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A APPENDIX

A.1 THE CHOICE OF SELF-SUPERVISED VISION TRANSFORMERS

We use the following pretrained visual transformers in our analysis.

DINO (Caron et al., 2021) is a self-supervised ViT that utilizes a self-distillation (student-teacher)
framework. Different augmented versions of the same image pass through the teacher and student
networks, and the student network is optimized to produce the same [CLS] vector as the teacher.
Teacher’s weights are then updated from the student’s weight using exponential moving average.

Masked Autoencoder (MAE) (He et al., 2022) is trained to reconstruct the original image given
partial observations. During training, a large random fraction of image patches are masked out in
the input. The encoder is applied to the visible patches only. A relatively lightweight decoder gets
encoder’s outputs as input, along with [MASK] tokens for the masked patches, and attempts to
reconstruct the original image. We use the pretrained encoder as a feature extractor for patches.

SimMIM (Xie et al., 2022) is another framework for vision transformers that uses masked image
modeling. The main difference from MAE is that SimMIM uses a simple linear decoder on top of
encoder’s outputs.

In one experiment we analyzed iBOT (Zhou et al., 2021), which is another teacher-student framework
that additionally masks some of the patches for the student network. In addition to DINO’s objective,
it has another loss term that forces the student network to produce patch representations for the
masked patches similar to ones given by the teacher on an unmasked image.

DINOv2 (Oquab et al., 2023) is a recent extension of iBOT which was trained on a much larger
dataset. The dataset is comprised of 17 million images from ImageNet-2, Mapillary SLS and Google
Landmarks v2, and additional 125 million images retrieved from a large pool of web-crawled images
with the condition of being similar to images to a pre-selected 27 publicly available datasets. The
main model has more than 1B parameters, which forced the authors to use multiple regularization
techniques to stabilize the training. They also provide the distilled versions of the main model, which
we use in our work.

Finally, we used a supervised baseline trained on ImageNet-1k with image-level labels. A linear
layer was trained on top of the [CLS] token. Throughout the paper this one will be called Supervised
ViT (Dosovitskiy et al., 2021). 1

All methods have been applied to multiple sizes of ViTs. In this work we focus only on one size that
is available for all methods: ViT-B/16 with 86 million parameters. DINOv2 is the only one that does
not have a ViT-B/16 version. Instead, we used the closest one: ViT-B/14, which is distilled from the
ViT-g/14 model. This is another distinction between DINOv2 and others: the patches are a little bit
smaller, and an image of size 224x224px has a larger number of DINOv2 patches.

The models also differ by the types of data augmentation used during pretraining. MAE used only
simple resized crops and flips. DINO additionally used color jitter and blur with some differences
between teacher and student networks. Supervised ViT uses a bunch of tricks as part of RandAug-
ment (Cubuk et al., 2020), and also uses Mixup (Zhang et al., 2018). DINOv2’s augmentations are
similar to DINO. More details are available in table 1.

We pass images through these ViTs and extract all patch embeddings from the 12-th layer. All ViTs
apply layer normalization (Ba et al., 2016) on top of these embeddings. For consistency, we also
apply layer normalization when we extract embeddings from the inner layers of ViTs.

A.2 DATA AUGMENTATIONS USED IN VITS

All ViTs we tested used data augmentation during the pre-training phase. In this section, we discuss
the differences of augmentation strategies used.

In DINO Caron et al. (2021) and DINOv2 Oquab et al. (2023) an image is cropped to two global
crops or views for teacher network and multiple local views for student network. They apply different

1We used a version from torchvision package: https://pytorch.org/vision/0.15/models/
generated/torchvision.models.vit_b_16.html.
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augmentations for different views. MAE He et al. (2022) applies cropping-only augmentations. See
the Table 1 for more details. For resized crop all models choose 224 for output size.

Supervised ViT Dosovitskiy et al. (2021) combines following techniques for data augmentation
following to Steiner et al. (2021)

• Mixup Zhang et al. (2018) with ↵ = 0.2, where ↵ = 0 means no Mixup.
• TensorFlow impementation of RandAugment Cubuk et al. (2020) with magnitude parameter
m = 15 and number of augmentation layers l = 2.

In table 1 we summarize the augmentation details.

DINO DINOv2 MAE

Resized Crop
For global views

scale = (0.4, 1.0)
For local views

scale = (0.05, 0.4)

For global views
scale = (0.32, 1.0)

For local views
scale = (0.05, 0.4) scale = (0.2, 1.0)

Gaussian Blur

For first global view
p = 1.0

For second global view
p = 0.1

For local views
p = 0.5

For first global view
p = 1.0

For second global view
p = 0.1

For local views
p = 0.5

�

Solarization For second global view
p = 0.2

For second global view
p = 0.2 �

Horizontal Flip p = 0.5 p = 0.5 p = 0.5
Gray Scale p = 0.2 p = 0.2 �
Color Jittering p = 0.8 p = 0.8 �

Table 1: Data augmentations for pretrained models

A.3 RESULTS ON MORE DATASETS

We have additionally conducted patch classification experiments on ADE20K. As seen in table 2, the
ranking of the various ViTs are similar in both k-NN and linear probing settings.

Figure 8 shows the results of the tracking experiment performed on MOT17 dataset.

A.4 STATISTICS OF THE FEW-SHOT VERSION OF FAIR1M DATASET

We created a subset of the FAIR1M training set in a way that ensures each fine-grained object category
appears in at least eight images. We cropped the original images to 224⇥ 224 px tiles and for each

CityScapes ADE20K
1-NN Linear 1-NN Linear

Supervised ViT 0.310 0.33 0.053 0.067
DINO 0.345 0.383 0.055 0.070
DINOv2 0.496 0.590 0.136 0.161
MAE 0.058 0.375 0.006 0.066
MAE200 0.295 - 0.043 0.056
SiMIM 0.075 0.156 0.006 0.032

Table 2: Patch classification results on CityScapes and ADE20K datasets.
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Figure 8: Object instance matching performance for various ViTs on the MOT17 dataset.

tile we kept the list of object categories that are present in the tile. We consider category A to be
present in a tile if at least one rotated bounded box of type A has at least 1/3 of its area inside the tile.
For each fine-grained category, we took eight images that contain an object of that category. Then we
remove those images from the cohort and proceed to the next object category. This way we collected
37 ⇥ 8 � 1 images, because there were only 7 tiles for one particular fine-grained category (bus).
Table 3 shows the number of patches of each category in our few-shot set of 295 images. Note that
DINOv2 has 256 patches per image, while all others have 196 patches per image.

A.5 RECONSTRUCTION ERROR ANALYSIS FOR MAE

To understand what information is stored in the high variance features of MAE, if removing them
does not harm patch classification or patch retrieval performance, we conduct experiments with
image reconstruction. The hypothesis suggests that the removed features play a role in certain
reconstruction properties. We use the pretrained decoder of MAE in two settings: when no patches
are masked and when 75% of the patches are masked. In table 4, one can see that when the high
variance features are filled with zeros, the reconstruction metrics get slightly worse. This indicates
that these features contain knowledge on how to reconstruct the image, but they are not essential for
most other downstream tasks. The accuracy of the reconstruction is evaluated using Mean Square
Error (MSE), Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) Wang et al.
(2004) metrics.

A.6 FREQUENCY NOISE COMPUTATION

In fig. 3 we presented some degradation analyses and results for various degradations, including
frequency-based random noise. In this section, we briefly expand on the experiments and go over
their setup.

To create frequency-based random noise, we first generated 2D Gaussian random noise with the same
dimensions as the image across all three color channels. We then applied a Fourier transform to
the noise, masked it in the frequency space, and applied an inverse Fourier transform to obtain the
frequency-based random noise. The following formula demonstrates the addition of frequency-based
random noise to the image:
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Supercategory Fine-grained category Pixels Patches Patches DINOv2
background 13305235 51970 67897

boeing737 36151 139 183

boeing777 57034 228 290

boeing747 56100 218 289

boeing787 46713 178 234

a320 0 0 0

a220 42522 159 220

airplane 576 787 269 350

a350 100574 398 506

a321 57768 228 293

c919 14654 57 74

arj21 11891 51 67

other-airplane 62174 246 312

total 554797 2171 2818

passenger ship 26988 101 134

motorboat 28031 118 142

fishing boat 30738 127 160

tugboat 10226 42 55

ship engineering ship 88900 342 443

liquid cargo ship 24148 91 122

dry cargo ship 144103 562 732

warship 28255 114 142

other-ship 15820 63 81

total 397209 1560 2011

small car 24371 98 125

bus 2451 8 13

cargo truck 22516 92 119

dump truck 8553 37 44

van 33960 131 165

car trailer 7654 32 39

tractor 2734 10 16

truck tractor 3760 17 17

excavator 10048 38 52

other-vehicle 8138 37 47

total 124185 500 637

baseball field 108367 421 556

basketball court 16005 72 82

court football field 87005 338 438

tennis court 57114 212 294

total 268491 1043 1370

roundabout 94068 360 490

road intersection 38180 144 190

bridge 19755 72 107

total 152003 576 787

Table 3: Patch statistics of the few-shot FAIR1M subset we used in our experiments.16
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Original
Reconstruction

Without high
variance features

Without low
variance features

MSN # No masking 0.163 0.199 1.173
Mask ratio = 75% 0.090 0.103 1.164

PSNR " No masking 25.666 23.349 15.350
Mask ratio = 75% 25.571 24.488 14.474

SSIM " No masking 0.78 0.722 -0.074
Mask ratio = 75% 0.786 0.737 -0.064

Table 4: Reconstruction metrics for MAE with and without replacement of 200 highest variance and
200 lowest variance features with zeros.

Figure 9: The first row shows the additive noise, the second row corresponds to the masked noise in
the frequency domain, and the last row corresponds to the image with additive frequency-based noise.

I = I0 + F�1(F(✏)�Mf ),

where I0 corresponds to the original image, ✏ corresponds to random noise with the same dimensions
as the image. Each pixel of the noise follows a Gaussian distribution with a mean of 0 and a given
variance, M represents the frequency mask shown in fig. 9, we also shifted the zero-frequency
component to the center of the spectrum and then applied an inverse shift. At last, F and F�1

correspond to the Fourier transform and inverse Fourier transform, respectively. The additive
frequency-based random noise, the corresponding mask, and the noisy images for four different
makes are demonstrated in fig. 9 for more details.
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Figure 10: iBOT’s retrieval performance is slightly better than DINO, and is much better than
DINOv2.

A.7 ADDITIONAL EXPERIMENTS ON FAIR1M

A.7.1 DINO VS. IBOT VS. DINOV2

The most unexpected result of section 5 is that DINO representations are better for retrieving
the closest patch given a corrupted patch than DINOv2 representations. DINOv2 has a series of
differences compared to DINO. These differences can be split into two categories: those related to the
loss terms and those related to the scale of the model and the dataset. The new patch-level loss term
of DINOv2 first appeared in iBOT. Here we performed the same set of experiments on iBOT as well,
to compare it with DINO and DINOv2. As seen in fig. 10, iBOT performs at least as good as DINO.
This means that the new loss term cannot be blamed for the worse retrieval performance for DINOv2.

A.7.2 MORE EXPERIMENTS FOR FAIR1M

We explore one more type of image transformation suitable for satellite images: rotation. We rotate
each 224⇥ 224 tile by 5, 10, 15 and 20 degrees counter clockwise and pass them through the ViTs
to obtain representations of the rotated patches. Then for each patch we look for the closest patch
of the original (non-rotated) images. Here the first level of evaluation, called “same-patch” is not
straightforward to define, as it is not obvious which is the corresponding patch in the original image.
We define the corresponding patch as the one which contains the center point of the rotated patch.
Obviously, several patches near the corners of the rotated tile will not have a corresponding patch.
This puts an upper bound on the same-patch retrieval accuracy. fig. 11 shows the results along with
the upper bounds. It is obvious that all models are significantly less robust with respect to even 5
degree rotation than with the highest blur radius or noise level we tried. The order of models in terms
of performance is similar to other image transformations: DINO is the best one, followed by MAE
with 200 high-variance features removed, followed by DINOv2 and Supervised ViT, and MAE is a
distant outlier.

A.8 DISCUSSION ON TILING

Since most ViTs are trained on small-sized images and their original weights are provided for
224⇥ 224 images without interpolating positional embeddings, preprocessing becomes necessary
when working with larger images. For example, in the case of the FAIR1M dataset, the images are
1000⇥ 1000, and for CityScapes the images are 1024⇥ 2018. There are several options for handling
such images, including rescaling them to a smaller size, tiling them (dividing them into smaller pieces
and conducting experiments on these tiles, then combining them to reconstruct the original image
size), or forcing the ViT to process the full-sized image by interpolating the positional embeddings.
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(a) Rotation

(b) Gaussian noise

Figure 11: Stacked area plots for each model (columns) on rotated images and on images with
Gaussian noise. In each subplot, x-axis is the level of transformation, y-axis is the percentage of
correctly matched patches in each granularity.

Input Size Linear KNN
DINO 256⇥ 256 0.383 0.345
DINO 1024⇥ 2048 0.340 0.308
MAE 256⇥ 256 0.375 0.058
MAE 1024⇥ 2048 0.176 0.02

Table 5: Patch classification performance on Cityscapes depending on tiling of the input images.

The risk of tiling the images is that smaller tiles might lose the global context of the image, which is
an important factor in transformer architecture. In all experiments in the paper we chose the tiling
method. Here we explore the effect of using full-scale images.

A.8.1 CITYSCAPES

We conduct the following two experiments. For the first experiment, we tile the images into 256⇥256
patches, resize them into 224⇥ 224, and separately compute the embeddings for corresponding ViTs
(only for DINO and MAE). For the second experiment, we compute the patch embeddings for the
full images. We check the accuracy of semantic segmentation for CityScapes dataset on a validation
set of 30 images. Surprisingly, both MAE and DINO for linear probing and k-NN achieve higher
mIoU values in the tiled setting. The results are summarized in table 5 In conclusion, despite the
expectation that the global context of the image would contain more information, the degradation of
the performance due to large input sizes is too strong.

MAE MAE200 MAE Random MAE Junk
road 0.606 0.603 0.588 0.551
building 0.698 0.711 0.678 0.509
vegetation 0.723 0.700 0.687 0.591

mean 0.6754 0.671 0.651 0.550

Table 6: R2 for MAE for different classes for global context understanding.
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Figure 12: Comparison of full image and tiled versions of MAE and DINO in the object tracking
experiment

A.8.2 TRACKING

We perform a similar experiment for the object tracking setup. Note that in this setting we pool the
representations of all patches inside a bounding box. If the object is split into multiple tiles of the
same image, the averaging will occur over patch embeddings from different tiles. In fig. 12 we see
the above phenomenon for DINO and DINOv2, tiled images perform better. For MAE we see a
surprising result, object representations pulled from embeddings of the full image perform better.

Note that all experimental results in the object tracking experiments in this paper are reported on a
subset of 4 videos from BDD-100k.

A.9 SAMPLE PREDICTIONS ON CITYSCAPES

In fig. 13, we present qualitative results of how semantic segmentation looks based on the ViTs used
in this work. We fixed two images from the Cityscapes dataset. See the first and third figures of
the first row in fig. 13 for the examples and their corresponding original masks, which can be seen
in the second and fourth figures of the first row, respectively. The second, third, and subsequent
rows of fig. 13 demonstrate the segmentation masks obtained by the corresponding ViT, where the
first and third columns correspond to the k-NN-based prediction and the second and fourth columns
correspond to the linear probing-based prediction for the corresponding instances from the Cityscapes
dataset. In these figures, we can qualitatively reconfirm our observations that MAE almost completely
fails to segment the patches correctly with k-NN. However, its performance is competitive with
linear probing. We also observe that MAE-200, which corresponds to the embeddings obtained
by MAE without the top 200 features of the largest variance, outperforms MAE for k-NN and is
almost identical to that of MAE for linear probing. As expected, DINO and DINOv2 qualitatively
outperform all the other methods.

20



Under review as a conference paper at ICLR 2024

Figure 13: Predictions of k-NN and linear probing for all models for two selected images from
Cityscapes.
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