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Appendix A The Cubic Spline Kernel

Recall that we have a linear model f : [cmin, cmax] × RK → R with the ReLU feature map
φ defined by f(x;w) := w>φ(x) over the input space [cmin, cmax] ⊂ R, where cmin < cmax.
Furthermore, φ regularly places the K generalized ReLU functions centered at (ci)

K
i=1 where

ci = cmin + i−1
K−1 (cmax − cmin) in the input space, and we consider a Gaussian prior p(w) :=

N
(
w
∣∣0, σ2K−1(cmax − cmin)I

)
over the weight w. Then, as K goes to infinity, the distribution

over the function output f(x) is a Gaussian process with mean 0 and covariance

cov(f(x), f(x′)) = σ2 cmax − cmin

K
φ(x)>φ(x′) = σ2 cmax − cmin

K

K∑
i=1

ReLU(x; ci)ReLU(x′; ci)

= σ2 cmax − cmin

K

K∑
i=1

H(x− ci)H(x′ − ci)(x− ci)(x′ − ci)

= σ2 cmax − cmin

K

K∑
i=1

H(min(x, x′)− ci)
(
c2i − ci(x+ x′) + xx′

)
, (11)

where the last equality follows from (i) the fact that both x and x′ must be greater than or equal to ci,
and (ii) by expanding the quadratic form in the second line.

Let x̄ := min(x, x′). Since (11) is a Riemann sum, in the limit of K → ∞, it is expressed by the
following integral

lim
K→∞

cov(f(x),f(x′)) = σ2

∫ cmax

cmin

H(x̄− c)
(
c2 − c(x+ x′) + xx′

)
dc

= σ2H(x̄− cmin)

∫ min{x̄,cmax}

cmin

c2 − c(x+ x′) + xx′ dc

= σ2H(x̄− cmin)

[
1

3
(z3 − c3min)− 1

2
(z2 − c2min)(x+ x′) + (z − cmin)xx′

]

where we have defined z := min{x̄, cmax}. The term H(x̄ − cmin) has been added in the second
equality as the previous expression is zero if x̄ ≤ cmin (since in this region, all the ReLU functions
evaluate to zero). Note that

H(x̄− cmin) = H(x− cmin)H(x′ − cmin)

is itself a positive definite kernel. We also note that cmax can be chosen sufficiently large so that
[−cmax, cmax]d contains the data for sure, e.g. this is anyway true for data from bounded domains like
images in [0, 1]d, and thus we can set z = x̄ = min(x, x′).

Appendix B Proofs

Lemma 1. Let 0 < δ < 1, and let σ2 > 0 be a constant. For any x,x′ ∈ RN with ‖x‖2, ‖x′‖2 ≤ δ
we have k(x,x′;σ2) ∈ O(δ3).

Proof. First, note that ‖x‖2, ‖x′‖2 ≤ δ implies xi, x′i ≤ δ for all i = 1, . . . , N . By definition of the
1D DSCS kernel

−→
k 1(xi, x

′
i;σ

2), it is upper bounded by σ2( 1
3δ

3) since x̄i = min(xi, x
′
i) ≤ δ; and

similarly for
←−
k 1(xi, x

′
i;σ

2) by the symmetry of the DSCS kernel. Thus k1(xi, x
′
i;σ

2) ∈ O(δ3) and
hence k(x,x′;σ2) also is, since it is just the average of {k1(xi, x

′
i;σ

2)}Ni=1.
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Before we begin to prove Proposition 2, we need the following lemma by Higham [35]. This lemma
is useful to show the approximation errors in (6) and (7).

Lemma 5 (Higham, 1994). Let Am = b and (A + ∆A)n = b + ∆b, and let E and d be a
matrix and vector with non-negative components, respectively. Assume that ‖∆A‖ ≤ ε‖E‖ and
‖∆b‖ ≤ ε‖d‖, and that ε‖A−1‖‖E‖ < 1, where ε > 0. Then

‖m− n‖ ≤ ε(‖A−1‖‖d‖+ ‖m‖‖A−1‖‖E‖)
1− ε‖A−1‖‖E‖

. (12)

Proposition 2 (RGPR’s GP Posterior). Let f : RN × RD → R be a ReLU BNN with weight
distribution N (θ | µ,Σ), and let D := (xm, ym)Mm=1 =: (X,y) be a dataset. Assume that
‖xm‖2, ‖x‖2 ≤ δ for all m = 1, . . . ,M and any i.i.d. test point x ∈ RN , with 0 < δ < 1. Then
given an i.i.d. input point x∗ ∈ RN , under the linearization of f w.r.t. θ around µ, the GP posterior
over f̃∗ is a Gaussian with mean and variance

E(f̃∗ | D) ≈ f(x∗;µ) + h>∗ C
−1(y − f(X;µ)), (6)

Var(f̃∗ | D) ≈ g(x∗)
>Σg(x∗) + k(x∗,x∗)− h>∗ C−1h∗, (7)

respectively, where h∗ := (Cov(f(x∗), f(x1)), . . . ,Cov(f(x∗), f(xM )))>, while C is the co-
variance matrix (Cov(f(xi), f(xj)))

M
ij , and f(X;µ) := (f(x1;µ), . . . , f(xM ;µ))>. More-

over, the approximation error in (6) is in O
(
(δ6‖C−1‖‖m‖)/(1− δ3‖C−1‖)

)
where m =

C−1(y − f(X;µ)), while the error in (7) is in O
(
(δ6(‖C−1‖+ ‖C−1‖‖m‖))/(1− δ3‖C−1‖)

)
wherem = C−1h∗.

Proof. Under the linearization of f w.r.t. θ around µ, we have

f(x;θ) ≈ f(x;µ) +∇θf(x;θ)|µ︸ ︷︷ ︸
=:g(x)

>(θ − µ).

So, the distribution over the function output f(x), where θ has been marginalized out, is given by
f(x) ∼ N (f(x;µ), g(x)>Σg(x))—see e.g. Bishop [36, Sec. 5.7.3]. The definition of RGPR in (5)
thus implies that

f̃(x) ∼ N (f(x;µ), g(x)>Σg(x) + k(x,x)),

since f̃(x) is a sum of two Normal r.v.s. Note that we can see this distribution as a marginal distri-
bution of a Gaussian process with a mean function f(·;µ) and a kernel (x,x′) 7→ g(x)>Σg(x′) +
k(x,x′). Thus, we write the following GP prior

f̃(x) ∼ GP(f(x;µ), g(x)>Σg(x′) + k(x,x′)︸ ︷︷ ︸
=:k(x,x′)

).

Our goal is to find the corresponding GP posterior under the dataset D.

Let x∗ ∈ RN be an arbitrary test point. The GP posterior at x∗, i.e. the predictive distribution of
f̃∗ := f(x∗), is thus identified by the following mean and variance (see e.g. [17]):

E(f̃∗ | D) = f(x∗;µ) + k(x∗,X)>k(X,X)−1(y − f(X;µ)) (13)

Var(f̃∗ | D) = k(x∗,x∗)− k(x∗,X)>k(X,X)−1k(x∗,X), (14)

where we have used the shorthand k(x∗,X) := (k(x∗,x1), . . . , k(x∗,xM ))> and k(X,X) is
the M × M kernel matrix of k under the training inputs X . For the latter we can also write
k(X,X) = C + k(X,X), where C is the kernel matrix of g(x)>Σg(x′) underX .

Since we assume ‖xm‖2, ‖x‖2 ≤ δ for all m = 1, . . . ,M and any i.i.d. test point x ∈ RN , we have
k(x,xm) ≈ 0. Thus, we have k(X,X) ≈ C and

k(x∗,X) ≈ (g(x∗)
>Σg(x1), . . . , g(x∗)

>Σg(xM ))>

= (Cov(f(x∗), f(x1)), . . . ,Cov(f(x∗), f(x1)))> = h∗,
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where the covariances above are of the network’s outputs under the linearization. And so the mean
and the variance of the GP posterior simplify to

E(f̃∗ | D) ≈ f(x∗;µ) + h>∗ C
−1(y − f(X;µ))

and

Var(f̃∗ | D) ≈ g(x∗)
>Σg(x∗) + k(x∗,x∗)− h>∗ C−1h∗.

The only thing that remains is to obtain the approximation errors of both the mean and variance above.
Using Lemma 5, we find the error of (C + k(X,X))−1(y − f(X;µ)) in (13) due to RGPR, i.e.
we quantify the error caused by δ presents in k(X,X). We setA = C, ∆A = k(X,X), and b =
y−f(X;µ). Moreover, we setm = C−1(y−f(X;µ)) andn = (C+k(X,X))−1(y−f(X;µ)).
For simplicity, we let E := 11> and set ε = δ3c for some constant c s.t. the conditions in Lemma 5
are satisfied. Note that the δ3 term in ε is so that the condition ‖∆A‖ ≤ ε‖E‖ is satisfied, since one
can write ‖∆A‖ = c0‖E‖ where c0 ∈ O(δ3). Moreover, we set d = 0 since ∆b = 0. Plugging
these into (12), we thus have

‖m− n‖ ∈ O
(
δ3‖A−1‖‖m‖
1− δ3‖A−1‖

)
.

Combining this with the O(δ3) error in the approximation k(x∗,X) ≈ h∗, we conclude that using
(6) as an approximation of (13) incurs an error of

O

(
δ6‖A−1‖‖m‖
1− δ3‖A−1‖

)
,

which is small since δ ∈ (0, 1).

For the approximation error of the variance, we use A, ∆A, E, and ε as before. But, here we
set b = h∗, ∆b = k(x∗,X), and d = 1. Moreover, we set m = C−1h∗ and n = (C +
k(X,X))−1(h∗ + k(x∗,X)). Then, plugging them into Lemma 5, we obtain

‖m− n‖ ∈ O
(
δ3(‖A−1‖+ ‖A−1‖‖m‖)

1− δ3‖A−1‖

)
.

Combining this with the approximation error in k(x∗,X) ≈ h∗ as before, we obtain the desired
result.

To prove Lemma 3 and Theorem 4, we need the following definition. Let f : RN × RD → RC
defined by (x,θ) 7→ f(x;θ) be a feed-forward neural network which uses piecewise-affine activation
functions (such as ReLU and leaky-ReLU) and are linear in the output layer. Such a network is called
a ReLU network and can be written as a continuous piecewise-affine function [37]. That is, there
exists a finite set of polytopes {Qi}Pi=1—referred to as linear regions f—such that ∪Pi=1Qi = RN
and f |Qi

is an affine function for each i = 1, . . . , P [3]. The following lemma is central in our proofs
below (the proof is in Lemma 3.1 of Hein et al. [3]).

Lemma 6 (Hein et al., 2019). Let {Qi}Pi=1 be the set of linear regions associated to the ReLU
network f : RN × RD → RC , For any x ∈ RN with x 6= 0 there exists a positive real number β
and j ∈ {1, . . . , P} such that αx ∈ Qj for all α ≥ β.

Lemma 3 (Asymptotic Variance Growth). Let f : RN×RD → RC be a pre-trained ReLU network
with posterior N (θ | µ,Σ) and f̃ be obtained from f via RGPR. Suppose that the linearization of f
w.r.t. θ around µ is employed. For any x∗ ∈ RN with x∗ 6= 0 there exists β > 0 such that for any
α ≥ β and each c = 1, . . . , C, the variance Var(f̃ (c)(αx∗)) under (9) is in Θ(α3).

Proof. Let x∗ ∈ RN with x∗ 6= 0 be arbitrary. By Lemma 6 and definition of ReLU network, there
exists a linear region R and real number β > 0 such that for any α ≥ β, the restriction of f to R can
be written as

f |R(αx;θ) = W (αx) + b,
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for some matrixW ∈ RC×N and vector b ∈ RC , which are functions of the parameter θ, evaluated
at µ. In particular, for each c = 1, . . . , C, the c-th output component of f |R can be written as

fc|R = w>c (αx) + bc,

where wc and bc are the c-th row ofW and b, respectively.

Let c ∈ {1, . . . , C} and let jc(αx∗) be the c-th column of the Jacobian J(αx∗) as defined in (1).
Then by definition of p(f̃∗ | x∗,D), the variance of f̃c|R(αx∗)—the c-th diagonal entry of the
covariance of p(f̃∗ | x∗,D)—is given by

var(f̃c|R(αx∗)) = jc(αx∗)
>Σjc(αx∗) + k(αx∗, αx∗).

Now, from the definition of the DSCS kernel in (4), we have

k(αx∗, αx∗) =
1

N

N∑
i=1

k1(αx∗i, αx∗i) =
1

N

N∑
i=1

α3σ
2

3
x3
∗i =

α3

N

N∑
i=1

k1(x∗i, x∗i) ∈ Θ(α3).

Furthermore, we have

jc(αx∗)
>Σjc(αx∗) =

(
α(∇θwc|µ)>x+∇θbc|µ

)>
Σ
(
α(∇θwc|µ)>x+∇θbc|µ

)
.

Thus, jc(αx∗)>Σjc(αx∗) is a quadratic function of α. Therefore, var(f̃c|R(αx∗)) is in Θ(α3).

Theorem 4 (Uniform Asymptotic Confidence). Let f : RN × RD → RC be a C-class pre-
trained ReLU network equipped with the posterior N (θ | µ,Σ) and let f̃ be obtained from f via
RGPR. Suppose that the linearization of f and the generalized probit approximation (2) is used for
approximating the predictive distribution p(y∗ = c | αx∗, f̃ ,D) under f̃ . For any input x∗ ∈ RN

with x∗ 6= 0 and for every class c = 1, . . . , C, we have limα→∞ p(y∗ = c | αx∗, f̃ ,D) = 1/C.

Proof. Let x∗ 6= 0 ∈ RN be arbitrary. By Lemma 6 and definition of ReLU network, there exists
a linear region R and real number β > 0 such that for any α ≥ β, the restriction of f to R can be
written as

f |R(αx) = W (αx) + b,

where the matrixW ∈ RC×N and vector b ∈ RC are functions of the parameter θ, evaluated at µ.
Furthermore, for i = 1, . . . , C we denote the i-th row and the i-th component ofW and b as wi and
bi, respectively. Under the linearization of f , the marginal distribution (9) over the output f̃(αx)
holds. Hence, under the generalized probit approximation, the predictive distribution restricted to R
is given by

p̃(y∗ = c | αx∗,D) ≈ exp(mc(αx∗)κc(αx∗))∑C
i=1 exp(mi(αx∗)κi(αx∗))

=
1

1 +
∑C
i 6=c exp(mi(αx∗)κi(αx∗)−mc(αx∗)κc(αx∗)︸ ︷︷ ︸

=:zic(αx∗)

)
,

where for all i = 1, . . . , C,

mi(αx∗) = fi|R(αx;µ) = w>i (αx) + bi ∈ R,
and

κi(αx) = (1 + π/8 (vii(αx∗) + k(αx∗, αx∗)))
− 1

2 ∈ R>0.

In particular, for all i = 1, . . . , C, note that m(αx∗)i ∈ Θ(α) and κ(αx)i ∈ Θ(1/α
3
2 ) since

vii(αx∗) + k(αx∗, αx∗) is in Θ(α3) by Lemma 3. Now, notice that for any c = 1, . . . , C and any
i ∈ {1, . . . , C} \ {c}, we have

zic(αx∗) = (mi(αx∗)κi(αx∗))− (mc(αx∗)κc(αx∗))

= (κi(αx∗)wi︸ ︷︷ ︸
Θ
(

1/α
3
2

) −κc(αx∗)wc︸ ︷︷ ︸
Θ
(

1/α
3
2

) )>(αx∗) + κi(αx∗) bi︸ ︷︷ ︸
Θ
(

1/α
3
2

) −κc(αx∗) bc︸ ︷︷ ︸
Θ
(

1/α
3
2

) .
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Thus, it is easy to see that limα→∞ zic(αx∗) = 0. Hence we have

lim
α→∞

p̃(y∗ = c | αx∗,D) = lim
α→∞

1

1 +
∑C
i 6=c exp(zic(αx∗))

=
1

1 +
∑C
i 6=c exp(0)

=
1

C
,

as required.

Appendix C Modeling Residuals with GPs

The method of Blight and Ott [5], henceforth called BNO, models the residual of polynomial
regressions. That is, suppose φ : R → RD is a polynomial basis function defined by φ(x) :=
(1, x, x2, . . . , xD−1), k is an arbitrary kernel, and w ∈ RD is a weight vector, BNO assumes

f̃(x) := w>φ(x) + f̂(x), where f̂ ∼ GP(0, k).

Recently, this method has been extended to neural networks. Qiu et al. [7] apply the same idea—
modeling residuals with GPs—to pre-trained networks, resulting in a method called RIO. Suppose
that fµ : RN → R is a neural-network with a pre-trained, point-estimated parameters µ. Their
method is defined by

f̃(x) := fµ(x) + f̂(x), where f̂ ∼ GP(0, kIO).

The kernel kIO is a sum of RBF kernels applied on the datasetD (inputs) and the network’s predictions
over D (outputs), hence the name IO—input-output. As in the original Blight and Ott’s method, RIO
also focuses on modeling predictive residuals and requires GP posterior inference. Suppose that
m(x) and v(x) is the a posteriori marginal mean and variance of the GP, respectively. Then, via
standard computations, one can see that even though f is a point-estimated network, f̃ is a random
function, distributed a posteriori by

f̃(x) ∼ N
(
f̃µ(x) +m(x), v(x)

)
.

Thus, BNO and RIO effectively add uncertainty to point-estimated networks. But, there is no
guarantee that they preserve the original predictive performance of f since m is in general non-
vanishing.

The posterior inference of BNO and RIO can be computationally intensive, depending on the number
of training examples M : The cost of exact posterior inference is in Θ(M3). While it can be alleviated
by approximate inference, such as via inducing point methods and stochastic optimizations, the
posterior inference requirement can still be a hindrance for the practical adoption of BNO and RIO,
especially on large problems.

Appendix D Additional Experiments

D.1 Asymptotic Regime

As a gold standard GP baseline, we compare against the method of Qiu et al. [7] (with our DSCS
kernel). We refer to this baseline simply as GP-DSCS. The base methods, which RGPR is imple-
mented on, are the following recently-proposed BNNs: (i) Kronecker-factored Laplace [KFL, 25], (ii)
stochastic weight averaging-Gaussian [SWAG, 26], and (iii) stochastic variational deep kernel learn-
ing [SVDKL, 27]. All the kernel hyperparameters for RGPR are set to a constant value of 1× 10−10

since we focus on the asymptotic regime. In all cases, MC-integral with 10 posterior samples is used
for making predictions. We construct a test dataset artificially by sampling 2000 uniform noises in
[0, 1]N and scale them with a scalar α = 2000. The goal is to achieve low confidence over these
far-away points.

The results are presented in Table 2. We observe that the RGPR-augmented methods are significantly
better than their respective base methods. In particular, their confidence estimates are significantly
lower than those of the vanilla methods, becoming closer to the confidence of the gold-standard
GP-DSCS baseline. This indicates that RGPR makes BNNs better calibrated in the asymptotic
regime.
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Table 2: RGPRs compared to their respective base methods on the detection of far-away outliers.
Values are average confidences. Error bars are standard errors over three prediction runs. For each
dataset, the best value over each vanilla and RGPR-imbued method (e.g. KFL against KFL-RGPR)
are in bold.

Methods CIFAR10 SVHN

GP-DSCS 22.0±0.2 22.1±0.3

KFL 64.5±0.7 63.4±1.5
KFL-RGPR 29.9±0.3 27.5±0.0

SWAG 63.5±1.8 50.2±4.2
SWAG-RGPR 29.3±0.2 27.5±0.0

SVDKL 46.4±0.3 49.1±0.2
SVDKL-RGPR 22.0±0.1 22.1±0.1

Table 3: CIFAR10-C results. Values are mean over all corruptions.

NLL ECE Brier Confidence Accuracy

MAP 1.066 0.226 0.402 0.887 0.739
Temp. 0.914 0.147 0.378 0.842 0.739
DE 0.909 0.110 0.354 0.840 0.752
GP-DSCS 1.096 0.232 0.413 0.888 0.734
LLL 0.872 0.080 0.363 0.800 0.739
LLL-RGPR-LL 0.870 0.079 0.363 0.796 0.738
LLL-RGPR-OOD 0.869 0.095 0.363 0.717 0.738

D.2 Training Details

For LeNet, we use Adam optimizer with an initial learning rate 1× 10−3 while for ResNet, we use
SGD with an initial learning rate of 0.1 and momentum 0.9. In both cases, the optimization is carried
out for 100 epochs using weight decay 5× 10−4 on a single GPU. We also reduce the learning rate
by a factor of 10 at epochs 50, 75, and 90. Test accuracies are in Table 6.

D.3 Non-Asymptotic Regime

D.3.1 Dataset shift

In Table 3 we present the non-normalized numerical results to complement Fig. 6. RGPR in general
improves the vanilla LLL.

D.3.2 OOD detection

We expand Table 1 in Table 7. In the same table, we additionally show the mean confidence values
[38, MMC,]. For CIFAR10, SVHN, and CIFAR100, we test each model against FMNIST (called
FMNIST3D) to measure the performance on grayscale OOD images. Finally, we also show the OOD
detection performance via additional AUROC and area under precision-recall curve (AUPRC) metrics
in Table 8.

Additionally, we compare RGPR with recent non-Bayesian baselines: (i) the Mahalanobis detector
[32] and (ii) deterministic uncertainty quantification (DUQ) [33]. Values are taken directly from
the original papers—they used the same architecture as in this paper. Table 4 shows that a RGPR-
equipped BNN is better than the Mahalanobis detector. Moreover, LLL-RGPR-OOD is competitive
to DUQ, but without the drawback of reducing test accuracy.
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Table 4: RGPR against recent non-Bayesian baselines. The OOD detection metric is AUROC.

CIFAR10 vs. LSUN CIFAR10 vs. SVHN

Mahalanobis 89.2 91.5
LLL-RGPR-OOD 92.6 95.8

Test Acc. CIFAR10 vs. SVHN

DUQ (λ = 0) 94.2 86.1
DUQ (λ = 0.5) 93.2 92.7
LLL-RGPR-OOD 94.3 92.6

Table 5: Expected calibration errors (ECE).

MNIST CIFAR10 SVHN CIFAR100

MAP 6.7 13.1 10.1 8.1
Temp. Scaling 11.4 3.6 2.1 6.4

ACET 5.9 15.8 11.9 10.1
OE 14.7 15.8 11.0 25.0

D.3.3 Hyperparameter tuning

We present the optimal hyperparameters (σ2
l )L−1
l=0 in Table 9. We observe that using higher represen-

tations of the data is beneficial, as indicated by non-trivial hyperparameter values on all layers across
all networks and datasets.

D.3.4 Natural images for tuning

We present OOD detection results via different Dour for tuning σ2, in Table 10. Specifically, we
use the ImageNet32×32 dataset [34], which represents natural image datasets, and is thus more
sophisticated than the noise dataset used in the main text. Nevertheless, we observe that the OOD
detection performance is comparable to that of the noise dataset, justifying the choice of Dout we
have made in the main text.

D.3.5 Calibration is at odds with OOD detection

As noted in the main text, we observe that employing OOD data for tuning σ2 degrades the in-
distribution calibration (as measured by the ECE metric) of RGPR. In Table 5 (taken from Table 5 of
Kristiadi et al. [2]), we can see that even recent OOD training methods with many more parameters
than RGPR such as ACET [3] and OE [18] degrade the in-distribution ECE. However, note that
ACET and OE represent state-of-the-art OOD detectors. Hence, it is reasonable to conclude that this
issue does not seem to be inherent to RGPR.

D.4 Regression

To empirically validate our method and analysis (esp. Lemma 3), we present a toy regression results
in Fig. 7. RGPR improves the BNN further: Far away from the data, the error bar becomes wider. For
more challenging problems, we employ a subset of the standard UCI regression datasets. Our goal
here, similar to the classification case, is to compare the uncertainty behavior of RGPR-augmented
BNN baselines near the training data (inliers) and far away from them (outliers). The outlier dataset
is constructed by sampling 1000 points from the standard Gaussian and scale them with α = 2000.
The metric used is the predictive error bar (standard deviation), i.e. the same metric visually used in
Fig. 7. Following the standard practice (see e.g. Sun et al. [39]), we use a two-layer ReLU network
with 50 hidden units. The Bayesian methods used are LLL, KFL, SWAG, and stochastic variational
GP [SVGP, 16] using 50 inducing points. Finally, we standardize the data and the hyperparameter for
RGPR is set to 0.001 so that Proposition 2 is satisfied. The results are presented in Table 11. We can
observe that RGPR retain high confidence estimates over inlier data and yield much larger error bars
compared to the base methods.
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Table 6: OOD data detection in terms of FPR@95. All values are in percent and averages over five
OOD test sets and over 5 prediction runs.

Methods MNIST CIFAR10 SVHN CIFAR100

Acc. ↑
MAP 99.4 94.3 97.1 76.7
Temp. Scaling 99.4 94.3 97.1 76.7
Deep Ens. 99.6 95.3 97.4 79.5
GP-DSCS 99.3 93.9 97.0 76.6
LLL 99.4 94.3 97.0 76.7

LLL-RGPR-LL 99.2 94.4 97.0 76.7
LLL-RGPR-OOD 99.1 94.3 96.9 76.6

ECE ↓
MAP 5.4 13.9 13.3 6.4
Temp. Scaling 9.9 6.7 7.5 4.7
Deep Ens. 12.5 2.8 1.3 1.9
GP-DSCS 4.5 14.4 13.6 8.2
LLL 14.0 2.8 12.9 4.7

LLL-RGPR-LL 15.8 3.6 13.1 5.7
LLL-RGPR-OOD 19.6 12.5 15.9 15.8

Table 7: OOD data detection results in terms of MMC and FPR@95 metrics. All values are averages
and standard errors over 10 prediction trials.

MAP Temp. Scaling Deep Ens. GP-DSCS LLL LLL-RGPR-LL LLL-RGPR-OOD

Datasets MMC ↓ FPR ↓ MMC ↓ FPR ↓ MMC ↓ FPR ↓ MMC ↓ FPR ↓ MMC ↓ FPR ↓ MMC ↓ FPR ↓ MMC ↓ FPR ↓
MNIST 99.2 - 99.5±0.0 - 99.1 - 99.2±0.0 - 97.4±0.0 - 97.0±0.0 - 96.1±0.0 -
EMNIST 78.1 24.5 83.4±0.0 24.9±0.0 74.1 21.4 77.6±0.0 24.7±0.0 62.7±0.0 23.3±0.1 55.7±0.0 21.9±0.1 49.4±0.0 21.7±0.1
KMNIST 73.1 14.3 79.3±0.0 14.1±0.0 63.1 5.6 72.2±0.0 13.2±0.0 52.7±0.0 6.3±0.0 17.1±0.0 0.4±0.0 15.6±0.0 0.0±0.0
FMNIST 79.8 26.8 85.0±0.0 27.3±0.0 71.7 11.3 79.1±0.0 25.5±0.1 64.6±0.0 19.1±0.2 18.1±0.0 1.3±0.0 15.5±0.0 0.0±0.0
GrayCIFAR10 85.7 3.6 93.4±0.0 4.3±0.0 72.7 0.0 85.2±0.0 3.5±0.0 61.1±0.0 0.5±0.0 15.1±0.0 0.0±0.0 15.1±0.0 0.0±0.0
UniformNoise 100.0 100.0 100.0±0.0 100.0±0.0 99.9 100.0 100.0±0.0 100.0±0.0 95.7±0.0 99.7±0.0 15.1±0.0 0.0±0.0 15.1±0.0 0.0±0.0

CIFAR10 97.0 - 95.0±0.0 - 95.6 - 96.9±0.0 - 93.4±0.0 - 93.1±0.0 - 85.9±0.0 -
SVHN 62.5 29.3 53.7±0.0 25.6±0.0 59.7 37.0 69.0±0.0 40.0±0.1 47.0±0.0 24.8±0.1 46.7±0.0 25.1±0.1 40.6±0.0 23.3±0.2
LSUN 74.5 52.7 65.9±0.0 48.7±0.0 65.6 50.3 76.6±0.0 55.1±0.3 58.5±0.1 44.1±0.7 57.4±0.1 42.9±0.6 48.5±0.1 40.0±0.5
CIFAR100 79.4 61.5 72.4±0.0 59.4±0.0 70.7 58.0 80.0±0.0 62.5±0.1 66.0±0.0 58.2±0.2 65.3±0.0 58.2±0.2 55.6±0.0 54.7±0.2
FMNIST3D 71.4 45.3 62.8±0.0 41.0±0.0 63.0 44.1 72.6±0.0 47.9±0.2 53.4±0.0 34.7±0.2 52.6±0.0 34.5±0.2 36.6±0.0 16.4±0.3
UniformNoise 64.7 26.2 54.7±0.1 19.5±0.3 73.9 86.0 75.8±0.1 55.3±0.4 39.1±0.1 2.8±0.1 37.9±0.1 2.2±0.2 32.0±0.1 1.7±0.3

SVHN 98.5 - 97.6±0.0 - 97.8 - 98.5±0.0 - 92.4±0.0 - 92.2±0.0 - 88.0±0.0 -
CIFAR10 70.4 18.3 64.7±0.0 18.0±0.0 57.2 11.9 70.9±0.0 19.8±0.0 41.7±0.0 15.0±0.1 41.2±0.0 14.9±0.1 34.9±0.0 14.7±0.1
LSUN 71.7 18.7 66.0±0.0 19.0±0.0 56.0 10.0 72.2±0.0 20.1±0.2 42.9±0.1 16.2±0.5 42.0±0.1 15.5±0.2 32.3±0.1 11.9±0.3
CIFAR100 71.3 20.4 65.7±0.0 20.1±0.0 57.6 12.6 71.8±0.0 22.2±0.0 43.2±0.0 17.7±0.1 42.5±0.0 17.5±0.1 35.2±0.0 16.0±0.1
FMNIST3D 72.5 21.9 66.9±0.0 21.7±0.0 61.9 20.0 72.8±0.0 22.9±0.0 45.3±0.0 21.5±0.1 38.9±0.0 12.6±0.1 16.8±0.0 0.0±0.0
UniformNoise 68.9 14.0 62.7±0.1 13.6±0.2 48.1 3.8 68.8±0.1 14.9±0.2 41.0±0.1 12.5±0.5 39.5±0.1 11.4±0.4 27.3±0.1 4.1±0.2

CIFAR100 81.3 - 78.9±0.0 - 80.2 - 82.2±0.0 - 74.4±0.0 - 73.4±0.0 - 62.8±0.0 -
SVHN 53.5 78.9 49.1±0.0 78.3±0.0 44.7 65.5 46.8±0.0 68.2±0.0 42.6±0.0 77.4±0.2 42.0±0.0 78.2±0.3 34.9±0.0 79.7±0.2
LSUN 50.7 74.7 46.6±0.0 75.0±0.0 47.1 76.0 53.6±0.0 76.8±0.1 39.6±0.1 73.5±0.5 38.0±0.1 73.7±0.3 30.3±0.0 75.7±0.6
CIFAR10 53.3 78.3 49.3±0.0 78.0±0.0 51.3 76.9 56.0±0.0 78.8±0.0 44.1±0.0 77.9±0.2 43.0±0.0 78.3±0.3 34.9±0.0 79.1±0.2
FMNIST3D 38.9 60.8 34.8±0.0 60.0±0.0 38.1 59.6 44.3±0.0 65.5±0.1 30.0±0.0 58.6±0.2 29.0±0.0 58.6±0.3 16.8±0.0 38.7±0.3
UniformNoise 29.4 55.8 25.7±0.1 55.5±0.4 45.1 94.9 31.6±0.1 49.9±0.1 22.0±0.1 47.0±0.4 17.1±0.1 24.0±0.8 14.3±0.0 29.6±0.5
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Figure 7: Toy regression with a BNN and additionally, our RGPR. Shades represent ±1 std. dev.
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Table 8: OOD data detection results in terms of AUROC and AUPRC metrics. All values are averages
and standard errors over 10 prediction trials.

MAP Temp. Scaling Deep Ens. GP-DSCS LLL LLL-RGPR-LL LLL-RGPR-OOD

Datasets AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓ AUROC ↓ AUPRC ↓
MNIST - - - - - - - - - - - - - -
EMNIST 95.0 89.6 94.9±0.0 89.5±0.0 95.7 91.2 94.8±0.0 89.0±0.0 94.2±0.0 86.8±0.0 94.5±0.0 87.6±0.0 94.5±0.0 87.8±0.0
KMNIST 96.0 93.0 96.1±0.0 93.5±0.0 98.3 97.6 96.4±0.0 93.7±0.0 98.4±0.0 98.3±0.0 99.8±0.0 99.8±0.0 99.8±0.0 99.8±0.0
FMNIST 92.2 85.8 92.2±0.0 86.2±0.0 96.6 94.0 92.7±0.0 86.5±0.0 96.8±0.0 96.9±0.0 99.7±0.0 99.7±0.0 99.8±0.0 99.8±0.0
GrayCIFAR10 98.0 98.5 97.8±0.0 98.4±0.0 99.0 99.4 98.0±0.0 98.6±0.0 98.5±0.0 99.0±0.0 99.9±0.0 100.0±0.0 99.8±0.0 99.9±0.0
UniformNoise 0.1 59.8 0.4±0.0 60.1±0.0 42.6 76.5 0.1±0.0 59.8±0.0 84.6±0.1 96.3±0.0 99.9±0.0 100.0±0.0 99.8±0.0 100.0±0.0

CIFAR10 - - - - - - - - - - - - - -
SVHN 95.7 91.0 96.1±0.0 91.2±0.0 95.2 92.0 93.6±0.0 85.6±0.0 96.3±0.0 92.1±0.0 96.2±0.0 91.9±0.0 95.8±0.0 90.2±0.0
LSUN 91.8 99.6 92.2±0.0 99.6±0.0 92.8 99.7 90.7±0.0 99.6±0.0 92.7±0.0 99.7±0.0 92.8±0.0 99.7±0.0 92.6±0.0 99.7±0.0
CIFAR100 87.3 83.7 87.4±0.0 83.4±0.0 90.1 89.5 86.3±0.0 82.4±0.0 88.0±0.0 84.7±0.0 87.9±0.0 84.5±0.0 87.0±0.0 82.9±0.0
FMNIST3D 92.9 92.2 93.3±0.0 92.5±0.0 94.0 94.5 92.3±0.0 91.6±0.0 94.7±0.0 94.5±0.0 94.7±0.0 94.5±0.0 97.4±0.0 97.5±0.0
UniformNoise 96.7 99.2 97.1±0.0 99.3±0.0 92.8 98.4 94.2±0.0 98.7±0.0 98.8±0.0 99.7±0.0 98.9±0.0 99.7±0.0 98.9±0.0 99.8±0.0

SVHN - - - - - - - - - - - - - -
CIFAR10 95.4 97.0 95.4±0.0 96.9±0.0 97.5 98.9 95.0±0.0 96.7±0.0 97.3±0.0 98.9±0.0 97.3±0.0 98.9±0.0 97.4±0.0 99.0±0.0
LSUN 95.6 99.9 95.6±0.0 99.9±0.0 98.0 100.0 95.1±0.0 99.9±0.0 97.4±0.0 100.0±0.0 97.4±0.0 100.0±0.0 98.0±0.0 100.0±0.0
CIFAR100 94.5 96.4 94.5±0.0 96.4±0.0 97.3 98.7 94.1±0.0 96.1±0.0 96.8±0.0 98.7±0.0 96.9±0.0 98.7±0.0 97.1±0.0 98.8±0.0
FMNIST3D 94.2 96.4 94.2±0.0 96.4±0.0 96.5 98.5 94.1±0.0 96.4±0.0 96.0±0.0 98.2±0.0 97.8±0.0 99.2±0.0 99.9±0.0 100.0±0.0
UniformNoise 96.8 99.7 96.9±0.1 99.7±0.0 98.9 99.9 96.7±0.1 99.7±0.0 97.7±0.0 99.8±0.0 97.9±0.0 99.8±0.0 98.8±0.0 99.9±0.0

CIFAR100 - - - - - - - - - - - - - -
SVHN 78.8 63.7 79.3±0.0 64.2±0.0 84.6 73.2 84.4±0.0 73.3±0.0 80.3±0.0 66.6±0.0 79.9±0.0 65.7±0.0 78.0±0.0 58.7±0.0
LSUN 81.1 99.1 81.2±0.0 99.1±0.0 83.2 99.2 80.3±0.0 99.1±0.0 82.5±0.1 99.2±0.0 82.9±0.1 99.2±0.0 82.3±0.0 99.2±0.0
CIFAR10 78.7 77.8 78.9±0.0 77.9±0.0 80.1 79.6 78.1±0.0 77.2±0.0 78.9±0.0 77.6±0.0 78.9±0.0 77.7±0.0 77.9±0.0 75.6±0.0
FMNIST3D 87.4 86.9 87.8±0.0 87.3±0.0 89.0 89.5 85.7±0.0 85.4±0.0 88.5±0.0 88.1±0.0 88.6±0.0 88.2±0.0 93.3±0.0 93.1±0.0
UniformNoise 93.4 98.5 93.5±0.0 98.5±0.0 86.4 96.9 93.3±0.0 98.5±0.0 94.2±0.0 98.7±0.0 96.3±0.0 99.2±0.0 95.8±0.0 99.1±0.0

Table 9: Optimal hyperparameter for each layer (or residual block for ResNet ) on LLL.

Datasets Input Layer 1 Layer 2 Layer 3 Layer 4

LLL
MNIST 3.3939e-08 5.4485e-07 1.1377e-07 2.3509e-03 -
SVHN 9.3995e-04 1.3767e-04 1.1347e-04 2.2835e-04 3.9480e-05
CIFAR10 0.0036 0.0005 0.0008 0.0018 0.0028
CIFAR100 0.0094 0.0093 0.0019 0.0049 0.0144

LOOD (Synthetic)
MNIST 1.7384e-05 1.6409e-06 1.3555e-07 2.5206e-03 -
SVHN 8.2850e+00 6.2021e-03 9.1418e-03 4.7633e-03 1.3424e-02
CIFAR10 4.6957e+01 8.4602e-04 1.3050e-03 5.9322e-03 1.9222e-03
CIFAR100 2.6372e+01 2.8527e-03 8.7588e-04 4.5595e-03 2.5490e-01

LOOD (32x32 ImageNet)
MNIST 3.5457e-08 5.9255e-07 1.1685e-07 2.4544e-03 -
SVHN 1.1849e-03 1.3038e-01 3.5909e-04 3.8309e-04 8.2367e-05
CIFAR10 0.0236 0.9079 0.0030 0.0049 0.0053
CIFAR100 0.0152 0.9533 0.0051 0.0094 0.2049

Table 10: UQ performance with ImageNet32x32 as Dout.

Methods MNIST CIFAR10 SVHN CIFAR100

ECE ↓
LLL-RGPR-LL 15.8 3.6 13.1 5.7
LLL-RGPR-OOD 19.6 12.5 15.9 15.8
LLL-RGPR-OOD ImageNet 15.8 20.3 18.8 19.3

FPR@95 ↓
LLL-RGPR-LL 3.9 29.6 13.8 65.8
LLL-RGPR-OOD 3.6 24.2 9.6 63.0
LLL-RGPR-OOD ImageNet 3.9 39.5 7.3 61.0
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Table 11: Regression far-away outlier detection. Values correspond to predictive error bars (averaged
over ten prediction trials), similar to what shades represent in Fig. 2. “In” and “Out” correspond to
inliers and outliers, respectively.

housing concrete energy wine

Methods In ↓ Out ↑ In ↓ Out ↑ In ↓ Out ↑ In ↓ Out ↑
LLL 0.405 823.215 0.324 580.616 0.252 319.890 0.126 24.176
LLL-RGPR 0.407 2504.325 0.329 3394.466 0.253 2138.909 0.129 1948.813

KFL 1.171 2996.606 1.281 2518.338 0.651 1486.748 0.291 475.141
KFL-RGPR 1.165 3909.140 1.264 4258.177 0.656 2681.780 0.292 2031.481

SWAG 0.181 440.085 1.192 2770.455 0.418 1066.044 0.181 77.357
SWAG-RGPR 0.186 2403.366 1.146 4693.273 0.428 2647.922 0.187 1947.677

SVGP 0.641 2.547 0.845 3.100 0.367 2.237 0.092 0.983
SVGP-RGPR 0.641 1973.506 0.845 1932.061 0.367 1931.299 0.095 1956.027
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