
A graphon-signal analysis of graph neural networks349

Supplementary material350

Note to reviewers on modified constants: when finalizing the writing of the proofs in the supple-351

mentary material, we realized that we can improve the constant in the regularity lemma from 9/4 to352

2. Hence, there is a difference in this constant between the appendix and the main paper. We also353

corrected the constant in the sampling lemmas. We will make the minor modification of changing the354

constants in the main paper in the revised paper.355

A356

B Basic definitions and properties of graphon-signals357

In this appendix, we give basic properties of graphon-signals, cut norm, and cut distance.358

B.1 Lebesgue spaces and signal spaces359

For 1 ≤ p < ∞, the space Lp[0, 1] is the space of (equivalence classes up to null-set) of measurable360

functions f : [0, 1] → R, with finite L1 norm361

∥f∥p =

(∫ 1

0

|f(x)|pdx
)1/p

< ∞.

The space L∞[0, 1] is the space of (equivalence classes) of measurable functions with finite L∞ norm362

∥f∥∞ = ess sup
x∈[0,1]

|f(x)| = inf{a ≥ 0 | |f(x)| ≤ a for almost every x ∈ [0, 1]}.

B.2 Properties of cut norm363

Every f ∈ L∞
r [0, 1] can be written as f = f+ − f−, where364

f+(x) =

{
f(x) f(x) > 0
0 f(x) ≤ 0.

and f− is defined similarly. It is easy to see that the supremum in (3) is attained for S which is either365

the support of f+ or f−, and366

∥f∥□ = max{∥f+∥1, ∥f−∥1}.
As a result, the signal cut norm is equivalent to the L1 norm367

1

2
∥f∥1 ≤ ∥f∥□ ≤ ∥f∥1. (11)

Moreover, for every r > 0 and measurable function W : [0, 1]2 → [−r, r],368

0 ≤ ∥W∥□ ≤ ∥W∥1 ≤ ∥W∥2 ≤ ∥W∥∞ ≤ r.

The following lemma is from [23, Lemma 8.10].369

Lemma B.1. For every measurable W : [0, 1] → R, the supremum370

sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

W (x, y)dxdy

∣∣∣∣
is attained for some S, T .371
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B.3 Properties of cut distance and measure preserving bijections372

Recall that we denote the standard Lebesgue measure of [0, 1] by µ. Let S[0,1] be the space of373

measurable bijections [0, 1] → [0, 1] with measurable inverse, that are measure preserving, namely,374

for every measurable A ⊂ [0, 1], µ(A) = µ(ϕ(A)). Recall that S′
[0,1] is the space of measurable375

bijections between co-null sets of [0, 1].376

For ϕ ∈ S[0,1] or ϕ ∈ S′
[0,1], we define Wϕ(x, y) := W (ϕ(x), ϕ(y)). In case ϕ ∈ S′

[0,1], W
ϕ is only377

define up to a null-set, and we arbitrarily set W to 0 in this null-set. This does not affect our analysis,378

as the cut norm is not affected by changes to the values of functions on a null sets. The cut-metric379

between graphons is then defined to be380

δ□(W,Wϕ) = inf
ϕ∈S[0,1]

∥W −Wϕ∥□

= inf
ϕ∈S[0,1]

sup
S,T⊆[0,1]

∣∣∣∣ ∫
S×T

(
W (x, y)−W (ϕ(x), ϕ(y))

)
dxdy

∣∣∣∣.
Remark B.2. Note that δ□ can be defined equivalently with respect to ϕ ∈ S′

[0,1]. Indeed, By [23,381

Equation (8.17) and Theorem 8.13], δ□ can be defined equivalently with respect to the measure382

preserving maps that are not necessarily invertible. These include the extensions of mappings from383

S′
[0,1] by defining ϕ(x) = 0 for every x in the co-null set underlying ϕ.384

Similarly to the graphon case, the graphon-signal distance δ□ is a pseudo-metric. By introducing385

an equivalence relation (W, f) ∼ (V, g) if δ□((W, f), (V, g)) = 0, and the quotient space W̃Lr :=386

WLr/ ∼, W̃Lr is a metric space with a metric δ□ defined by δ□([(W, f)], [V, g)]) = d□(W,V )387

where [(W, f)], [(V, g)], are the equivalence classes of (W, f) and (V, g) respectively. By abuse of388

terminology, we call elements of W̃Lr also graphon-signals.389

Remark B.3. We note that W̃Lr ̸= W̃0 × ˜L∞
r [0, 1] (for the natural definition of ˜L∞

r [0, 1]), since390

in W̃Lr we require that the measure preserving bijection is shared between the graphon W and391

the signal f . Sharing the measure preserving bijetion between W and f is an important modelling392

requirement, as ϕ is seen as a “re-indexing” of the node set [0, 1]. When re-indexing a node x, both393

the neighborhood W (x, ·) of x and the signal value f(x) at x should change together, otherwise, the394

graphon and the signal would fall out of alignment.395

We identify graphs with their induced graphons and signal with their induced signals396

C Graphon-signal regularity lemmas397

In this appendix, we prove a number of versions of the graphon-signal regularity lemma, where398

Theorem 3.4 is one version.399

C.1 Properties of partitions and step functions400

Given a partition Pk and d ∈ N, the next lemma shows that there is an equiparition En such that the401

space Sd
En

uniformly approximates the space Sd
Pk

in L1[0, 1]d norm (see Definition 3.3).402

Lemma C.1 (Equitizing partitions). Let Pk be a partition of [0, 1] into k sets (generally not of the403

same measure). Then, for any n > k there exists an equipartition En of [0, 1] into n sets such that404

any function F ∈ Sd
Pk

can be approximated in L1[0, 1]
d by a function from F ∈ Sd

En
up to small405

error. Namely, for every F ∈ Sd
Pk

there exists F ′ ∈ Sd
En

such that406

∥F − F ′∥1 ≤ d∥F∥∞
k

n
.

Proof. Let Pk = {P1, . . . , Pk} be a partition of [0, 1]. For each i, we divide Pi into subsets407

Pi = {Pi,1, . . . , Pi,mi} of measure 1/n (up to the last set) with a residual, as follows. If µ(Pi) <408

1/n, we choose Pi = {Pi,1 = Pi}. Otherwise, we take Pi,1, . . . , Pi,mi−1 of measure 1/n, and409

µ(Pi,mi
) ≤ 1/n. We call Pi,mi

the remainder.410
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We now define the sequence of sets of measure 1/n411

Q := {P1,1, . . . , P1,m1−1, P2,1, . . . , P2,m2−1, . . . , Pk,1, . . . , Pk,mk−1}, (12)

where, by abuse of notation, for any i such that mi = 1, we set {Pi,1, . . . , Pi,mi−1} = ∅ in the412

above formula. Note that in general ∪Q ̸= [0, 1]. We moreover define the union of residuals413

Π := P1,m1 ∪P2,m2 ∪ · · · ∪Pk,mk
. Note that µ(Π) = 1− µ(∪Q) = 1− k 1

n = h/n, where k is the414

number of elements in Q, and h = n− k. Hence, we can partition Π into h parts {Π1, . . .Πh} of415

measure 1/n with no residual. Thus we have obtain the equipartition of [0, 1] to n sets of measure416

1/n417

En := {P1,1, . . . , P1,m1−1, P2,1, . . . , P2,m2−1, . . . , Sk,1, . . . , Sk,mk−1,Π1,Π2, . . . ,Πh}. (13)

For convenience, we also denote En = {Z1, . . . , Zn}.418

Let419

F (x) =
∑

j=(j1,...,jd)∈[k]d

cj

d∏
l=1

1Pjl
(xl) ∈ Sd

Pk
.

We can write F with respect to the equipartition En as420

F (x) =
∑

j=(j1,...,jd)∈[n]d; ∀l=1,...,d, Zjl
̸⊂Π

c̃j

d∏
l=1

1Zjl
(xl) + E(x),

for some {c̃j} with the same values as the values of {cj}. Here, E is supported in the set Π(d) ⊂421

[0, 1]d, defied by422

Π(d) =
(
Π× [0, 1]d−1

)
∪
(
[0, 1]×Π× [0, 1]d−2

)
∪ . . . ∪

(
[0, 1]d−1 ×Π

)
.

Consider the step function423

F ′(x) =
∑

j=(j1,...,jd)∈[n]d; ∀l=1,...,d, Zjl
̸⊂Π

c̃j

d∏
l=1

1Zjl
(xl) ∈ Sd

En
.

Since µ(Π) = k/n, we have µ(Π(d)) = dk/n, and so424

∥F − F ′∥1 ≤ d∥F∥∞
k

n
.

■425

Lemma C.2. Let {Q1, Q2, . . . , Qm} partition of [0, 1]. Let {I1, I2, . . . , Im} be a partition of [0, 1]
into intervals, such that for every j ∈ [m], µ(Qj) = µ(Ij). Then, there exists a measure preserving
bijection ϕ : [0, 1] → [0, 1] ∈ S′

[0,1] such that4

ϕ(Qj) = Ij

Proof. By the definition of a standard probability space, the measure space induced by [0, 1] on a426

non-null subset Qj ⊆ [0, 1] is a standard probability space. Moreover, each Qj is atomless, since427

[0, 1] is atomless. Since there is a measure-preserving bijection (up to null-set) between any two428

atomless standard probability spaces, we obtain the result. ■429

Lemma C.3. Let S = {Sj ⊂ [0, 1]}m−1
j=0 be a collection of measurable sets (that are not disjoint in430

general), and d ∈ N. Let Cd
S be the space of functions F : [0, 1]d → R of the form431

F (x) =

m∑
j=(j1,...,jd)∈[m]d

cj

d∏
l=1

1Sjl
(xl),

for some choice of {cj ∈ R}j∈[m]d . Then, there exists a partition Pk = {P1, . . . , Pk} into k = 2m432

sets, that depends only on S, such that433

Cd
S ⊂ Sd

Pk
.

4Namely, there is a measure preserving bijection ϕ between two co-null sets C1 and C2 of [0, 1], such that
ϕ(Qj ∩ C1) = Ij ∩ C2.
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Proof. The partition Pk = {P1, . . . , Pk} is defined as follows. Let434

P̃ =
{
P ⊂ [0, 1] | ∃ x ∈ [0, 1], P = ∩{Sj ∈ S|x ∈ Sj}

}
.

We must have |P̃| ≤ 2m. Indeed, there are at most 2m different subsets of S for the intersections.435

We endow an arbitrarily order to P̃ and turn it into a sequence. If the size of P̃ is strictly smaller than436

2m, we add enough copies of {∅} to P̃ to make the size of the sequence 2m, that we denote by Pk,437

where k = 2m. ■438

The following simple lemma is proved similarly to Lemma C.3. We give it without proof.439

Lemma C.4. Let Pk = {P1, . . . , Pk},Qm = {Q1, . . . , Qk} be two partitions. Then, there exists a440

partition Zkm into km sets such that for every d,441

Sd
Pk

⊂ Sd
Zmk

, and Sd
Qm

⊂ Sd
Zmk

.

C.2 List of graphon-signal regularity lemmas442

The following lemma from [24, Lemma 4.1] is a tool in the proof of the weak regularity lemma.443

Lemma C.5. Let K1,K2, . . . be arbitrary nonempty subsets (not necessarily subspaces) of a Hilbert444

space H. Then, for every ϵ > 0 and v ∈ H there is m ≤ ⌈1/ϵ2⌉ and vi ∈ Ki and γi ∈ R, i ∈ [m],445

such that for every w ∈ Km+1446 ∣∣∣∣
〈
w, v − (

m∑
i=1

γivi)

〉∣∣∣∣ ≤ ϵ ∥w∥∥v∥. (14)

The following theorem is an extension of the graphon regularity lemma from [24] to the case of447

graphon-signals. Much of the proof follows the steps of [24].448

Theorem C.6 (Weak regularity lemma for graphon-signals). Let ϵ, ρ > 0. For every (W, f) ∈ WLr449

there exists a partition Pk of [0, 1] into k = ⌈r/ρ⌉
(
22⌈1/ϵ

2⌉
)

sets, a step function graphon Wk ∈450

S2
Pk

∩W0 and a step function signal fk ∈ S1
Pk

∩ L∞
r [0, 1], such that451

∥W −Wk∥□ ≤ ϵ and ∥f − fk∥□ ≤ ρ. (15)

Proof. We first analyze the graphon part. In Lemma C.5, set H = L2([0, 1]2) and for all i ∈ N, set452

Ki = K =
{
1S×T

∣∣ S, T ⊂ [0, 1] measurable
}
.

Then, by Lemma C.5, there exists m ≤ ⌈1/ϵ2⌉ two sequences of sets Sm = {Si}mi=1, Tm = {Ti}mi=1,453

a sequence of coefficients {γi ∈ R}mi=1, and454

Wϵ =
m∑
i=1

γi1Si×Ti
,

such that for any V ∈ K, given by V (x, y) = 1S(x)1T (y), we have455 ∣∣∣∣ ∫ V (x, y)
(
W (x, y)−Wϵ(x, y)

)
dxdy

∣∣∣∣ = ∣∣∣∣ ∫
S

∫
T

(
W (x, y)−Wϵ(x, y)

)
dxdy

∣∣∣∣ (16)

≤ ϵ∥1S×T ∥∥W∥ ≤ ϵ. (17)

We may choose exactly m = ⌈1/ϵ2⌉ by adding copies of the empty set to Sm and Tm, if the constant456

m guaranteed by Lemma C.5 is strictly less than ⌈1/ϵ2⌉. Consider the concatenation of the two457

sequences Tm,Sm given by Y2m = Tm ∪ Sm. Note that in the notation of Lemma C.3, Wϵ ∈ C2
Y2m

.458

Hence, by Lemma C.3, there exists a partition Qn into n = 22m = 22⌈
1
ϵ2

⌉ sets, such that Wϵ is a step459

graphon with respect to Qn.460

To analyze the signal part, we partition the range of the signal [−r, r] into j = ⌈r/ρ⌉ intervals461

{Ji}ji=1 of length less or equal to 2ρ, where the left edge point of each Ji is −r+(i− 1)ρr . Consider462

13



the partition of [0, 1] based on the preimages Yj = {Yi = f−1(Ji)}ji=1. It is easy to see that for the463

step signal464

fρ(x) =

j∑
i=1

ai1Yi(x),

where ai the midpoint of the interval Yi, we have465

∥f − fρ∥□ ≤ ∥f − fρ∥1 ≤ ρ.

Lastly, by Lemma C.4, there is a partition Pk of [0, 1] into k = ⌈r/ρ⌉
(
22⌈1/ϵ

2⌉
)

sets such that466

Wϵ ∈ S2
Pk

and fρ ∈ S1
Pk

.467

■468

Corollary C.7 (Weak regularity lemma for graphon-signals – version 2). Let r > 0 and c > 1. For469

every sufficiently small ϵ > 0 (namely, ϵ that satisfies (19)), and for every (W, f) ∈ WLr there exists470

a partition Pk of [0, 1] into k =
(
2⌈2c/ϵ

2⌉
)

sets, a step graphon Wk ∈ S2
Pk

∩W0 and a step signal471

fk ∈ S1
Pk

∩ L∞
r [0, 1], such that472

d□
(
(W, f), (Wk, fk)

)
≤ ϵ.

Proof. First, evoke Theorem C.6, with errors ∥W −Wk∥□ ≤ ν and ∥f − fk∥□ ≤ ρ = ϵ− ν. We473

now show that there is some ϵ0 > 0 such that for every ϵ < ϵ0, there is a choice of ν such that the474

number of sets in the partition, guaranteed by Theorem C.6, satisfies475

k(ν) := ⌈r/(ϵ− ν)⌉
(
22⌈1/ν

2⌉
)
≤ 2⌈2c/ϵ

2⌉.

Denote c = 1 + t. In case476

ν ≥

√
2

2(1 + 0.5t)/ϵ2 − 1
, (18)

we have477

22⌈1/ν
2⌉ ≤ 22(1+0.5t)/ϵ2 .

On the other hand, for478

ν ≤ ϵ− r

2t/ϵ2 − 1
,

we have479

⌈r/(ϵ− ν)⌉ ≤ 22(0.5t)/ϵ
2

.

The reconcile these two conditions, we restrict to ϵ such that480

ϵ− r

2t/ϵ2 − 1
≥

√
2

2(1 + 0.5t)/ϵ2 − 1
. (19)

There exists ϵ0 that depends on c and r (and hence also on t) such that for every ϵ < ϵ0 (19) is481

satisfied. Indeed, for small enough ϵ,482

1

2t/ϵ2 − 1
=

2−t/ϵ2

1− 2−t/ϵ2
< 2−t/ϵ2 <

ϵ

r

(
1− 1

1 + 0.1t

)
,

so483

ϵ− r

2t/ϵ2 − 1
> ϵ(1 + 0.1t).

Moreover, for small enough ϵ,484 √
2

2(1 + 0.5t)/ϵ2 − 1
= ϵ

√
1

(1 + 0.5t)− ϵ2
< ϵ/(1 + 0.4t).

Hence, for every ϵ < ϵ0, there is a choice of ν such that485

k(ν) = ⌈r/(ϵ− ν)⌉
(
22⌈1/ν

2⌉
)
≤ 22(0.5t)/ϵ

2

22(1+0.5t)/ϵ2 ≤ 2⌈2c/ϵ
2⌉.

Lastly, we add as many copies of ∅ to Pk(ν) as needed so that we get a sequence of k = 2⌈2c/ϵ
2⌉ sets.486

■487
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Theorem C.8 (Regularity lemma for graphon-signals – equipartition version). Let c > 1 and r > 0.488

For any sufficiently small ϵ > 0, and every (W, f) ∈ WLr there exists ϕ ∈ S′
[0,1], a step function489

graphon [Wϕ]n ∈ S2
In

∩W0 and a step signal [fϕ]n ∈ S1
In

∩ L∞
r [0, 1], such that490

d□

(
(Wϕ, fϕ) ,

(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ, (20)

where In is the equipartition of [0, 1] into n = 2⌈2c/ϵ
2⌉ intervals.491

Proof. Let c = 1 + t > 1, ϵ > 0 and 0 < α, β < 1. In Corollary C.7, consider the approximation492

error493

d□
(
(W, f), (Wk, fk)

)
≤ αϵ.

with a partition Pk into k = 2
⌈ 2(1+t/2)

(ϵα)2
⌉ sets. We next equatize the partition Pk up to error ϵβ. More494

accurately, in Lemma C.1, we choose495

n = ⌈2
2(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉,
and note that496

n ≥ 2
⌈ 2(1+0.5t)

(ϵα)2
⌉⌈1/ϵβ⌉ = k⌈1/ϵβ⌉.

By Lemma C.1 and by the fact that the cut norm is bounded by L1 norm, there exists an equipartition497

En into n sets, and step functions Wn and fn with respect to En such that498

∥Wk −Wn∥□ ≤ 2ϵβ and ∥fk − fn∥1 ≤ rϵβ.

Hence, by the triangle inequality,499

d□
(
(W, f), (Wn, fn)

)
≤ d□

(
(W, f), (Wk, fk)

)
+ d□

(
(Wk, fk), (Wn, fn)

)
≤ ϵ(α+ (2 + r)β).

In the following, we restrict to choices of α and β which satisfy α + (2 + r)β = 1. Consider the500

function n : (0, 1) → N defined by501

n(α) := ⌈2
4(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉ = ⌈(2 + r) · 2
9(1+0.5t)

4(ϵα)2
+1

/(ϵ(1− α))⌉.
Using a similar technique as in the proof of Corollary C.7, there is ϵ0 > 0 that depends on c and502

r (and hence also on t) such that for every ϵ < ϵ0 , we may choose α0 (that depends on ϵ) which503

satisfies504

n(α0) = ⌈(2 + r) · 2
2(1+0.5t)

(ϵα0)2
+1

/(ϵ(1− α0))⌉ < 2⌈
2c
ϵ2

⌉. (21)
Moreover, there is a choice α1 which satisfies505

n(α1) = ⌈(2 + r) · 2
2(1+0.5t)

(ϵα1)2
+1

/(ϵ(1− α1))⌉ > 2⌈
2c
ϵ2

⌉. (22)

We note that the function n : (0, 1) → N satisfies the following intermediate value property. For506

every 0 < α1 < α2 < 1 and every m ∈ N between n(α1) and n(α2), there is a point α ∈ [α1, α2]507

such that n(α) = m. This follows the fact that α 7→ (2+ r) · 2
2(1+0.5t)

(ϵα)2
+1

/(ϵ(1−α)) is a continuous508

function. Hence, by (21) and (22), there is a point α (and β such that α+ (2 + r)β = 1) such that509

n(α) = n = ⌈2
2(1+0.5t)

(ϵα)2
+1

/(ϵβ)⌉ = 2⌈2c/ϵ
2⌉.

■510

By a slight modification of the above proof, we can replace n with the constant n = ⌈2
2c
ϵ2 ⌉. As a511

result, we can easily prove that for any n′ ≥ 2⌈
2c
ϵ2

⌉ we have the approximation property (20) with n′512

instead of n. This is done by choosing an appropriate c′ > c and using Theorem C.8 on c′, giving a513

constant n′ = ⌈2
2c′
ϵ2 ⌉ ≥ 2⌈

2c
ϵ2

⌉ = n. This leads to the following corollary.514

Corollary C.9 (Regularity lemma for graphon-signals – equipartition version 2). Let c > 1 and r > 0.515

For any sufficiently small ϵ > 0, for every n ≥ 2⌈
2c
ϵ2

⌉ and every (W, f) ∈ WLr, there exists ϕ ∈ S′
[0,1],516

a step function graphon [Wϕ]n ∈ S2
In

∩ W0 and a step function signal [fϕ]n ∈ S1
In

∩ L∞
r [0, 1],517

such that518

d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ,

where In is the equipartition of [0, 1] into n intervals.519
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Next, we prove that we can use the average of the graphon and the signal in each part for the520

approximating graphon-signal. For that we define the projection of a graphon signal upon a partition.521

Definition C.10. Let Pn = {P1, . . . , Pn} be a partition of [0, 1], and (W, f) ∈ WLr. We define the522

projection of (W, f) upon (S2
P ×S1

P)∩WLr to be the step graphon-signal (W, f)Pn
= (WPn

, fPn
)523

that attains the value524

WPn(x, y) =

∫
Pi×Pj

W (x, y)dxdy , fPn(x) =

∫
Pi

f(x)dx

for every (x, y) ∈ Pi × Pj .525

At the cost of replacing the error ϵ by 2ϵ, we can replace W ′ with its projection. This was shown in526

[1]. Since this paper does not use the exact same setting as us, for completeness, we write a proof of527

the claim below.528

Corollary C.11 (Regularity lemma for graphon-signals – projection version). For any c > 1, and529

any sufficiently small ϵ > 0, for every n ≥ 2⌈
8c
ϵ2

⌉ and every (W, f) ∈ WLr, there exists ϕ ∈ S′
[0,1],530

such that such that531

d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]In

, [fϕ]In

) )
≤ ϵ.

where In is the equipartition of [0, 1] into n intervals.532

We first prove a simple lemma.533

Lemma C.12. Let Pn = {P1, . . . , Pn} be a partition of [0, 1], and Let V,R ∈ S2
Pn

∩W0. Then, the534

supremum of535

sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

(
V (x, y)−R(x, y)

)
dxdy

∣∣∣∣ (23)

is attained for S, T of the form536

S =
⋃
i∈s

Pi , T =
⋃
j∈t

Pj ,

where t, s ⊂ [n]. Similarly for any two signals f, g ∈ S1
Pn

∩ L∞
r [0, 1], the supremum of537

sup
S⊂[0,1]

∣∣∣∣∫
S

(
f(x)− g(x)

)
dx

∣∣∣∣ (24)

is attained for S of the form538

S =
⋃
i∈s

Pi,

where s ⊂ [n].539

Proof. First, by Lemma B.1, the supremum of (23) is attained for some S, T ⊂ [0, 1]. Given the540

maximizers S, T , without loss of generality, suppose that541 ∫
S

∫
T

(
V (x, y)−R(x, y)

)
dxdy > 0.

we can improve T as follows. Consider the set t ⊂ [n] such that for every j ∈ t542 ∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy > 0.

By increasing the set T ∩ Pj to Pj , we can only increase the size of the above integral. Indeed,543 ∫
S

∫
Pj

(
V (x, y)−R(x, y)

)
dxdy =

µ(Pj)

µ(T ∩ Pj)

∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy

≥
∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy.
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Hence, by increasing T to544

T ′ =
⋃

{j|T∩Pj ̸=∅}

Pj ,

we get545 ∫
S

∫
T ′

(
V (x, y)−R(x, y)

)
dxdy ≥

∫
S

∫
T

(
V (x, y)−R(x, y)

)
dxdy.

We similarly replace each T ∩ Pj such that546 ∫
S

∫
T∩Pj

(
V (x, y)−R(x, y)

)
dxdy ≤ 0

by the empty set. We now repeat this process for S, which concludes the proof for the graphon part.547

For the signal case, let f = f+ − f−, and suppose without loss of generality that ∥f∥□ = ∥f∥1. It is548

easy to see that the supremum of (24) is attained for the support of f+, which has the required form.549

■550

Proof. Proof of Corollary C.11 Let Wn ∈ SPn
∩W0 be the step graphon guaranteed by Corollary C.9,551

with error ϵ/2 and measure preserving bijection ϕ ∈ S′
[0,1]. Without loss of generality, we suppose552

that Wϕ = W . Otherwise, we just denote W ′ = Wϕ and replace the notation W with W ′ in the553

following. By Lemma C.12, the infimum underlying ∥WPn
−Wn∥□ is attained for for some554

S =
⋃
i∈s

Pi , T =
⋃
j∈t

Pj .

We now have, by definition of the projected graphon,555

∥Wn −WPn
∥□ =

∣∣∣∣∣∣
∑

i∈s,j∈t

∫
Pi

∫
Pj

(WPn
(x, y)−Wn(x, y))dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈s,j∈t

∫
Pi

∫
Pj

(W (x, y)−Wn(x, y))dxdy

∣∣∣∣∣∣
=

∣∣∣∣∫
S

∫
T

(W (x, y)−Wn(x, y))dxdy

∣∣∣∣ = ∥Wn −W∥□.

Hence, by the triangle inequality,556

∥W −WPn
∥□ ≤ ∥W −Wn∥□ + ∥Wn −WPn

∥□ < 2∥Wn −W∥□.

A similar argument shows557

∥f − fPn
∥□ < 2∥fn − f∥□.

Hence,558

d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]In , [f

ϕ]In

) )
≤ 2d□

( (
Wϕ, fϕ

)
,
(
[Wϕ]n, [f

ϕ]n
) )

≤ ϵ.

■559

D Compactness and covering number of the graphon-signal space560

In this appendix we prove Theorem 3.5.561

Given a partition Pk, recall that562

[WLr]Pk
:= (W0 ∩ S2

Pk
)× (L∞

r [0, 1] ∩ S1
Pk

)

is called the space of SBMs or step graphon-signals with respect to Pk. Recall that W̃Lr is the563

space of equivalence classes of graphon-signals with zero δ□ distance, with the δ□ metric (defined on564

arbitrary representatives). By abuse of terminology, we call elements of W̃Lr also graphon-signals.565

Theorem D.1. The metric space (W̃Lr, δ□) is compact.566

17



The proof is a simple extension of [24, Lemma 8] from the case of graphon to the case of graphon-567

signal. The proof relies on the notion of martingale. A martingale is a sequence of random variables568

for which, for each element in the sequence, the conditional expectation of the next value in the569

sequence is equal to the present value, regardless of all prior values. The Martingale convergence570

theorem states that for any bounded martingale {Mn}n over the probability pace X , the sequence571

{Mn(x)}n converges for almost every x ∈ X , and the limit function is bounded (see [11, 33]).572

Proof. [Proof of Theorem D.1] Consider a sequence {[(Wn, fn)]}n∈N ⊂ W̃Lr, with (Wn, fn) ∈573

WLr. For each k, consider the equipartition into mk intervals Imk
, where mk = 230⌈(r

2+1)⌉k2

. By574

Corollary C.11, there is a measure preserving bijection ϕn,k (up to nullset) such that575

∥(Wn, fn)
ϕn,k − (Wn, fn)

ϕn,k

Imk
∥□;r < 1/k,

where (Wn, fn)
ϕn,k

Imk
is the projection of (Wn, fn)

ϕn,k upon Imk
(Definition C.10). For every fixed k,576

each pair of functions (Wn, fn)
ϕn,k

Imk
is defined via m2

k+mk values in [0, 1]. Hence, since [0, 1]m
2
k+mk577

is compact, there is a subsequence {nk
j }j∈N, such that all of these values converge. Namely, for each578

k, the sequence579

{(Wnk
j
, fnk

j
)
ϕ
nk
j
,k

Imk
}∞j=1

converges pointwise to some step graphon-signal (Uk, gk) in [WLr]Pk
as j → ∞. Note that Iml

is a580

refinement of Imk
for every l > k. As as a result, by the definition of projection of graphon-signals581

to partitions, for every l > k, the value of (Wϕn,k
n )Imk

at each partition set Iimk
× Ijmk

can be582

obtained by averaging the values of (Wϕn,l
n )Iml

at all partition sets Ii
′

ml
× Ij

′

ml
that are subsets of583

Iimk
× Ijmk

. A similar property applies also to the signal. Moreover, by taking limits, it can be584

shown that the same property holds also for (Uk, gk) and (Ul, gl). We now see {(Uk, gk)}∞k=1 as a585

sequence of random variables over the standard probability space [0, 1]2. The above discussion shows586

that {(Uk, gk)}∞k=1 is a bounded martingale. By the martingale convergence theorem, the sequence587

{(Uk, gk)}∞k=1 converges almost everywhere pointwise to a limit (U, g), which must be in WLr.588

Lastly, we show that there exist increasing sequences {kz ∈ N}∞z=1 and {tz = nkz
jz
}z∈N such that589

(Wtz , ftz )
ϕtz,kz converges to (U, g) in cut distance. By the dominant convergence theorem, for each590

z ∈ N there exists a kz such that591

∥(U, g)− (Ukz , gkz )∥1 <
1

3z
.

We choose such an increasing sequence {kz}z∈N with kz > 3z. Similarly, for ever z ∈ N, there is a592

jz such that, with the notation tz = nkz
jz

,593

∥(Ukz
, gkz

)− (Wtz , ftz )
ϕtz,kz

Imkz

∥1 <
1

3z
,

and we may choose the sequence {tz}z∈N increasing. Therefore, by the triangle inequality and by594

the fact that the L1 norm bounds the cut norm,595

δ□
(
(U, g), (Wtz , ftz )

)
≤ ∥(U, g)− (Wtz , ftz )

ϕtz,kz ∥□
≤ ∥(U, g)− (Ukz , gkz )∥1 + ∥(Ukz , gkz )− (Wtz , ftz )

ϕtz,kz

Imkz

∥1

+ ∥(Wtz , ftz )
ϕtz,kz

Imkz

− (Wtz , ftz )
ϕtz,kz ∥□

≤ 1

3z
+

1

3z
+

1

3z
≤ 1

z
.

■596

The next theorem bounds the covering number of W̃Lr.597

Theorem D.2. Let r > 0 and c > 1. For every sufficiently small ϵ > 0, the space W̃Lr can be598

covered by599

κ(ϵ) = 2k
2

(25)

balls of radius ϵ in cut distance, where k = ⌈22c/ϵ2⌉.600
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Proof. Let 1 < c < c′ and 0 < α < 1. Given an error tolerance αϵ > 0, using Theorem C.8,601

we take the equipartition In into n = 2⌈
2c

α2ϵ2
⌉ intervals, for which any graphon-signal (W, f) ∈602

W̃Lr can be approximated by some (W, f)n in [W̃Lr]In , up to error αϵ. Consider the rectangle603

Rn,r = [0, 1]n
2 × [−r, r]n. We identify each element of [W̃Lr]In

with an element of Rn,r using604

the coefficients of (5). More accurately, the coefficients ci,j of the step graphon are identifies with the605

first n2 entries of a point in Rn,r, and the the coefficients bi of the step signals are identifies with the606

last n entries of a point in Rn,r. Now, consider the qunatized rectangle R̃n,r, defined as607

R̃n,r =
(
(1− α)ϵZ)n

2+2rn ∩Rn,r.

Note that R̃n consists of608

M ≤ ⌈ 1

(1− α)ϵ
⌉n

2+2rn ≤ 2

(
−log

(
(1−α)ϵ

)
+1
)
(n2+2rn)

points. Now, every point x ∈ Rn,r can be approximated by a quantized version xQ ∈ R̃n,r up to609

error in normalized ℓ1 norm610

∥x− xQ∥1 :=
1

M

M∑
j=1

∣∣∣xj − xj
Q

∣∣∣ ≤ (1− α)ϵ,

where we re-index the entries of x and xQ in a 1D sequence. Let us denote by (W, f)Q the quantized611

version of (Wn, fn), given by the above equivalence mapping between (W, f)n and Rn,r. We hence612

have613

∥(W, f)− (W, f)Q∥□ ≤ ∥(W, f)− (Wn, fn)∥□ + ∥(Wn, fn)− (W, f)Q∥□ ≤ ϵ.

We now choose the parameter α. Note that for any c′ > c, there exists ϵ0 > 0 that depends on c′ − c,614

such that for any ϵ < ϵ0 there is a choice of α (close to 1) such that615

M ≤ ⌈ 1

(1− α)ϵ
⌉n

2+2rn ≤ 2

(
−log

(
(1−α)ϵ

)
+1
)
(n2+2rn) ≤ 2k

2

where k = ⌈22c′/ϵ2⌉. This is shown similarly to the proof of Corollary C.7 and Theorem C.8. We616

now replace the notation c′ → c, which concludes the proof.617

■618

E Graphon-signal sampling lemmas619

In this appendix, we prove Theorem 3.6. We denote by W1 the space of measurable functions620

U : [0, 1] → [−1, 1], and call each U ∈ W1 a kernel.621

E.1 Formal construction of sampled graph-signals622

Let W ∈ W0 be a graphon, and Λ′ = (λ′
1, . . . λ

′
k) ∈ [0, 1]k. We denote by W (Λ′) the adjacency623

matrix624

W (Λ′) = {W (λ′
i, λ

′
j)}i,j∈[k].

By abuse of notation, we also treat W (Λ′) as a weighted graph with k nodes and the adjacency matrix625

W (Λ′). We denote by Λ = (λ1, . . . , λk) : (λ
′
1, . . . λ

′
k) 7→ (λ′

1, . . . λ
′
k) the identity random variable626

in [0, 1]k. We hence call (λ1, . . . , λk) random independent samples from [0, 1]. We call the random627

variable W (Λ) a random sampled weighted graph.628

Given f ∈ L∞
r [0, 1] and Λ′ = (Λ′

1, . . . ,Λ
′
k) ∈ [0, 1]k, we denote by f(Λ′) the discrete signal with629

k nodes, and value f(λ′
i) for each node i = 1, . . . , k. We define the sampled signal as the random630

variable f(Λ).631

We then define the random sampled simple graph as follows. First, for a deterministic Λ′ ∈ [0, 1]k, we632

define a 2D array of Bernoulli random variables {ei,j(Λ′)}i,j∈[k] where ei,j(Λ
′) = 1 in probability633
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W (λ′
i, λ

′
j), and zero otherwise, for i, j ∈ [k]. We define the the probability space {0, 1}k×k with634

normalized counting measure, defined for any S ⊂ {0, 1}k×k by635

PΛ′(S) =
∑
z∈S

∏
i,j∈[k]

PΛ′;i,j(zi,j),

where636

PΛ′;i,j(zi,j) =

{
W (λ′

i, λ
′
j) if zi,j = 1

1−W (λ′
i, λ

′
j) if zi,j = 0.

We denote the identity random variable by G(W,Λ′) : z 7→ z, and call it a random simple graph637

sampled from W (Λ′).638

Next we also allow to “plug” the random variable Λ into Λ′. For that, we define the joint probability639

space Ω = [0, 1]k × {0, 1}k×k with the product σ-algebra of the Lebesgue sets in [0, 1]k with the640

power set σ-algebra of {0, 1}k×k, with measure, for any measurable S ⊂ Ω,641

µ(S) =

∫
[0,1]k

PΛ′
(
S(Λ′)

)
dΛ′,

where642

S(Λ′) ⊂ {0, 1}k×k := {z = {zi,j}i,j∈[k] ∈ {0, 1}k×k | (Λ′, z) ∈ S},

We call the random variable G(W,Λ) : Λ′ × z 7→ z the random simple graph generated by W .643

We extend the domains of the random variables W (Λ), f(Λ) and G(W,Λ′) to Ω trivially (e.g.,644

f(Λ)(Λ′, z) = f(Λ)(Λ′) and G(W,Λ′)(Λ′, z) = G(W,Λ′)(z)), so that all random variables are645

defined over the same space Ω. Note that the random sampled graphs and the random signal share646

the same sample points.647

Given a kernel U ∈ W1, we define the random sampled kernel U(Λ) similarly.648

Similarly to the above construction, given a weighted graph H with k nodes and edge weights hi,j ,649

we define the simple graph sampled from H as the random variable simple graph G(H) with k nodes650

and independent Bernoulli variables ei,j ∈ {0, 1}, with P(ei,j = 1) = hi,j , as the edge weights. The651

following lemma is taken from [23, Equation (10.9)].652

Lemma E.1. Let H be a weighted graph of k nodes. Then653

E
(
d□(G(H), H)

)
≤ 11√

k
.

The following is a simple corollary of Lemma E.1, using the law of total probability.654

Corollary E.2. Let W ∈ W0 and k ∈ N. Then655

E
(
d□(G(W,Λ),W (Λ))

)
≤ 11√

k
.

E.2 Sampling lemmas of graphon-signals656

The following lemma, from [23, Lemma 10.6], shows that the cut norm of a kernel is approximated657

by the cut norm of its sample.658

Lemma E.3 (First Sampling Lemma for kernels). Let U ∈ W1, and Λ ∈ [0, 1]k be uniform
independent samples from [0, 1]. Then, with probability at least 1− 4e−

√
k/10,

−3

k
≤ ∥U [Λ]∥□ − ∥U∥□ ≤ 8

k1/4
.

We derive a version of Lemma E.3 with expected value using the following lemma.659

Lemma E.4. Let z : Ω → [0, 1] be a random variable over the probability space Ω. Suppose that in660

an event E ⊂ Ω of probability 1− ϵ we have z < α. Then661

E(z) ≤ (1− ϵ)α+ ϵ.
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Proof.662

E(z) =
∫
Ω

z(x)dx =

∫
E
z(x)dx+

∫
Ω\E

z(x)dx ≤ (1− ϵ)α+ ϵ.

■663

As a result of this lemma, we have a simple corollary of Lemma E.3.664

Corollary E.5 (First sampling lemma - expected value version). Let U ∈ W1 and Λ ∈ [0, 1]k be
chosen uniformly at random, where k ≥ 1. Then

E |∥U [Λ]∥□ − ∥U∥□| ≤
14

k1/4
.

Proof. By Lemma E.4, and since 6/k1/4 > 4e−
√
k/10,

E
∣∣∥U [Λ]∥□ − ∥U∥□

∣∣ ≤ (1− 4e−
√
k/10

) 8

k1/4
+ 4e−

√
k/10 <

14

k1/4
.

■665

We note that a version of the first sampling lemma, Lemma E.3, for signals instead of kernels, is just666

a classical Monte Carlo approximation, when working with the L1[0, 1] norm, which is equivalent to667

the signal cut norm.668

Lemma E.6 (First sampling lemma for signals). Let f ∈ L∞
r [0, 1]. Then669

E |∥f(Λ)∥1 − ∥f∥1| ≤
r

k1/2
.

Proof. By standard Monte Carlo theory, since r2 bounds the variance of f(λ), where λ is a random670

uniform sample from [0, 1], we have671

V(∥f(Λ)∥1) = E
(
|∥f(Λ)∥1 − ∥f∥1|2

)
≤ r2

k
.

Here, V denotes variance, and we note that E∥f(Λ)∥1 = 1
k

∑k
j=1 |f(λj)| = ∥f∥1. Hence, by672

Cauchy Schwarz inequality,673

E |∥f(Λ)∥1 − ∥f∥1| ≤
√

E
(
|∥f(Λ)∥1 − ∥f∥1|2

)
≤ r

k1/2
.

■674

We now extend [23, Lemma 10.16], which bounds the cut distance between a graphon and its sampled675

graph, to the case of a sampled graphon-signal.676

Theorem E.7 (Second sampling lemma for graphon signals). Let r > 1. Let k ≥ K0, where K0 is a677

constant that depends on r, and let (W, f) ∈ WLr. Then,678

E
(
δ□
(
(W, f), (W (Λ), f(Λ))

))
<

15√
log(k)

,

and679

E
(
δ□
(
(W, f), (G(W,Λ), f(Λ))

))
<

15√
log(k)

.

The proof follows the steps of [23, Lemma 10.16] and [4]. We note that the main difference in our680

proof is that we explicitly write the measure preserving bijection that optimizes the cut distance.681

While this is not necessary in the classical case, where only a graphon is sampled, in our case we682

need to show that there is a measure preserving bijection that is shared by the graphon and the signal.683

We hence write the proof for completion.684

Proof.685

Denote a generic error bound, given by the regularity lemma Theorem C.8 by ϵ. If we take n intervals686

in the Theorem C.8 , then the error in the regularity lemma will be, for c such that 2c = 3,687

⌈3/ϵ2⌉ = log(n)
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so688

3/ϵ2 + 1 ≥ log(n).

For small enough ϵ, we increase the error bound in the regularity lemma to satisfy689

4/ϵ2 > 3/ϵ2 + 1 ≥ log(n).

More accurately, for the equipartition to intervals In, there is ϕ′ ∈ S′
[0,1] and a piecewsise constant690

graphon signal ([Wϕ]n, [f
ϕ]n) such that691

∥Wϕ′
− [Wϕ′

]n∥□ ≤ α
2√

log(n)

and692

∥fϕ′
− [fϕ′

]n∥□ ≤ (1− α)
2√

log(n)
,

for some 0 ≤ α ≤ 1. If we choose n such that693

n = ⌈
√
k

r log(k)
⌉,

then an error bound in the regularity lemma is694

∥Wϕ′
− [Wϕ′

]n∥□ ≤ α
2√

1
2 log(k)− log

(
log(k)

)
− log(r)

and695

∥fϕ′
− [fϕ′

]n∥□ ≤ (1− α)
2√

1
2 log(k)− log

(
log(k)

)
− log(r)

,

for some 0 ≤ α ≤ 1. Without loss of generality, we suppose that ϕ′ is the identity. This only means696

that we work with a different representative of [(W, f)] ∈ W̃Lr throughout the proof. We hence have697

d□(W,Wn) ≤ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

and698

∥f − fn∥1 ≤ (1− α)
4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

,

for some step graphon-signal (Wn, fn) ∈ [WLr]In
.699

Now, by the first sampling lemma (Corollary E.5),700

E
∣∣d□(W (Λ),Wn(Λ)

)
− d□(W,Wn)

∣∣ ≤ 14

k1/4
.

Moreover, by the fact that f − fn ∈ L∞
2r[0, 1], Lemma E.6 implies that

E
∣∣∥f(Λ)− fn(Λ)∥1 − ∥f − fn∥1

∣∣ ≤ 2r

k1/2
.

Therefore,701

E
(
d□
(
W (Λ),Wn(Λ)

))
≤ E

∣∣d□(W (Λ),Wn(Λ)
)
− d□(W,Wn)

∣∣+ d□(W,Wn)

≤ 14

k1/4
+ α

2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

.

Similarly, we have702

E∥f(Λ)− fn(Λ)∥1 ≤ E
∣∣∥f(Λ)− fn(Λ)∥1 − ∥f − fn∥1

∣∣+ ∥f − fn∥1

≤ 2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

.
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Now, let πΛ be a sorting permutation in [k], such that703

πΛ(Λ) := {Λπ−1
Λ (i)}

k
i=1 = (λ′

1, . . . , λ
′
k)

is a sequence in a non-decreasing order. Let {Iik = [i−1, i)/k}ki=1 be the intervals of the equipartition704

Ik. The sorting permutation πΛ induces a measure preserving bijection ϕ that sorts the intervals Iik.705

Namely, we define, for every x ∈ [0, 1],706

if x ∈ Iik, ϕ(x) = Ji,πΛ(i)(x), (26)

where Ji,j : I
i
k → Ijk are defined as x 7→ x− i/k + j/k, for all x ∈ Iik.707

By abuse of notation, we denote by Wn(Λ) and fn(Λ) the induced graphon and signal from Wn(Λ)708

and fn(Λ) respectively. Hence, Wn(Λ)
ϕ and fn(Λ)

ϕ are well defined. Note that the graphons Wn709

and Wn(Λ)
ϕ are stepfunctions, where the set of values of Wn(Λ)

ϕ is a subset of the set of values of710

Wn. Intuitively, since k ≫ m, we expect the partition {[λ′
i, λ

′
i+1)}ki=1 to be “close to a refinement”711

of In in high probability. Also, we expect the two sets of values of Wn(Λ)
ϕ and Wn to be identical in712

high probability. Moreover, since Λ′ is sorted, when inducing a graphon from the graph Wn(Λ) and713

“sorting” it to Wn(Λ)
ϕ, we get a graphon that is roughly “aligned” with Wn. The same philosophy714

also applied to fn and fn(Λ)
ϕ. We next formalize these observations.715

For each i ∈ [n], let λ′
ji

be the smaller point of Λ′ that is in Iin, set ji = ji+1 if Λ′ ∩ Iin = ∅, and set716

jn+1 = k + 1. For every i = 1, . . . , n, we call717

Ji := [ji − 1, ji+1 − 1)/k

the i-th step of Wn(Λ)
ϕ (which can be the empty set). Let ai = ji−1

k be the left edge point of Ji.718

Note that ai = |Λ ∩ [0, i/n)| /k is distributed binomially (up to the normalization k) with k trials719

and success in probability i/n.720

∥Wn −Wn(Λ)
ϕ∥□ ≤ ∥Wn −Wn(Λ)

ϕ∥1

=
∑
i

∑
k

∫
Ii
n∩Ji

∫
Ik
n∩Jk

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
+
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

∫
Ii
n∩Jj

∫
Ik
n∩Jl

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
=
∑
i

∑
j ̸=i

∑
k

∑
l ̸=k

∫
Ii
n∩Jj

∫
Ik
n∩Jl

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
=
∑
i

∑
k

∫
Ii
n\Ji

∫
Ik
n\Jk

∣∣Wn(x, y)−Wn(Λ)
ϕ(x, y)

∣∣ dxdy
≤
∑
i

∑
k

∫
Ii
n\Ji

∫
Ik
n\Jk

1dxdy ≤ 2
∑
i

∫
Ii
n\Ji

1dxdy

≤ 2
∑
i

(|i/n− ai|+ |(i+ 1)/n− ai+1|).

Hence,721

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 2

∑
i

(E |i/n− ai|+ E |(i+ 1)/n− ai+1|)

≤ 2
∑
i

(√
E(i/n− ai)2 +

√
E
(
(i+ 1)/n− ai+1

)2)
By properties of the binomial distribution, we have E(kai) = ik/n, so722

E(ik/n− kai)
2 = V(kai) = k(i/n)(1− i/n).

As a result723

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 5

n∑
i=1

√
(i/n)(1− i/n)

k

≤ 2

∫ n

1

√
(i/n)(1− i/n)

k
di,

23



and for n > 10,724

≤ 5
n√
k

∫ 1.1

0

√
z − z2dz ≤ 5

n√
k

∫ 1.1

0

√
zdz ≤ 10/3(1.1)3/2

n√
k
< 4

n√
k
.

Now, by n = ⌈
√
k

r log(k)⌉ ≤
√
k

r log(k) + 1, for large enough k,725

E∥Wn −Wn(Λ)
ϕ∥□ ≤ 4

1

r log(k)
+ 4

1√
k
≤ 5

r log(k)
.

Similarly,726

E∥fn − fn(Λ)
ϕ∥1 ≤ 5

log(k)
.

Note that in the proof of Corollary C.7, in (18), α is chosen close to 1, and especially, for small727

enough ϵ, α > 1/2. Hence, for large enough k,728

E(d□(W,W (Λ)ϕ)) ≤ d□(W,Wn) + E
(
d□(Wn,Wn(Λ)

ϕ)
)
+ E(d□(Wn(Λ),W (Λ)))

≤ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
5

r log(k)
+

14

k1/4

+ α
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ α
6√

log(k)
,

Similarly, for each k, if 1− α < 1√
log(k)

, then729

E(d□(f, f(Λ)ϕ)) ≤ (1− α)
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
5

log(k)

+
2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ 14

log(k)
.

Moreover, for each k such that 1− α > 1√
log(k)

, if k is large enough (where the lower bound of k730

depends on r), we have731

5

log(k)
+

2r

k1/2
<

5.5

log(k)
<

1√
log(k)

6√
log(k)

< (1− α)
6√

log(k)

so, by 6
√
2 < 9,732

E(d□(f, f(Λ)ϕ)) ≤ (1− α)
2
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

+
2

log(k)

+
2r

k1/2
+ (1− α)

4
√
2√

log(k)− 2 log
(
log(k)

)
− 2 log(r)

≤ (1− α)
15√
log(k)

.

Lastly, by Corollary E.2,733

E
(
d□
(
W,G(W,Λ)ϕ

))
≤ E

(
d□
(
W,W (Λ)ϕ

))
+ E

(
d□
(
W (Λ)ϕ,G(W,Λ)ϕ

))
≤ α

6√
log(k)

+
11√
k
≤ α

7√
log(k)

,
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As a result, for large enough k,734

E
(
δ□
(
(W, f), (W (Λ), f(Λ))

))
<

15√
log(k)

,

and735

E
(
δ□
(
(W, f), (G(W,Λ), f(Λ))

))
<

15√
log(k)

.

■736

F Graphon-signal MPNNs737

In this appendix we give properties and examples of MPNNs.738

F.1 Properties of graphon-signal MPNNs739

Consider the construction of MPNN from Section 4.1. We first explain how a MPNN on a grpah is740

equivalent to a MPNN on the induced graphon.741

Let G be a graph of n nodes, with adjacency matrix A = {ai,j}i,j∈[n] and signal f ∈ Rn×d. Consider742

a MPL θ, with receiver and transmitter message functions ξkr , ξ
k
t : Rd → Rp, for k ∈ [K], where743

K ∈ N, and update function µ : Rd+p → Rs. The application of the MPL on (G, f) is defined as744

follows. We first define the message kernel Φf : [n]
2 → Rp, with entries745

Φf (i, j) = Φ(fi, fj) =

K∑
k=1

ξkr (fi)ξ
k
t (fj).

We then aggregate the message kernel with normalized sum aggregation746 (
Agg(G,Φf )

)
i
=

1

n

∑
j∈[n]

ai,jΦf (i, j).

Lastly, we apply the update function, to obtain the output θ(G, f) of the MPL with value at each node747

i748

θ(G, f)i = η
(
fi,
(
Agg(G,Φf )

)
i

)
∈ Rs.

Lemma F.1. Consider a MPL θ as in the above setting. Then, for every graph signal (G,A, f),749

θ
(
(W, f)(G,f)

)
= (W, f)θ(G,f).

Proof. Let {Ii, . . . , In} be the equipartition to intervals. For each j ∈ [n], let yj ∈ Ij be an arbitrary750

point. Let i ∈ [n] and x ∈ Ii. We have751

Agg(G,Φf )i =
1

n

∑
j∈[n]

ai,jΦf (i, j) =
1

n

∑
j∈[n]

WG(x, yj)Φff (x, yj)

=

∫ 1

0

WG(x, y)Φff (x, y)dy = Agg(WG,Φff )(x).

Therefore, for every i ∈ [n] and every x ∈ Ii,752

fθ(G,f)(x) = f
η
(
f ,Agg(G,Φf )

)(x) = η
(
fi,Agg(G,Φf )i

)
= η

(
ff (x),Agg(WG,Φff )(x)

)
= θ(WG, ff )(x).

■753
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F.2 Examples of MPNNs754

The GIN convolutional layer [34] is defined as follows. First, the message function is755

Φ(a, b) = b

and the update function is756

η(x, y) = M
(
(1 + ϵ)x+ y

)
.

where M is a multi-layer perceptron (MLP) and ϵ a constant. Each layer may have a different MLP757

and different constant ϵ. The standard GIN is defined with sum aggregation, but we use normalized758

sum aggregation.759

Given a graph-signal (G, f), with f ∈ Rn×d with adjacency matrix A ∈ Rn×n, a spectral convo-760

lutional layer based on a polynomial filter p(λ) =
∑J

j=0 λ
jCj , where Cj ∈ Rd×p, is defined to761

be762

p(A)f =

J∑
j=0

AjfCj ,

followed by a pointwise non-linearity like ReLU. Such a convolutional layer can be seen as J + 1763

MPLs. We first apply J MPLs, where each MPL is of the form764

θ(f) =
(
f , Af

)
.

We then apply an update layer765

U(f) = fC

for some C ∈ R(J+1)d×p, followed by the pointwise non-linearity. The message part of θ can be766

written in our formulation with Φ(a, b) = b, and the update part of θ with η(c, d) = (c, d). The last767

update layer U is linear followed by the pointwise non-linearity.768

G Lipschitz continuity of MPNNs769

In this appendix we prove Theorem 4.1. For v ∈ Rd, we often denote by |v| = ∥v∥∞. We define the770

L1 norm of a measurable function h : [0, 1] → Rd by771

∥h∥1 :=

∫ 1

0

|h(x)| dx =

∫ 1

0

∥h(x)∥∞dx.

Similarly,772

∥h∥∞ := sup
x∈Rd

|h(x)| = sup
x∈Rd

∥h(x)∥∞.

We define Lipschitz continuity with respect to the infinity norm. Namely, Z : Rd → Rc is called773

Lipschitz continuous with Lipschitz constant L if774

|Z(x)− Z(y)| = ∥Z(x)− Z(y)∥∞ ≤ L∥x− z∥∞ = L |x− z| .
We denote the minimal Lipschitz bound of the function Z by LZ .775

We extend L∞
r [0, 1] to the space of functions f : [0, 1] → Rd with the above L1 norm.776

Define the space Kq of kernels bounded by q > 0 to be the space of measurable functions777

K : [0, 1]2 → [−q, q].

The cut norm, cut metric, and cut distance are defined as usual for kernels in Kq .778

G.1 Lipschitz continuity of message passing and update layers779

In this subsection we prove that message passing layers and update layers are Lipschitz continuous780

with respect to he graphon-signal cut metric.781

Lemma G.1 (Product rule for message kernels). Let Φf ,Φg be the message kernels corresponding782

to the signals f, g. Then783

∥Φf − Φg∥L1[0,1]2 ≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.
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Proof. Suppose p = 1 For every x, y ∈ [0, 1]2784

|Φf (x, y)− Φg(x, y)| =

∣∣∣∣∣
K∑

k=1

ξkr (f(x))ξ
k
t (f(y))−

K∑
k=1

ξkr (g(x))ξ
k
t (g(y))

∣∣∣∣∣
≤

K∑
k=1

∣∣ξkr (f(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (g(y))

∣∣
≤

K∑
k=1

( ∣∣ξkr (f(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (f(y))

∣∣+ ∣∣ξkr (g(x))ξkt (f(y))− ξkr (g(x))ξ
k
t (g(y))

∣∣ )
≤

K∑
k=1

(
Lξkr

|f(x)− g(x)|
∣∣ξkt (f(y))∣∣+ ∣∣ξkr (g(x))∣∣Lξkt

|f(y)− g(y)|
)
.

Hence,785

∥Φf − Φg∥L1[0,1]2

≤
K∑

k=1

∫ 1

0

∫ 1

0

(
Lξkr

|f(x)− g(x)|
∣∣ξkt (f(y))∣∣+ ∣∣ξkr (g(x))∣∣Lξkt

|f(y)− g(y)|
)
dxdy

≤
K∑

k=1

(
Lξkr

∥f − g∥1∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt
∥f − g∥1

)
=

K∑
k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.

■786

Lemma G.2. Let Q,V be two message kernels, and W ∈ W0. Then787

∥Agg(W,Q)−Agg(W,V )∥1 ≤ ∥Q− V ∥1.

Proof.788

Agg(W,Q)(x)−Agg(W,V )(x) =

∫ 1

0

W (x, y)(Q(x, y)− V (x, y))dy

So789

∥Agg(W,Q)−Agg(W,V )∥1 =

∫ 1

0

∣∣∣∣∫ 1

0

W (x, y)(Q(x, y)− V (x, y))dy

∣∣∣∣ dx
≤
∫ 1

0

∫ 1

0

|W (x, y)(Q(x, y)− V (x, y))| dydx

≤
∫ 1

0

∫ 1

0

|(Q(x, y)− V (x, y))| dydx = ∥Q− V ∥1.

■790

As a result of Lemma G.2 and the product rule Lemma G.1, we have the following corollary, that791

computes the error in aggregating two message kernels with the same graphon.792

Corollary G.3.

∥Agg(W,Φf )−Agg(W,Φg)∥1 ≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1.

Next we fix the message kernel, and bound the difference between the aggregation of the message793

kernal with respect to two different graphons. Let L+[0, 1] be the space of measurable function794

f : [0, 1] → [0, 1]. The folliwing lemma is a trivial extension of [23, Lemma 8.10] from K1 to Kr.795
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Lemma G.4. For any kernel Q ∈ Kr796

∥Q∥□ = sup
f,g∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣ ,
where the supremum is attained for some f, g ∈ L+[0, 1].797

The following Lemma is proven as part of the proof of [23, Lemma 8.11].798

Lemma G.5. For any kernel Q ∈ Kr799

sup
f,g∈L∞

1 [0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣ ≤ 4∥Q∥□.

For completeness, we give here a self-contained proof.800

Proof. Any function f ∈ L∞
1 [0, 1] can be written as f = f+ − f−, where f+, f− ∈ L+[0, 1]. Hence,801

by Lemma G.4,802

sup
f,g∈L∞

1 [0,1]

∣∣∣∣∣
∫
[0,1]2

f(x)Q(x, y)g(y)dxdy

∣∣∣∣∣
= sup

f+,f−,g+,g−∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

(f+(x)− f−(x))Q(x, y)(g+(y)− g−(y))dxdy

∣∣∣∣∣
≤

∑
s∈{+,−}

sup
fs,gs∈L+[0,1]

∣∣∣∣∣
∫
[0,1]2

fs(x)Q(x, y)gs(y)dxdy

∣∣∣∣∣ = 4∥Q∥□.

■803

Next we state a simple lemma.804

Lemma G.6. Let f = f+ − f− be a signal, where f+, f− : [0, 1] → (0,∞) are measurable. Then805

the supremum in the cut norm ∥f∥□ = supS⊂[0,1]

∣∣∫
S
f(x)dx

∣∣ is attained as the support of either f+806

or f−.807

Lemma G.7. Let f ∈ L∞
2 [0, 1] , W,V ∈ W0, and suppose that

∣∣ξkr (f(x))∣∣ , ∣∣ξkt (f(x))∣∣ ≤ ρ for808

every x ∈ [0, 1] and k = 1, . . . ,K. Then809

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ 4Kρ2∥W − V ∥□.
Moreover, if ξkr and ξkt are non-negatively valued for every k = 1, . . . ,K, then810

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ Kρ2∥W − V ∥□.

Proof. Let T = W − V . Let S be the minimizer of the infimum underlying the cut norm of811

Agg(T,Φf ). Suppose without loss of generality that
∫
S
Agg(T,Φf )(x)dx > 0. Denote qkr (x) =812

ξkr (f(x)) and qkt (x) = ξkt (f(x)). We have813 ∫
S

(
Agg(W,Φf )(x)−Agg(W,Φf )(x)

)
dx =

∫
S

Agg(T,Φf )(x)dx

=

K∑
k=1

∫
S

∫ 1

0

qkr (x)T (x, y)q
k
t (y)dydx.

Let814

vkr (x) =

{
qkr (x)/ρ x ∈ S

0 x /∈ S.
(27)

Moreover, define vkt = qkt /ρ, and note that vkr , v
k
t ∈ L∞

1 [0, 1]. We hence have, by Lemma G.5,815 ∫
S

Agg(T,Φf )(x)dx =

K∑
k=1

ρ2
∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

≤
K∑

k=1

ρ2
∣∣∣∣∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

∣∣∣∣
≤ 4Kρ2∥T∥□.
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Hence,816

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ 4Kρ2∥T∥□
Lastly, in case ξkr , ξ

k
t are nonnegatively valued, so are qkr , q

k
t , and hence by Lemma G.4,817 ∫

S

Agg(T,Φf )(x)dx ≤ Kρ2∥T∥□.

■818

Theorem G.8. Let (W, f), (V, g) ∈ WLr, and suppose that
∣∣ξkr (f(x))∣∣ , ∣∣ξkt (f(x))∣∣ ≤ ρ and819

Lξkt
, Lξkt

< L for every x ∈ [0, 1] and k = 1, . . . ,K. Then,820

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4KLρ∥f − g∥□ + 4Kρ2∥W − V ∥□.

Proof. By Lemma G.1, Lemma G.2 and Lemma G.7,821

∥Agg(W,Φf )−Agg(V,Φg)∥□
≤ ∥Agg(W,Φf )−Agg(W,Φg)∥□ + ∥Agg(W,Φg)−Agg(V,Φg)∥□

≤
K∑

k=1

(
Lξkr

∥ξkt ∥∞ + ∥ξkr ∥∞Lξkt

)
∥f − g∥1 + 4Kρ2∥W − V ∥□

≤ 4KLρ∥f − g∥□ + 4Kρ2∥W − V ∥□.

■822

Lastly, we show that update layers are Lipschitz continuous. Since the update function takes two823

functions f : [0, 1] → Rdi (for generally two different output dimensions d1, d2), we “concatenate”824

these two inputs and treat it as one input f : [0, 1] → Rd1+d2 .825

Lemma G.9. Let η : Rd+p → Rs be Lipschitz with Lipschitz constant Lη, and let f, g ∈ L∞
r [0, 1]826

with values in Rd+p for some d, p ∈ N.827

Then828

∥η(f)− η(g)∥1 ≤ Lη∥f − g∥1.

Proof.829

∥η(f)− η(g)∥1 =

∫ 1

0

∣∣η(f(x))− η
(
g(x)

)∣∣ dx
≤
∫ 1

0

Lη |f(x)− g(x)| dx = Lη∥f − g∥1.

■830

G.2 Bounds of signals and MPLs with Lipschitz message and update functions831

We will consider three settings for the MPNN Lipschitz bounds. In all setting, the transmitter, receiver,832

and update functions are Lipschitz. In the first setting all message and update functions are assumed833

to be bounded. In the second setting, there is no additional assumption over Lipschtzness of the834

transmitter, receiver, and update functions. In the third setting, we assume that the message function835

Φ is also Lipschitz with Lipschitz bound LΦ, and that all receiver and transmitter functions are836

non-negatively bounded (e.g., via an application of ReLU or sigmoid in their implementation). Note837

that in case K = 1 and all functions are differentiable, by the product rule, Φ can be Lipschitz only838

in two cases: if both ξr and ξt are bounded and Lipschitz, or if either ξr or ξt is constant, and the839

other function is Lipschitz. When K > 1, we can have combinations of these cases.840

We next derive bounds for the different settings. A bound for setting 1 is given in Theorem G.8.841

Moreover, When the receiver and transmitter message functions and the update functions are bounded,842

so is the signal at each layer.843
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Bounds for setting 2.844

Next we show boundedness when the reciever and transmitter message and update functions are only845

assumed to be Lipschitz.846

Define the formal bias Bξ of a function ξ : Rd1 → Rd2 to be ξ(0) [25]. We note that the formal bias847

of an affine-linear operator is its classical bias.848

Lemma G.10. Let (W, f) ∈ WLr, and suppose that for every y ∈ {r, t} and k = 1, . . . ,K849 ∣∣ξky (0)∣∣ ≤ B, Lξky
< L.

Then,850

∥ξky ◦ f∥∞ ≤ Lr +B

and851

∥Agg(W,Φf )∥∞ ≤ K(Lr +B)2.

Proof. Let y ∈ {r, t}. We have852 ∣∣ξky (f(x))∣∣ ≤ ∣∣ξky (f(x))− ξky (0)
∣∣+B ≤ Lξky

|f(x)|+B ≤ Lr +B,

so,853

|Agg(W,Φf )(x)| =

∣∣∣∣∣
K∑

k=1

∫ 1

0

ξkr (f(x))W (x, y)ξkt (f(y))dy

∣∣∣∣∣
≤ K(Lr +B)2.

■854

Next, we have a direct result of Theorem G.8.855

Corollary G.11. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K856 ∣∣ξky (0)∣∣ ≤ B, Lξky
< L.

Then, for every (W, f), (V, g) ∈ WLr,857

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4K(L2r + LB)∥f − g∥□ + 4K(Lr +B)2∥W − V ∥□.

Bound for setting 3.858

Lemma G.12. Let (W, f) ∈ WLr, and suppose that859

|Φ(0, 0)| < B, LΦ < L.

Then,860

∥Φf∥∞ ≤ Lr +B

and861

∥Agg(W,Φf )∥∞ ≤ Lr +B.

Proof. We have862

|Φ(f(x), f(y))| ≤ |Φ(f(x), f(y))− Φ(0, 0)|+B ≤ LΦ |(f(x), f(y))|+B ≤ Lr +B,

so,863

|Agg(W,Φf )(x)| =
∣∣∣∣∫ 1

0

W (x, y)Φ(f(x), f(y))dy

∣∣∣∣
≤ Lr +B.

■864
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Additional bounds.865

Lemma G.13. Let f be a signal, W,V ∈ W0, and suppose that ∥Φf∥∞ ≤ ρ for every k = 1, . . . ,K,866

and that ξkr and ξkt are non-negatively valued. Then867

∥Agg(W,Φf )−Agg(V,Φf )∥□ ≤ Kρ∥W − V ∥□.

Proof. The proof follows the steps of Lemma G.7 until (27), from where we proceed differently. Since868

all of the functions qkr and qkt , k ∈ [K], and since ∥Φf∥∞ ≤ ρ, the product of each qkr (x)q
k
t (y) must869

be also bounded by ρ for every x ∈ [0, 1] and k ∈ [K]. Hence, we may replace the normalization in870

(27) with871

vkr (x) =

{
qkr (x)/ρ

k
r x ∈ S

0 x /∈ S
, vkt (y) =

{
qkt (y)/ρ

k
t y ∈ S

0 y /∈ S,

where for every k ∈ [K], ρkr ρ
k
t = ρ. This guarantees that vkr , v

k
t ∈ L∞

1 [0, 1]. Hence,872 ∫
S

Agg(T,Φf )(x)dx =

K∑
k=1

∫ 1

0

∫ 1

0

ρkr v
k
r (x)T (x, y)ρ

k
t v

k
t (y)dydx

873

≤
K∑

k=1

ρ

∣∣∣∣∫ 1

0

∫ 1

0

vkr (x)T (x, y)v
k
t (y)dydx

∣∣∣∣ ≤ Kρ∥T∥□.

■874

Theorem G.14. Let (W, f), (V, g) ∈ WLr, and suppose that ∥Φ∥∞,∥ξkr ∥∞, ∥ξkt ∥∞ ≤ ρ, all875

message fucntions ξ are non-neagative valued, and Lξkt
, Lξkt

< L, for every k = 1, . . . ,K. Then,876

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4KLρ∥f − g∥□ +Kρ∥W − V ∥□.

The proof follows the steps of Theorem G.8.877

Corollary G.15. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K878

|Φ(0, 0)| ,
∣∣ξky (0)∣∣ ≤ B, Lϕ, Lξky

< L,

and ξ,Φ are all non-negatively valued. Then, for every (W, f), (V, g) ∈ WLr,879

∥Agg(W,Φf )−Agg(V,Φg)∥□ ≤ 4K(L2r + LB)∥f − g∥□ +K(Lr +B)∥W − V ∥□.

The proof follows the steps of Corollary G.11.880

G.3 Lipschitz continuity theorems for MPNNs881

The following recurrence sequence will govern the propagation of the Lipschitz constant of the882

MPNN and the bound of signal along the layers.883

Lemma G.16. Let a = (a1, a2, . . .) and b = (b1, b2, . . .). The solution to et+1 = atet + bt, with884

initialization e0, is885

et = Zt(a,b, e0) :=

t−1∏
j=0

aje0 +

t−1∑
j=1

j−1∏
i=1

at−ibt−j , (28)

where, by convention,886

0∏
i=1

at−i := 1.

In case there exist a, b ∈ R such that ai = a and bi = b for every i,887

et = ate0 +

t−1∑
j=0

ajb.
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Setting 1.888

Theorem G.17. Let Θ be a MPNN with T layers. Suppose that for every layer and every y and k,889

∥tξky∥∞, ∥ηt∥∞ ≤ ρ, Lηt , Ltξky
< L.

Let (W, f), (V, g) ∈ WLr. Then, for MPNN with no update function890

∥Θt(W, f)−Θt(V, g)∥□ ≤ (4KLρ)t∥f − g∥□ +

t−1∑
j=0

(4KLρ)j4Kρ2∥W − V ∥□,

and for MPNN with update function891

∥Θt(W, f)−Θt(V, g)∥□ ≤ (4KL2ρ)t∥f − g∥□ +

t−1∑
j=0

(4KL2ρ)j4Kρ2L∥W − V ∥□.

Proof. We prove for MPNNs with update function, where the proof without update function is similar.892

We can write a recurrence sequence for a bound ∥Θt(W, f) − Θt(V, g)∥□ ≤ et, by Theorem G.8893

and Lemma G.9, as894

et+1 = 4KL2ρet + 4Kρ2L∥W − V ∥□.
The proof now follows by applying Lemma G.16 with a = 4KL2ρ and b = 4Kρ2L. ■895

Setting 2.896

Lemma G.18. Let Θ be a MPNN with T layers. Suppose that for every layer t and every y ∈ {r, t}897

and k ∈ [K],898 ∣∣ηt(0)∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , Ltξky
< L

with L,B > 1. Let (W, f) ∈ WLr. Then, for MPNN without update function, for every layer t,899

∥Θt(W, f)∥∞ ≤ (2KL2B2)2
t

∥f∥2
t

∞,

and for MPNN with update function, for every layer t,900

∥Θt(W, f)∥∞ ≤ (2KL3B2)2
t

∥f∥2
t

∞,

Proof. We first prove for MPNNs without update functions. Denote by Ct a bound on ∥tf∥∞, and let901

C0 be a bound on ∥f∥∞. By Lemma G.10, we may choose bounds such that902

Ct+1 ≤ K(LCt +B)2 = KL2C2
t + 2KLBCt +KB2.

We can always choose Ct,K, L > 1, and therefore,903

Ct+1 ≤ KL2C2
t + 2KLBCt +KB2 ≤ 2KL2B2C2

t .

Denote a = 2KL2B2. We have904

Ct+1 = a(Ct)
2 = a(aC2

t−1)
2 = a1+2C4

t−1 = a1+2(a(Ct−2)
2)4

= a1+2+4(Ct−2)
8 = a1+2+4+8(Ct−3)

16 ≤ a2
t

C2t

0 .

Now, for MPNNs with update function, we have905

Ct+1 ≤ LK(LCt +B)2 +B

= KL3C2
t + 2KL2BCt +KB2L+B

≤ 2KL3B2C2
t ,

and we proceed similarly.906

■907
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Theorem G.19. Let Θ be a MPNN with T layers. Suppose that for every layer t and every y ∈ {r, t}908

and k ∈ [K],909 ∣∣ηt(0)∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , Ltξky
< L,

with L,B > 1. Let (W, g), (V, g) ∈ WLr. Then, for MPNNs without update functions910

∥Θt(W, f)−Θt(V, g)∥□ ≤
t−1∏
j=0

4K(L2rj + LB)∥f − g∥□

+

t−1∑
j=1

j−1∏
i=1

4K(L2rt−i + LB)4K(Lrt−j +B)2∥W − V ∥□,

where911

ri = (2KL2B2)2
i

∥f∥2
i

∞,

and for MPNNs with update functions912

∥Θt(W, f)−Θt(V, g)∥□ ≤
t−1∏
j=0

4K(L3rj + L2B)∥f − g∥□

+

t−1∑
j=1

j−1∏
i=1

4K(L3rt−i + L2B)4KL(Lrt−j +B)2∥W − V ∥□,

where913

ri = (2KL3B2)2
i

∥f∥2
i

∞.

Proof. We prove for MPNNs without update functions. The proof for the other case is similar. By914

Corollary G.11, since the signals at layer t are bounded by915

rt = (2KL2B2)2
t

∥f∥2
t

∞,

we have916

∥Θt+1(W, f)−Θt+1(V, g)∥□
≤ 4K(L2rt + LB)∥Θt(W, f)−Θt(V, g)∥□ + 4K(Lrt +B)2∥W − V ∥□.

We hence derive a recurrence sequence for a bound ∥Θt(W, f)−Θt(V, g)∥□ ≤ et, as917

et+1 = 4K(L2rt + LB)et + 4K(Lrt +B)2∥W − V ∥□.
We now apply Lemma G.16. ■918

Setting 3.919

Lemma G.20. Suppose that for every layer t and every y ∈ {r, t} and k = 1, . . . ,K,920 ∣∣ηt(0)∣∣ , ∣∣Φt(0, 0)
∣∣ , ∣∣tξky (0)∣∣ ≤ B, Lηt , LΦt , Ltξky

< L,

and ξ,Φ are all non-negatively valued. Then, for MPNNs without update function921

∥Θt(W, f)∥∞ ≤ Lt∥f∥∞ +

t−1∑
j=1

LjB,

and for MPNNs with update function922

∥Θt(W, f)∥∞ ≤ L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B),

Proof. We first prove for MPNNs without update functions. By Lemma G.10, there is a bound et of923

∥Θt(W, f)∥∞ that satisfies924

et = Let−1 +B.

Solving this recurent sequence via Lemma G.16 concludes the proof.925

Lastly, for MPNN with update functions, we have a bound that satisfies926

et = L2et−1 + LB +B,

and we proceed as before. ■927
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Lemma G.21. Suppose that for every y ∈ {r, t} and k = 1, . . . ,K928 ∣∣ηt(0)∣∣ , |Φ(0, 0)| ,
∣∣ξky (0)∣∣ ≤ B, LΦ, Lξky

< L,

and ξ,Φ are all non-negatively valued. Let (W, g), (V, g) ∈ WLr. Then, for MPNNs without update929

functions930

∥Θt(W,Φf )−Θt(V,Φg)∥□ = O(KtL2t+t2rtBt)
(
∥W − V ∥□ + ∥f − g∥□

)
,

and for MPNNs with update functions931

∥Θt(W,Φf )−Θt(V,Φg)∥□ = O(KtL3t+2t2rtBt)
(
∥W − V ∥□ + ∥f − g∥□

)
Proof. We start with MPNNs without update functions. By Corollary G.15 and Lemma G.20, there is932

a bound et on the error ∥Θt(W,Φf )−Θt(V,Φg)∥□ at step t that satisfies933

et = 4K(L2rt−1 + LB)et−1 +K(Lr +B)∥W − V ∥□

= 4K
(
L2
(
Lt∥f∥∞ +

t−1∑
j=1

LjB
)
+ LB

)
et−1 +K

(
L
(
Lt∥f∥∞ +

t−1∑
j=1

LjB
)
+B

)
∥W − V ∥□.

Hence, by Lemma G.16, and Z defined by (28),934

et = Zt(a,b, ∥f − g∥□) = O(KtL2t+t2rtBt)
(
∥f − g∥□ + ∥W − V ∥□

)
,

where in the notations of Lemma G.16,935

at = 4K
(
L2(Lt∥f∥∞ +

t−1∑
j=1

LjB) + LB
)

and936

bt = K
(
L(Lt∥f∥∞ +

t−1∑
j=1

LjB) +B
)
∥W − V ∥□.

Next, for MPNNs with update functions, there is a bound that satisfies937

et = 4K(L3rt−1 + L2B)et−1 +K(L2r + LB)∥W − V ∥□

= 4K
(
L3
(
L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B)
)
+ L2B

)
et−1

+K
(
L2
(
L2t∥f∥∞ +

t−1∑
j=1

L2j(LB +B)
)
+ LB

)
∥W − V ∥□.

Hence, by Lemma G.16, and Z defined by (28),938

et = O(KtL3t+2t2rtBt)
(
∥f − g∥□ + ∥W − V ∥□

)
.

■939

H Generalization bound for MPNNs940

In this appendix we prove Theorem 4.2.941

H.1 Statistical learning and generalization analysis942

In the statistical setting of learning, we suppose that the dataset comprises independent random943

samples from a probability space that describes all possible data P . We suppose that for each944

x ∈ P there is a ground truth value yx ∈ Y , e.g., the ground truth class or value of x, where Y945

is, in general, some measure space. The loss is a measurable function L : Y2 → R+ that defines946
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similarity in Y . Given a measurable function Θ : P → Y , that we call the model or network, its947

accuracy on all potential inputs is defined as the statistical risk Rstat(Θ) = Ex∼P

(
L(Θ(x), yx)

)
.948

The goal in learning is to find a network Θ, from some hypothesis space T , that has a low statistical949

risk. In practice, the statistical risk cannot be computed analytically. Instead, we suppose that a950

dataset X = {xm}Mm=1 ⊂ P of M ∈ N random independent samples with corresponding values951

{ym}Mm=1 ⊂ Y is given. We estimate the statistical risk via a “Monte Carlo approximation,” called952

the empirical risk Remp(Θ) = 1
M

∑M
m=1 L(Θ(xm), ym). The network Θ is chosen in practice by953

optimizing the empirical risk. The goal in generalization analysis is to show that if a learned Θ attains954

a low empirical risk, then it is also guaranteed to have a low statistical risk.955

One technique for bounding the statistical risk in terms of the empirical risk is to use956

the bound Rstat(Θ) ≤ Remp(Θ) + E, where E is the generalization error E =957

supΘ∈T |Rstat(Θ)−Remp(Θ)|, and to find a bound for E. Since the trained network Θ = ΘX958

depends on the data X , the network is not a constant when varying the dataset, and hence the959

empirical risk is not really a Monte Carlo approximation of the statistical risk in the learning set-960

ting. If the network Θ was fixed, then Monte Carlo theory would have given us a bound of E2 of961

order O
(
κ(p)/M

)
in an event of probability 1− p, where, for example, in Hoeffding’s inequality962

Theorem H.2, κ(p) = log(2/p). Let us call such an event a good sampling event. Since the good963

sampling event depends on Θ, computing a naive bound to the generalization error would require964

intersecting all good sampling events for all Θ ∈ T . Uniform convergence bounds are approaches for965

intersecting adequate sampling events that allow bounding the generalization error more efficiently.966

This intersection of events leads to a term in the generalization bound, called the complexity/capacity,967

that describes the richness of the hypothesis space T . This is the philosophy behind approaches such968

as VC-dimension, Rademacher dimension, fat-shattering dimension, pseudo-dimension, and uniform969

covering number (see, e.g., [32]).970

H.2 Classification setting971

We define a ground truth classifier into C classes as follows. Let C : W̃Lr → RC be a measur-972

able piecewise constant function of the following form. There is a partition of WLr into disjoint973

measurable sets B1, . . . , BC ⊂ W̃Lr such that
⋃C

i=1 Bi = W̃Lr, and for every i ∈ [C] and every974

x ∈ Bi,975

C(x) = ei,

where ei ∈ RC is the standard basis element with entries (ei)j = δi,j , where δi,j is the Kronecker976

delta.977

We define an arbitrary data distribution as follows. Let B be the Borel σ-algebra of W̃Lr, and ν be978

any probability measure on the measurable space (W̃Lr,B). We may assume that we complete B979

with respect to ν, obtaining the σ-algebra Σ. If we do not complete the measure, we just denote980

Σ = B. Defining (W̃Lr,Σ, ν) as a complete measure space or not will not affect our construction.981

Let S be a metric space. Let Lip(S, L) be the space of Lipschitz cintinuous mappings Υ : S → RC982

with Lipschitz constant L. Note that by Theorem 4.1, for every i ∈ [C], the space of MPNN983

with Lipschitz continuous input and output message functions and Lipschitz update functions,984

restricted to Bi, is a subset of Lip(Bi, L1) which is the restriction of Lip(W̃Lr, L1) to Bi ⊂ W̃Lr,985

for some L1 > 0. Moreover, Bi has finite covering κ(ϵ) given in (25). Let E be a Lipschitz986

continuous loss function with Lipschitz constant L2. Therefore, since C|Bi
is in Lip(Bi, 0), for any987

Υ ∈ Lip(W̃Lr, L1), the function E(Υ|Bi
, C|Bi

) is in Lip(Bi, L) with L = L1L2.988

H.3 Uniform Monte Carlo approximation of Lipschitz continuous functions989

The proof of Theorem 4.2 is based on the following Theorem H.3, which studies uniform Monte990

Carlo approximations of Lipschitz continuous functions over metric spaces with finite covering.991

Definition H.1. A metric space M is said to have covering number κ : (0,∞) → N, if for every992

ϵ > 0, the space M can be covered by κ(ϵ) ball of radius ϵ.993
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Theorem H.2 (Hoeffding’s Inequality). Let Y1, . . . , YN be independent random variables such that994

a ≤ Yi ≤ b almost surely. Then, for every k > 0,995

P
(∣∣∣ 1

N

N∑
i=1

(Yi − E[Yi])
∣∣∣ ≥ k

)
≤ 2 exp

(
− 2k2N

(b− a)2

)
.

The following theorem is an extended version of [25, Lemma B.3], where the difference is that we996

use a general covering number κ(ϵ), where in [25, Lemma B.3] the covering number is exponential997

in ϵ. For completion, we repeat here the proof, with the required modification.998

Theorem H.3 (Uniform Monte Carlo approximation for Lipschitz continuous functions). Let X be a
probability metric space5, with probability measure µ, and covering number κ(ϵ). Let X1, . . . , XN

be drawn i.i.d. from X . Then, for every p > 0, there exists an event Ep
Lip ⊂ XN (regarding the choice

of (X1, . . . , XN )), with probability

µN (Ep
Lip) ≥ 1− p,

such that for every (X1, . . . , XN ) ∈ Ep
Lip, for every bounded Lipschitz continuous function F : X →999

Rd with Lipschitz constant LF , we have1000 ∥∥∥∥∥
∫

F (x)dµ(x)− 1

N

N∑
i=1

F (Xi)

∥∥∥∥∥
∞

≤ 2ξ−1(N)Lf +
1√
2
ξ−1(N)∥F∥∞(1 +

√
log(2/p)), (29)

where ξ(r) = κ(r)2 log(κ(r))
r2 and ξ−1 is the inverse function of ξ.1001

Proof. Let r > 0. There exists a covering of X by a set of balls {Bj}j∈[J] of radius r, where1002

J = κ(r). For j = 2, . . . , J , we define Ij := Bj \ ∪i<jBi, and define I1 = B1. Hence, {Ij}j∈[J]1003

is a family of measurable sets such that Ij ∩ Ii = ∅ for all i ̸= j ∈ [J ],
⋃

j∈[J] Ij = χ, and1004

diam(Ij) ≤ 2r for all j ∈ [J ], where by convention diam(∅) = 0. For each j ∈ [J ], let zj be the1005

center of the ball Bj .1006

Next, we compute a concentration of error bound on the difference between the measure of Ij and its1007

Monte Carlo approximation, which is uniform in j ∈ [J ]. Let j ∈ [J ] and q ∈ (0, 1). By Hoeffding’s1008

inequality Theorem H.2, there is an event Eq
j with probability µ(Eq

j ) ≥ 1− q, in which1009 ∥∥∥∥∥ 1

N

N∑
i=1

1Ij (Xi)− µ(Ik)

∥∥∥∥∥
∞

≤ 1√
2

√
log(2/q)√

N
. (30)

Consider the event1010

EJq
Lip =

J⋂
j=1

Eq
j ,

with probability µN (EJq
Lip) ≥ 1− Jq. In this event, (30) holds for all j ∈ J . We change the failure1011

probability variable p = Jq, and denote Ep
Lip = EJq

Lip.1012

Next we bound uniformly the Monte Carlo approximation error of the integral of bounded Lipschitz1013

continuous functions F : χ → RF . Let F : χ → RF be a bounded Lipschitz continuous function1014

with Lipschitz constant LF . We define the step function1015

F r(y) =
∑
j∈[J]

F (zj)1Ij (y).

5A metric space with a probability Borel measure, where we either take the completion of the measure space
with respect to µ (adding all subsets of null-sets to the σ-algebra) or not.
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Then,1016 ∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤

∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

+

∥∥∥∥∫
χ

F r(y)dµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥
∞

=: (1) + (2) + (3).

(31)

To bound (1), we define for each Xi the unique index ji ∈ [J ] s.t. Xi ∈ Iji . We calculate,1017

∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
1

N

N∑
i=1

F r(Xi)

∥∥∥∥∥
∞

≤ 1

N

N∑
i=1

∥∥∥∥∥∥F (Xi)−
∑
j∈J

F (zj)1Ij (Xi)

∥∥∥∥∥∥
∞

=
1

N

N∑
i=1

∥F (Xi)− F (zji)∥∞

≤rLF .

We proceed by bounding (2). In the event of Ep
Lip, which holds with probability at least 1−p, equation1018

(30) holds for all j ∈ J . In this event, we get1019

∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑
j∈[J]

(
1

N

N∑
i=1

F (zj)1Ij (Xi)−
∫
Ij

F (zj)dy

)∥∥∥∥∥∥
∞

≤
∑
j∈[J]

∥F∥∞

∣∣∣∣∣ 1N
N∑
i=1

1Ij (Xi)− µ(Ij)

∣∣∣∣∣
≤ J∥F∥∞

1√
2

√
log(2J/p)√

N
.

Recall that J = κ(r). Then, with probability at least 1− p1020 ∥∥∥∥∥ 1

N

N∑
i=1

F r(Xi)−
∫
χ

F r(y)dµ(y)

∥∥∥∥∥
∞

≤ κ(r)∥F∥∞
1√
2

√
log(κ(r)) + log(2/p)√

N
.

To bound (3), we calculate1021

∥∥∥∥∫
X
F r(y)dµ(y)−

∫
X
F (y)dµ(y)

∥∥∥∥
∞

=

∥∥∥∥∥∥
∫
χ

∑
j∈[J]

F (zj)1Ijdµ(y)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥∥
∞

≤
∑
j∈[J]

∫
Ij

∥F (zj)− F (y)∥∞ dµ(y)

≤ rLF .
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By plugging the bounds of (1), (2) and (3) into (31), we get1022 ∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ 2rLF + κ(r)∥F∥∞
1√
2

√
log(κ(r)) + log(2/p)√

N

≤ 2rLF +
1√
2
κ(r)∥F∥∞

√
log(κ(r)) +

√
log(2/p)√

N

≤ 2rLF +
1√
2
κ(r)∥F∥∞

√
log(κ(r))√

N
(1 +

√
log(2/p)).

Lastly, choosing r = ξ−1(N) for ξ(r) = κ(r)2 log(κ(r))
r2 , gives κ(r)

√
log(κ(r))√
N

= r, so1023 ∥∥∥∥∥ 1

N

N∑
i=1

F (Xi)−
∫
χ

F (y)dµ(y)

∥∥∥∥∥
∞

≤ 2ξ−1(N)Lf +
1√
2
ξ−1(N)∥F∥∞(1 +

√
log(2/p)).

Since the event Ep
Lip is independent of the choice of F : χ → RF , the proof is finished. ■1024

H.4 A generalization theorem for MPNNs1025

The following generalization theorem of MPNN is now a direct result of Theorem H.3.1026

Let Lip(W̃Lr, L1) denote the space of Lipschitz continuous functions Θ : WLr → RC with1027

Lipschitz bound bounded by L1 and ∥Θ∥∞ ≤ L1. We note that the theorems of Appendix G.2 prove1028

that MPNN with Lipschitz continuous message and update functions, and bounded formal biases, are1029

in Lip(W̃Lr, L1).1030

Theorem H.4 (MPNN generalization theorem). Consider the classification setting of Appendix H.2.
Let X1, . . . , XN be independent random samples from the data distribution (W̃Lr,Σ, ν). Then,

for every p > 0, there exists an event Ep ⊂ W̃Lr

N
regarding the choice of (X1, . . . , XN ), with

probability

νN (Ep) ≥ 1− Cp− 2
C2

N
,

in which for every function Υ in the hypothesis class Lip(W̃Lr, L1), with we have1031 ∣∣∣R(ΥX)− R̂(ΥX,X)
∣∣∣ ≤ ξ−1(N/2C)

(
2L+

1√
2

(
L+ E(0, 0)

)(
1 +

√
log(2/p)

))
, (32)

where ξ(r) = κ(r)2 log(κ(r))
r2 , κ is the covering number of W̃Lr given in (25), and ξ−1 is the inverse1032

function of ξ.1033

Proof. For each i ∈ [C], let Si be the number of samples of X that falls within Bi. The ran-1034

dom variable (S1, . . . , SC) is multinomial, with expected value (N/C, . . . , N/C) and variance1035

(N(C−1)
C2 , . . . , N(C−1)

C2 ) ≤ (NC , . . . , N
C ). We now use Chebyshev’s inequality, which states that for1036

any a > 0,1037

P
(
|Si −N/C| > a

√
N

C

)
< a−2.

We choose a
√

N
C = N

2C , so a = N1/2

2C1/2 , and1038

P (|Si −N/C| > N

2C
) <

2C

N
.

Therefore,1039

P (Si >
N

2C
) > 1− 2C

N
.
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We intersect these events of i ∈ [C], and get an event Emult of probability more than 1− 2C2

N in which1040

Si >
N
2C for every i ∈ [C]. In the following, given a set Bi we consider a realization M = Si, and1041

then use the law of total probability.1042

From Theorem H.3 we get the following. For every p > 0, there exists an event Ep
i ⊂ BM

i regarding
the choice of (X1, . . . , XM ) ⊂ Bi, with probability

νM (Ep
Lip) ≥ 1− p,

such that for every function Υ′ in the hypothesis class Lip(W̃Lr, L1), we have1043 ∣∣∣∣∣
∫

E
(
Υ′(x), C(x)

)
dν(x)− 1

M

M∑
i=1

E
(
Υ′(Xi), C(Xi)

)∣∣∣∣∣ (33)

≤ 2ξ−1(M)L+
1√
2
ξ−1(M)∥E

(
Υ′(·), C(·)

)
∥∞(1 +

√
log(2/p)) (34)

≤ 2ξ−1(N/2C)L+
1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)), (35)

where ξ(r) = κ(r)2 log(κ(r))
r2 , κ is the covering number of W̃Lr given in (25), and ξ−1 is the inverse1044

function of ξ. In the last inequality, we use the bound, for every x ∈ ˜WLr,1045 ∣∣E(Υ′(x), C(x)
)∣∣ ≤ ∣∣E(Υ′(x), C(x)

)
− E(0, 0)

∣∣+ |E(0, 0)| ≤ L2 |L1 − 0|+ |E(0, 0)| .

Since (33) is true for any Υ′ ∈ Lip(W̃Lr, L1), it is also true for ΥX for any realization of X, so we1046

also have1047 ∣∣∣R(ΥX)− R̂(ΥX,X)
∣∣∣ ≤ 2ξ−1(N/2C)L+

1√
2
ξ−1(N/2C)(L+ E(0, 0))(1 +

√
log(2/p)).

Lastly, we denote1048

Ep = Emult ∩
( C⋃

i=1

Ep
i

)
.

■1049

I Stability of MPNNs to graph subsampling1050

Lastly, we prove Theorem 4.3.1051

Theorem I.1. Consider the setting of Theorem 4.2, and let Θ be a MPNN with Lipschitz constant L.1052

Denote1053

Σ =
(
W,Θ(W, f)

)
, and Σ(Λ) =

(
G(W,Λ),Θ

(
G(W,Λ), f(Λ)

))
.

Then1054

E
(
δ□
(
Σ,Σ(Λ)

))
<

15√
log(k)

L.

Proof. By Lipschitz continuity of Θ,1055

δ□
(
Σ,Σ(Λ)

)
≤ Lδ□

((
W, f

)
,
(
G(W,Λ), f(Λ)

))
.

Hence,1056

E
(
δ□
(
Σ,Σ(Λ)

))
≤ LE

(
δ□

((
W, f

)
,
(
G(W,Λ), f(Λ)

)))
,

and the claim of the theorem follows from Theorem 3.6. ■1057

As explained in Section 3.5, the above theorem of stability of MPNNs to graphon-signal sampling1058

also applies to subsampling graph-signals.1059
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