The work introducing multicalibration [20] gives a boosting-style algorithm for learning multicali-460

brated predictors that has come to be known as MCBoost. The algorithm is an iterative procedure:461

starting with a trivial predictor, the MCBoost searches for a supported value v 2 Im(p̃) and “sub-462

group” cv 2 C that violate the multicalibration condition. Note that some care has to be taken to463

ensure that the predictor p̃ stays supported on finitely many values, and that each of these values464

Algorithm 2 MCBoost
Parameters: hypothesis class C and ↵ > 0
Given: Dataset S sampled from D

Initialize: p̃(x) 1/2.
Repeat:

if 9v 2 Im(p̃) and cv 2 C such that

E[cv(x) · (y � v) | p̃(x) = v] > poly(↵) (19)

update p̃(x) p̃(x) + ⌘cv(x) · 1[p̃(x) = v]
Return: p̃
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maintains significant measure in the data distribution Dp̃. In this pseudocode, we ignore these issues;465

[20] handles them in full detail.466

Importantly, the search over C for condition (19) can be reduced to weak agnostic learning. Intuitively,467

we pass WAL samples drawn from the data distribution, but labeled according to z = y � v when468

p̃(x) = v.469

Lemma 3.8. The iteration complexity of MCBoost is directly (inverse quadratically) related to the470

size of the multicalibration violations we discover in (19). A standard potential argument can be471

found in [20].472

By the termination condition, we can see that p̃ must actually be (C,↵)-swap multicalibrated. In473

particular, when the algorithm terminates, then for all v 2 Im(p̃), we have that474

max
cv2C

E[cv(x) · (y � v) | p̃(x) = v]  poly(↵)  ↵.

Therefore, averaging over v ⇠ Dp̃, we obtain the guarantee. ⌅475

Corollary 3.9. By Lemma 3.8, we know that p̃ returned by MCBoost is (C,↵)-swap multicalibrated.476

By Theorem 3.3, p̃ is equivalently a (Lcvx, C,↵
0)-swap omnipredictor for some polynomially-related477

↵
0. In other words, by Claim 2.4, if we post-process p̃ according to k` for any nice convex loss478

function `, we obtain an (`, C, ")-swap agnostic learner. Taking ↵ = poly(") sufficiently small, we479

obtain the swap agnostic learning guarantee. ⌅480

C Swap Loss Outcome Indistinguishability481

In this Appendix, we give a full account of the definitions and results stated in Section 4. We introduce482

a unified notion of Swap Loss Outcome Indistinguishability, which captures all of the other notions of483

mutlicalibration and omniprediction defined so far. The notion builds on a line of work due to [6, 7],484

which propose the notion of Outcome Indistinguishability (OI) as a solution concept for supervised485

learning based on computational indistinguishability. In fact, the main result of [6] is an equivalence486

between OI and multicalibration. Despite the fact that OI is really multicalibration in disguise, the487

perspective has proved to be a useful technical perspective.488

Key to this section is the prior work of [14]. This work proposes a new variant of OI, called Loss OI.489

The main result of [14] derives novel omniprediction guarantees from loss OI. Further, they show490

how to achieve loss OI using only calibration and multiaccuracy over a class of functions derived491

from the loss class L and hypothesis class C. As we’ll see, this class plays a role in the study of swap492

loss OI: swap loss OI is equivalent to multicalibration over the augmented class.493

Additional Preliminaries. Intuitively, OI requires that outcomes sampled from the predictive494

model p̃ are indistinguishable from Nature’s outcomes. Formally, we use (x,y⇤) to denote a sample495

from the true joint distribution over X ⇥ {0, 1}. Then, given a predictor p̃, we associate it with the496

random variable with E[ỹ|x] = p̃(x), i.e., where ỹ|x ⇠ Ber(p̃(x)). The variable ỹ can be viewed497

as p̃’s simulation of Nature’s label y⇤. In this section, we use D to denote the joint distribution498

(x,y⇤
, ỹ), where E[y⇤

|x] = p
⇤(x) and E[ỹ|x] = p̃(x). While the joint distribution of (y⇤

, ỹ) is not499

important to us, for simplicity we assume they are independent given x = x.500

C.1 Swap Loss OI501

The notion of loss outcome indistinguishability was introduced in the recent work of [14] with the502

motivation of understanding omniprediction from the perspective of outcome indistinguishability503

[6]. Loss OI gives a strengthening of omniprediction. It requires predictors p̃ to fool a family U504

of statistical tests u : X ⇥ [0, 1] ⇥ {0, 1} that take a point x 2 X , a prediction p̃(x) 2 [0, 1] and a505

label y 2 {0, 1} as their arguments. The goal is distinguish between the scenarios where y = y⇤506

is generated by nature versus where y = ỹ is a simulation of nature according to the predictor p̃.507

Formally, we require than for every u 2 U ,508

E
D

[u(x, p̃(x),y⇤)] ⇡" E
D

[u(x, p̃(x), ỹ)].

Loss OI specializes this to a specific family of tests arising in the analysis of omnipredictors.509
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Definition C.1 (Loss OI, [14]). For a collection of loss functions L, hypothesis class C, and " � 0,510

define the family of tests U(L, C) = {u`,c}`2L,c2C where511

u`,c(x, v, y) = `(y, k`(v))� `(y, c(x)). (20)

A predictor p̃ : X ! [0, 1] is (L, C, ")-loss OI if for every u 2 U(L, C), it holds that512
���� E
(x,y⇤)⇠D

[u(x, p̃(x),y⇤)]� E
(x,ỹ)⇠D(p̃)

[u(x, p̃(x), ỹ)]

����  ". (21)

[14] show that loss-OI implies omniprediction.513

Lemma C.2 (Proposition 4.5, [14]). If the predictor p̃ is (L, C, ")-loss OI, then it is an (L, C, ")-514

omnipredictor.515

Indeed, if the expected value of u is nonpositive for all u 2 U(L, C), then p̃ must achieve loss516

competitive with all c 2 C. The argument leverages the fact that u must be nonpositive when517

ỹ ⇠ Ber(p̃(x))—after all, in this world p̃ is the Bayes optimal. By indistinguishability, p̃ must also518

be optimal in the world where outcomes are drawn as y⇤. The converse, however, is not always true.519

Next, we introduce swap loss OI, which allows the choice of distinguisher to depend on the predicted520

value.521

Definition C.3 (Swap Loss OI). For a collection of loss functions L, hypothesis class C and " � 0,522

for an assignment of loss functions {`v 2 L}v2Im(p̃) and hypotheses {hv 2 H}v2Im(p̃), denote523

uv = u`v,cv 2 U(L, C). A predictor p̃ is (L, C,↵)-swap loss OI if for all such assignments,524

E
v⇠Dp̃

���� E
D|v

[uv(x,v,y
⇤)� uv(x,v, ỹ)]

����  ↵.

The notion generalizes both swap omniprediction and loss-OI simultaneously.525

Lemma C.4. If the predictor p̃ satisfies (L, C,↵)-swap loss OI, then526

• it is an (L, C,↵)-swap omnipredictor.527

• it is (L, C,↵)-loss OI.528

Proof. The proof of Part (1) follows the proof of [14, Proposition 4.5], showing that loss OI implies529

omniprediction. By the definition of k`v , for every x 2 X such that p̃(x) = v530

E
ỹ⇠Ber(v)

uv(x, v, ỹ) = E
ỹ⇠Ber(v)

[`v(ỹ, k`v (v))� `v(ỹ, cv(x))]

= `v(v, k`v (v))� `v(v, cv(x))

 0

Hence this also holds in expectation under D|v , which only considers points where p̃(x) = v:531

E
D|v

[uv(x, v, ỹ)]  0.

Since p̃ satisfies swap loss OI, we deduce that532

E
D|v

[uv(x, v,y
⇤)]  ↵(v)

Taking expectations over v ⇠ Dp̃ and using the definition of uv , we get533

E
v⇠Dp̃

E
D|v

[`v(y
⇤
, k`v(v))� `v(y

⇤
, cv(x))] = E

v⇠Dp̃

E
D

[uv(x,v,y
⇤)]

 E
v⇠Dp̃

[↵(v)]  ↵

Rearranging the outer inequality gives534

E
v⇠Dp̃

E
D|v

[`v(ỹ, k`v(v))]  E
v⇠Dp̃

E
D|v

[`v(y
⇤
, cv(x))] + ↵.

Part (2) is implied by taking `v = ` for every v. ⌅535
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Figure 1: Relation between notions of omniprediction

C.2 Relating notions of omniprediction536

In this work, we have discussed the four different notions of omniprediction defined to date.537

00) Omniprediction, as originally defined by [15].538

01) Loss OI, from [14].539

10) Swap omniprediction.540

11) Swap Loss OI.541

In order to compare them, we can ask which of these notions implies the other for any fixed choice of542

loss class L and hypothesis class C.543

• Loss OI implies omniprediction by [14, Proposition 4.5].544

• Swap omniprediction implies omniprediction by Claim 2.4.545

• Swap loss OI implies both loss OI and swap multicalibration by Lemma C.4.546

These relationships are summarized in Figure 1.547

Further, this picture captures all the implications that hold for all (L, C). Next, we show that for548

any implication not drawn in the diagram, there exists some (natural) choice of (L, C), where the549

implication does not hold. In particular, we prove Theorem 4.2 which states that neither loss OI nor550

swap omniprediction implies the other for all (L, C). This separates these notions from swap loss OI,551

since swap loss OI implies both these notions.5 By similar reasoning, it separates omniprediction552

from both these loss OI and swap omniprediciton, since omniprediction is implied by either of them.553

Swap omniprediction does not imply loss OI. We prove this non-implication using a coun-554

terexample used in [14]. In particular, they show that omniprediction does not imply loss OI [14,555

Theorem 4.6], and the same example in fact shows that swap omniprediction does not imply loss556

OI. In their example, we have D on {±1}3 ⇥ [0, 1] where the marginal on {±1}3 is uniform, and557

p
⇤(x) = (1+x1x2x3)/2, whereas p̃(x) = 1/2 for all x. We take C = {1, x1, x2, x3}. Since p̃ = 1/2558

is constant, it is easy to check that p̃� p
⇤ = �x1x2x3/2 is uncorrelated with C. Hence p̃ satisfies559

swap multicalibration (which is the same as multicalibration or even multiaccuracy in this setting560

where p̃ is constant). Hence by Theorem 3.3, p̃ is an (Lcvx(1),LinC , 0)-swap omnipredictor. [14,561

Theorem 4.6] prove that p̃ is not loss OI for the `4 loss. Hence we have the following result.562

5For instance if loss OI implied swap loss OI, it would also imply swap omniprediction, which our claim
shows it does not.
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x = (x1, x2) p
⇤(x) p̃(x)

(�1,�1) 0 1
8

(+1,�1) 1
4

1
8

(�1,+1) 1 7
8

(+1,+1) 3
4

7
8

Table 2: Separating loss-OI and swap-resilient omniprediction

Lemma C.5. The predictor p̃ is (C, 0)-swap multicalibrated and hence it is a ({`4},Lin(C), 0)-swap563

omnipredictor. But it is not ({`4},Lin(C, 1), ")-loss OI for " < 4/9.564

We remark that the construction extends to all `p losses for even p > 2. Hence even for convex losses,565

the notions of swap omniprediction are loss-OI seem incomparable.566

Loss OI does not imply swap omniprediction. Next we construct an example showing that loss567

OI need not imply swap omniprediction. We consider the set of all GLM losses defined below, which568

contain common losses including the squared loss and the logistic loss.569

Definition C.6. Let g : R! R be a convex, differentiable function such that [0, 1] ✓ Im(g0). Define570

its matching loss to be `g = g(t)� yt. Define LGLM = {`g} be the set of all such loss functions.571

[14] shows a general decomposition result that reduces achieving loss OI to a calibration condition572

and a multiaccuracy condition. Whereas arbitrary losses might require multiaccuracy for the more573

powerful class @L � C, for LGLM, @LGLM � C = C. This is formalized in the following result.574

Lemma C.7 (Theorem 5.3, [14]). If p̃ is "1-calibrated and (C, "2)-multiaccurate, then it is575

(LGLM,Lin(C,W ), �)-loss OI for � = "1 +W"2.576

In light of the above result, it suffices to find a predictor that is calibrated and multiaccurate (and577

hence satisfies loss OI), but not multicalibrated, hence not swap multicalibrated. By Theorem 3.3 it is578

not an ({`2},LinC , �)-swap omnipredictor for � less than some constant.579

Let us define the predictors p
⇤
, p̃ : {±1}2 ! [0, 1] as below. We use these to show a separation580

between loss OI and swap omniprediction.581

Lemma C.8. Consider the distribution D on {±1}2 ⇥ {0, 1} where the marginal on {±1}2 is582

uniform and E[y|x] = p
⇤(x). Let C = {1, x1, x2}.583

1. p̃ 2 Lin(C, 1). Moreover, it minimizes the squared error over all hypotheses from Lin(C).584

2. p̃ is perfectly calibrated and (C, 0)-multiaccurate. So it is (LGLM,Lin(C), 0)-loss OI.585

3. p̃ is not (C,↵)-multicalibrated for ↵ < 1/8. It is not (`2,Lin(C), �)-swap agnostic learner586

for � < 1/64.587

Proof. We compute Fourier expansions for the two predictors:588

p
⇤(x) =

1

8
(4 + 3x2 � x1x2) (22)

p̃(x) =
1

8
(4 + 3x2) (23)

This shows that p̃ 2 Lin(C), and moreover that it is the optimal approximation to p
⇤ in Lin(C), as it589

is the projection of p⇤ onto Lin(C). This shows that p̃ is an (`2,Lin(C), 0)-agnostic learner.590

It is easy to check that p̃ is perfectly calibrated. It is (C, 0)-multiaccurate, since it is the projection of591

p
⇤ onto Lin(C), so p̃� p

⇤ is orthogonal to Lin(C). Hence we can apply Lemma C.7 to conclude that592

it is (LGLM,Lin(C), 0)-loss OI, where LGLM which contains the squared loss.593

To show that p̃ is not swap-agnostic, we observe that conditioning on the value of p̃(x) = (4+3x2)/8594

is equivalent to conditioning on x2 2 {±1}. For each value of x2, the restriction of p⇤ which is now595
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linear in x1 belongs to Lin(C). Indeed if we condition on p̃(x) = 1/8 so that x2 = �1, we have596

p
⇤(x) =

1

2
�

3

8
+

1

8
x1 =

1 + x1

8
.

Conditioned on p̃(x) = 7/8 so that x2 = 1, we have597

p
⇤(x) =

1

2
+

3

8
�

1

8
x1 =

7� x1

8
.

Hence we have598

E
v⇠Dp̃

���� min
h2Lin(C)

E[(y � h(x))2|f(x) = v]

����

�
= E[(y � p

⇤(x))2] = Var[y],

whereas the variance decomposition of squared loss gives599

E[(y � p̃(x))2] = E[(y � p
⇤(x))2] +E[(p⇤(x)� p̃(x))2]

= Var[y] +
1

64
E[(x1x2)

2]

= Var[y] +
1

64
.

Hence p̃ is not a (`2,Lin(C), �)-swap agnostic learner for � < 1/64.600

To see that f is not multicalibrated for small ↵, observe that conditioned on x2 2 {±1}, the601

correlation between x1 and p̃� p
⇤ is 1/8. ⌅602

Note that item (1) above separates swap omniprediction from omniprediction and agnostic learning.603

This separation can also be derived from [15, Theorem 7.5] which separated (standard) omniprediction604

from agnostic learning, since swap omniprediction implies standard omniprediction.605

Comparing notions for GLM losses. When we restrict our attention to LGLM, in fact, the notions of606

swap loss OI and swap omniprediction are equivalent. The key observation here is that @LGLM�C = C,607

as shown in [14]. Paired with Theorem 3.3 and Theorem 4.1 (proved next), we obtain the following608

collapse.609

Claim C.9. The notions of (LGLM, C,↵1)-swap loss OI and (LGLM, C,↵2)-swap omniprediction are610

equivalent.611

Proof. To see this, note that by Theorem 4.1, (LGLM, C,↵1)-swap loss OI is equivalent to (@LGLM �612

C,↵
0

1)-swap multicalibration. We know from Theorem 3.3 that this is also equivalent to (@LGLM �613

C,↵2)-swap omniprediction. So, by the fact that @LGLM � C = C, we have the claimed equivalence.614

⌅615

Finally, we know that loss OI implies omniprediction for LGLM, since this holds true for all L. We do616

not know if these notions are equivalent for LGLM, since the construction in Lemma C.5 used the `4617

loss which does not belong to LGLM.618

C.3 Equivalence of swap loss OI and swap multicalibration over augmented class619

We show that (L, C)-swap loss OI and (@L � C)-swap multicalibration are equivalent for nice loss620

functions.621

Theorem C.10 (Formal statement of Theorem 4.1). Let L ✓ L(B) be a family of B-nice loss622

functions such that `2 2 L. Then (@L � C,↵1)-swap multicalibration and (L, C,↵2)-swap loss OI623

are equivalent.6624

In preparation for this, we start with the following simple claim from [14].625

Claim C.11 (Lemma 4.8, [14]). For random variables y1,y2 2 {0, 1} and t 2 R,626

E[`(y1, t)� `(y2, t)] = E[(y1 � y2)@`(t)]. (24)
6Here equivalence means that there are reductions in either direction that lose a multiplicative factor of

(B + 1) in the error.
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We record two corollaries of this claim. These can respectively be seen as strengthenings of the two627

parts of Theorem [14, Theorem 4.9], which respectively characterized hypothesis OI in terms of628

multiaccuracy and decision OI in terms of calibration. We generalize these to the swap setting.629

Corollary C.12. For every choice of {`v, cv}v2Im(p̃), we have630

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, cv(x))� `v(ỹ, cv(x))]

����

�
= E

v⇠Dp̃

���� E
D|v

[(y⇤
� ỹ)@`v � cv(x)]

����

�
. (25)

Hence if p̃ is (@L � C,↵)-swap multicalibrated, then631

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, cv(x))� `v(ỹ, cv(x))]

����

�
 ↵.

Proof. Equation (25) is derived by applying Equation (24) to the LHS. Assuming that p̃ is (@L�C,↵)-632

swap multicalibrated, we have633

E
v⇠Dp̃

���� E
D|v

[(y⇤
� ỹ)@`v � cv(x)]

����

�
 E

v⇠Dp̃

���� max
c02@L�C

E
D|v

[(y⇤
� ỹ)c0(x)]

����

�
 ↵.

⌅634

Corollary C.13. Let {`v}v2Im(f) be a collection of loss B-nice loss functions. Let k(v) = k`v (v).635

If p̃ is ↵-calibrated then636

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v))]

����

�
 B↵. (26)

Proof. We have637

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v))]

����

�
= E

v⇠Dp̃

���� E
D|v

[(y⇤
� v)@`v(k(v))]

����

�

= E
v⇠Dp̃


|@`v(k(v))|

���� E
D|v

[y⇤
� v]

����

�

 B E
v⇠Dp̃

���� E
D|v

[y⇤
� v]

����

�

 B↵.

where we use the fact that k(v) 2 I`, and so |@`v(k(v))|  B. ⌅638

Finally, we show the following key technical lemma which explains why the `2 loss has a special639

role.640

Lemma C.14. If p̃ is ({`2}, C,↵)-swap OI, then it is ↵-calibrated.641

Proof. Observe that `2(y, v) = (y � v)2/2 so k`2(v) = v. Hence,642

u`2,0(x, v, y) = `2(y, k`(v))� `2(y, 0)

= ((y � v)2 � y
2)/2

= �vy + v
2
/2. (27)

Recall that {0, 1} ⇢ C. The implication of swap loss OI when we take cv = 0 for all v is that643

E
v⇠Dp̃

���� E
D|v

[u`2,0(x,v,y
⇤)� u`2,0(x,v, ỹ)]

����

�
 ↵.

We can simplify the LHS using Equation (27) to derive644

E
v⇠Dp̃

���� E
D|v

[(�vy⇤ + v2
/2)� (�vỹ + v2

/2)]

����

�
= E

v⇠Dp̃

���� E
D|v

[v(y⇤
� ỹ)]

����

�

= E
v⇠Dp̃


v

���� E
D|v

[ỹ � y⇤]

����

�
 ↵. (28)
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Considering the case where cv = 1 for all v gives645

u`2,1(x, v, y) = `2(y, k`(v))� `2(y, 1)

= ((y � v)2 � (1� y)2)/2

= (1� v)y + (v2 � 1)/2.

We derive the following implication of swap loss OI by taking cv = 0 for all v:646

E
v⇠Dp̃

���� E
D|v

[u`2,1(x,v,y
⇤)� u`2,1(x,v, ỹ)]

����

�
= E

v⇠Dp̃


(1� v)

���� E
D|v

[ỹ � y⇤]

����

�
 ↵ (29)

Adding the bounds from Equations (28) and (29) we get647

E
v⇠Dp̃

���� E
D|v

[v � y⇤]

����

�
= E

v⇠Dp̃

���� E
D|v

[ỹ � y⇤]

����

�
 ↵

⌅648

Proof of Theorem 4.1. We first show the forward implication, that swap multicalibration implies649

swap loss OI.650

Since `2 2 L and 1 2 C, we have @`2 � 1 = 1 2 @L � C. This implies that p̃ is ↵-mulitcalibrated,651

since652

E
v⇠Dp̃

���� E
D|v

[1(y � v)]

����

�
 E

v⇠Dp̃


max
c2C

���� E
D|v

[c(x)(y � v)]

����

�
 ↵.

Consider any collection of losses {`v}v2Im(p̃). Applying Corollary C.13, we have653

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v))]

����

�
 B↵.

On the other hand, by Corollary C.12, we have for every choice of {`v, cv}v2Im(p̃),654

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, cv(x))� `v(ỹ, cv(x))]

����

�
 ↵.

Hence for any choice of {uv}v2Im(p̃) we can bound655

E
v⇠Dp̃

���� E
D|v

[uv(x,v,y
⇤)� uv(x,v, ỹ)]

����

 E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v)]

����+
���� E
D|v

[`v(y
⇤
, cv(x))� `v(ỹ, cv(x))]

����

�

 (B + 1)↵

which shows that p̃ satisfies swap loss OI with ↵2 = (D + 1)↵1.656

Next we show the reverse implication: if p̃ satisfies (L, C,↵2)-swap loss OI, then it satisfies (@L �657

C,↵1)-swap multicalibration. The first step is to observe that by lemma C.14, since `2 2 L, the658

predictor p̃ is ↵2 calibrated. Since any ` 2 L is B-nice, we have659

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v))]

����

�
= E

v⇠Dp̃

���� E
D|v

[(y⇤
� ỹ)k(v)]

����

�
 B↵2.

For any {`v, cv}v2Im(f), since660

uv(x, v, y) = `v(y, k`(v)) + `v(y, cv(x))

we can write661

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, c(x))� `v(ỹ, c(x))]

����

�

 E
v⇠Dp̃

���� E
D|v

[uv(x,v,y
⇤)� uv(x,v, ỹ)]

����+
���� E
D|v

[`v(y
⇤
, k(v))� `v(ỹ, k(v))]

����

�

 (B + 1)↵2.
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But by Equation (25), the LHS can be written as662

E
v⇠Dp̃

���� E
D|v

[`v(y
⇤
, c(x))� `v(ỹ, c(x))]

����

�
= E

v⇠Dp̃

���� E
D|v

[@`v � cv(x)(y
⇤
� v)]

����

�

This shows that p̃ is (@L � C, (B + 1)↵2)-swap multicalibrated. ⌅663
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