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ABSTRACT

Graph Neural Networks (GNNs) have brought a significant transformation in
the realm of graph representation learning. They achieve this by employing a
neighborhood aggregation approach, wherein a node’s representation vector is
iteratively calculated by aggregating and modifying the corresponding vectors
of its neighboring nodes. Despite GNNs demonstrating superior performance
in various domains over the last ten years, recent theoretical studies have raised
concerns about their expressive capabilities, where they show that GNN models
yield results comparable to the well-established Weisfeiler-Lehman algorithm.
In this paper, driven by this motivation, we compare the performance of current
GNN models with conventional feature extraction methods in the context of link
prediction. Our experiments reveal that when applied to standard feature sets
derived from node neighborhoods and node features, standard machine learning
(ML) models deliver highly competitive results, even when pitted against cutting-
edge GNN models. This holds true across both small and large benchmark datasets,
including those from the Open Graph Benchmark (OGB). Our empirical findings
corroborate the previously mentioned theoretical observations and imply that there
exists ample room for enhancement in current GNN models to reach their potential.

1 INTRODUCTION

In a time characterized by the intricate web of digital connections, understanding and predicting the
formation of links between entities in complex networks has become a crucial challenge. Whether
it’s predicting social connections in online social networks, anticipating collaborations between
researchers, or forecasting potential interactions in recommendation systems, link prediction has
emerged as a fundamental task in the realm of graph representation learning. With the ongoing evolu-
tion of our societies and technologies, the significance of link prediction amplifies, considering its
capability to refine a broad spectrum of applications—ranging from personalized content suggestions
to strategic targeted marketing.

Over the past decade, Graph Neural Networks (GNNs) have achieved a significant breakthrough in
the field of graph representation learning, in particular link prediction tasks. They have accomplished
this by adapting various deep learning models originally developed for diverse domains such as
computer vision and natural language processing to the context of graphs (Section 2.1). GNNs employ
a variety of approaches and architectural designs to generate robust node embeddings, seamlessly
blending neighborhood information with domain-specific features. Despite their consistently superior
performance compared to state-of-the-art results, seminal papers like (Xu et al., 2019; Morris et al.,
2019; Li & Leskovec, 2022) have shown that the expressive capacity of message-passing GNN models
is not better than decades-old Weisfeiler-Lehman algorithm. These theoretical discoveries suggest
that existing GNN models may not be fully leveraging their potential to integrate information from
local neighborhoods and domain-specific knowledge when learning node embeddings, a fundamental
process in the creation of node representations.

In this paper, motivated by these findings, we hypothesize that current GNN models may not offer
significant improvements over traditional feature engineering models in link prediction task. In
order to empirically validate this hypothesis, we have devised a simple machine learning model by
employing conventional feature extraction techniques for link prediction task, Bag of Features. For
each pair of nodes, we initially derive structural features by using their proximity within the graph
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structure. Additionally, we acquire domain features by evaluating their similarity within the feature
space. The fusion of these spatial and domain features, when integrated with standard machine
learning methodologies, yields remarkably competitive results when compared to state-of-the-art
Graph Neural Network (GNN) models. These outcomes are consistently observed across a diverse
range of datasets.

Our contributions:

⋄ We propose a computationally feasible and scalable ML model Bag of Features (BFLP), by
adeptly merging existing feature extraction methods for link prediction.

⋄ Our model effectively combines the local neighborhood information and domain-specific
node features. These extracted features can be seamlessly integrated into any future ML
model to enhance their performance.

⋄ Our model consistently surpasses or achieves highly competitive results when compared to
state-of-the-art GNN models in benchmark datasets.

⋄ Our empirical results provide substantial support for recent theoretical findings, which
imply that current GNNs may not fully exploit their potential, especially when compared to
their counterparts in computer vision and NLP. This underscores the need for innovative
approaches to unlock the full capabilities of GNNs.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS FOR LINK PREDICTION

Much of the recent work on link prediction has been using GNNs. Most GNNs follow the message-
passing framework, in which a node’s representation is learned through an aggregation operation, to
pool local neighborhood features, and an update operation, which is a learned transformation (Guo
et al., 2023). Another common framework is the encoder-decoder framework in which the encoder
learns node representations and the decoder predicts the probability of a link between two nodes
(Guo et al., 2023). There are four main groups of GNNs currently used (Wu et al., 2020): recurrent
GNNs (RecGNN) (Dai et al., 2018), convolutional GNNs (ConvGNNs) (Chiang et al., 2019), graph
autoencoders (GAEs) (Bojchevski et al., 2018), and spatial–temporal GNNs (STGNNs) (Guo et al.,
2019).

In the link prediction task, GNNs have shown outstanding performance in the past decade (Zhang,
2022; Zhu et al., 2021; Wang et al., 2023). Zhao et al. (2022) use counterfactual links as a data-
augmentation method to obtain robust and high-performing GNN models. In (Yun et al., 2021), the
authors applied novel approaches to improve learning structural information from graphs. In (Zhu
et al., 2021), the authors integrate the Bellman-Ford algorithm for path representations to their GNN
model and obtain competitive results in both inductive and transductive settings. Wu et al. (2021)
proposed an effective similarity computation method by employing a hashing technique to boost the
performance of GNNs in link prediction tasks. Liu et al. (2022) developed high-performing GNNs for
dynamic interaction graph setting. There is an overwhelming literature on GNNs for link prediction
in the past few years, and a good review of these results can be found in (Zhang, 2022; Liu et al.,
2023; Wu et al., 2022).

2.2 FEATURE ENGINEERING FOR LINK PREDICTION

Before the GNNs, many of the common machine learning models often relied on feature engineering
methods as a primary approach (Kumar et al., 2020; Menon & Elkan, 2011). One of the simplest
approaches to link prediction is through similarity-based methods (Lü & Zhou, 2011), including local
similarity indices (Wu et al., 2016), global similarity indices (Jeh & Widom, 2002), and quasi-local
indices (Liu & Lü, 2010). In this case, the graphs are mostly assumed to be homophilic, and more
similar nodes are deemed more likely to have a link.

Most of the former feature extraction methods for link prediction can be categorized as local similarity
indices. Let S(u, v) denote a similarity score between two nodes u and v, let N (u) denote the set of
neighbors of a node u, and let ku denote the degree of a node u.
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Common Neighbors is the size of the intersection between two nodes’ neighbors (Newman, 2001).
This is equivalent to the number of paths of length 2 between two nodes. More common neighbors
indicates a higher likelihood for a link.

CN (u, v) = |N (u) ∩N (v)|

Jaccard Coefficient is a normalized Common Neighbor score (Jaccard, 1901). It corresponds to the
probability of selecting a common neighbor of two nodes from all neighbors of those nodes.

J (u, v) =
|N (u) ∩N (v)|
|N (u) ∪N (v)|

Salton Index (also Cosine similarity) measures similarity using orientation rather than magnitude
(Singhal et al., 2001).

Sa(u, v) =
|N (u) ∩N (v)|√

kukv

Sorensen Index was developed for ecological data samples (Sørensen, 1948), and it is more robust
than Jaccard against outliers (McCune & Grace, 2002).

So(u, v) =
2|N (u) ∩N (v)|

ku + kv

Adamic Adar Index basically measures the amount of shared links between two nodes (Adamic &
Adar, 2003). It is defined as

AA(u, v) =
∑

z∈N (u)∩N (v)

1

log |k(z)|

In this paper, we effectively use these traditional similarity indices as our structural features for node
pairs. We then effectively combine them with our domain features, which is the relevant similarity
measure between the node features, to complete our feature set for our ML models.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Link prediction problems in graph representation learning can be categorized into different types
based on the nature of the problem and the availability of information during the prediction process.
Three common types of link prediction problems are transductive, inductive, and semi-inductive link
prediction.

Let G = (V, E ,X ) be a graph, where V = {v1, v2, . . . , vn} represents the set of vertices (or nodes),
E ⊂ V ×V represents the set of edges (or links) and X represents the attribute feature matrix (n×m
size) where Xi ∈ Rm is the m-dimensional attribute feature vector of node vi. For the sake of
simplicity, we focus on unweighted, undirected graphs, but our setup can easily be adapted to more
general settings.

The main difference between these types comes from the availability of the information during the
prediction process. We split the vertex and edge sets as observed (old) and unobserved (new) subsets,
i.e. V = Vo ∪ Vu and E = Eo ∪ Eu. Hence, in the training process, we are provided Go = (Vo, Eo)
information, and we are asked to predict the existence of a link in Eu for a given node pair in V .
However, the type of the problem is determined with respect to which subsets (i.e., Vo or Vu) these
node pairs are chosen from:

• Transductive Setting: Predict whether eij ∈ Eu where vi, vj ∈ Vo.
• Semi-inductive Setting: Predict whether eij ∈ Eu where vi, vj ∈ Vo ∪ Vu.
• Inductive Setting: Predict whether eij ∈ Eu where vi, vj ∈ Vu. No local structure informa-

tion is provided, only attribute vectors {Xi} are provided for vi ∈ Vu.
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While, in the literature, the most common type is transductive setting, depending on the domain, the
relevant question can come in any of these forms. To maintain focus in this paper, we align with the
prevalent transductive setting, consistent with most contemporary GNN models. It is important to
note, however, that our proposed feature engineering ML model exhibits a high degree of versatility
and can easily adapt to any of these settings.

3.2 BFLP: BAG OF FEATURES FOR LINK PREDICTION

In the following, we give the details of our simple feature engineering model, Bag of Features for
Link Prediction (BFLP). Our primary aim in this approach is to furnish our ML classifier with a
comprehensive set of relevant and potentially valuable information concerning node pairs. We inten-
tionally opt to allow the classifier the discretion to determine which features to leverage, depending
on the dataset at hand. While existing literature typically employs these features individually or in
pairs, our intuition leads us to believe that by aggregating all of this information, the machine learning
classifier can make finer determinations within the feature space. Furthermore, these features can
synergistically reinforce each other, resulting in a more robust and accurate model.

In this context, our collection of features can be categorized into two distinct types: Structural
Features and Domain Features. Structural features draw upon the inherent graph structure and
neighborhood information, while domain features leverage similarity measures derived from the node
features provided.

STRUCTURAL FEATURES

Within our Bag of Features model, we incorporate a range of structural features. While a subset of
these features corresponds to established similarity indices as detailed in Section 2.2, along with their
generalizations, there are also novel features we introduce. These newly defined features are designed
to capture finer insights from the local neighborhoods of node pairs.

The established features are Jacard Index, Salton Index, Sorensen Index, and Adamic Adar (Sec-
tion 2.2). Furthermore, for Jacard, Salton, and Sorensen indices, we use their natural generalizations
for 3-neighborhood versions as well as new features like length-k paths and distance index.

Length-k paths index: For a given u, v ∈ V , we define length-k paths index Lk(u, v) as the total
number of length-k paths between the nodes u and v. Notice that length-2 paths index is the same
with common neighbors index, i.e. L2(u, v) = CM(u, v) = |N (u) ∩N (v)|.
3-Jaccard Coefficient is a slight modification of the original Jaccard Coefficient by using L3(u, v)
the length 3-paths (squares) instead of L2(u, v) length-2 paths (triangles) in our definition.

J 3(u, v) =
L3(u, v)

|N (u) ∪N (v)|

By using a similar idea, we implement a comparable adaptation to both the Salton and the Sorensen
Index, resulting in the following formulation:

3-Salton Index: S3
a(u, v) =

L3(u, v)√
kukv

3-Sorensen Index: S3
o (u, v) =

2L3(u, v)

ku + kv

Distance index: For a given u, v ∈ V , we define distance index D(u, v) as the length of the shortest
path between u and v in G. Note that when computing D(u, v), we remove the edge between u and v
from the graph if u and v are adjacent nodes. Therefore, D(u, v) ≥ 2 for any u ̸= v ∈ V . The main
motivation to define this index in this particular way is that in the test set, a priori, there won’t be
an edge between the nodes. Therefore, during training ML classifier, this distance index provides
valuable information to the ML classifier to distinguish positive and negative edges when combined
with other features.

Hence, for a given node pair u, v ∈ V , we produce ten structural features as fol-
lows J (u, v),Sa(u, v),So(u, v),J 3(u, v),S3

a(u, v),S3
o (u, v),AA(u, v),L2(u, v),L3(u, v) and

D(u, v).
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DOMAIN FEATURES

Next, we describe our domain features. Contrary to our structural features, our domain features do not
use graph structure, but only the feature vectors. For a given graph with node features G = (V, E ,X ),
let Xu ∈ Rm represent the feature vector for the node u ∈ V . In the following, for a given node pair
u, v ∈ V , we extract our domain features α(u, v) by using the similarity/dissimilarity of these node
feature vectors Xu and Xv .

We have several forms of domain features depending on the format of the feature vector. We group
them into three categories.

⋄ Xu is binary vector: Xi
u ∈ {0, 1}

In this case, we naturally interpret this as every binary digit in the vector Xu represents the existence
or nonexistence of a property. For example, if G represents a citation network, where nodes represent
papers, Xu can be a binary vector representing the existence or nonexistence of previously chosen
keywords in the paper u. We define two similarity measures between Xu and Xv .

Common Digits: If Xu is a binary vector, we define our Common Digits domain feature CD(u, v) as
the number of matching "1"s in the vectors Xu and Xv . i.e.,

CD(u, v) = #{i | Xi
u = Xi

v = 1}

Note that one can similarly define an analogous feature vector as the number of common "0"s to
emphasize the common absent properties.

Normalized Common Digits: This domain feature is a slight variation of the previous one with some
normalization factor. In particular, if Xu and Xv have only a few positive digits in their vectors,
having an equal number of common digits would result in them being considered more similar, in
contrast to node pairs with numerous positive digits. We normalize this feature by dividing it by the
total number of positive digits in both vectors Xu and Xv (not counting the common positive digits
twice).

ĈD(u, v) =
#{i | Xi

u = Xi
v = 1}

#{j | (Xu +Xv)j ≥ 1}
Notice that the vector Xu +Xv would have only 0, 1, and 2 digits where 2s represent the common
positive digits in Xu and Xv . i.e., CD(u, v) = #{j | (Xu +Xv)

j = 2}

⋄ Xi
u takes finitely many values: Xi

u ∈ {1, 2, . . . ,m}
In this case, we make the assumption that a particular entry denoted as Xi

u can assume a finite
set of distinct values, such as Xi

u ∈ 1, 2, . . . ,m. In such cases, we interpret this specific entry as
representing some sort of "class information" pertaining to a particular node feature of u. Notably, if
a node classification is provided in the data, we take this information into account within this context.
For instance, in citation networks, this data could correspond to the academic field of the paper (e.g.,
Mathematics, Computer Science, History) as a feature of the node. Within this category, we establish
two distinct domain features.

Common Class: This is a simple binary domain feature to detect if the "classes" are the same or not.
In particular, the Common Class feature is 1 if they are the same, 0 otherwise, i.e. CC(u, v) = 1 if
Xi

u = Xi
v, and CC(u, v) = 0 if Xi

u ̸= Xi
v. Our intuition here is that being in the same "class" for

two nodes is an important factor in deciding if there is a link between them.

Class Identifier: This time we aim to give the raw "class" information to our ML classifier as the
interaction between different classes might be an important factor for link prediction. In other
words, during training ML classifier might detect the pattern between certain "classes" given other
features which can be key information for link prediction, i.e. CI(u, v) = (Xi

u,X
i
v) where Xi

u ∈
{1, 2, . . . ,m} represents the class of u, e.g., CI(u, v) = (3, 5) where 3 and 5 represents the class
labels for u and v, respectively.

⋄ Xu is a real-valued vector: Xu ∈ Rm

When Xu is represented as a real-valued vector, it inherently serves as a node embedding within
a feature space Rm. Therefore, the similarity or dissimilarity between two nodes is intuitively
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associated with the separation between these embeddings. We employ two distinct types of distance
measurements as domain features.

L1 Distance: Simply, we use L1-norm (Manhattan metric) in the feature space Rm. If Xu =
[a1 a2 . . . am] and Xv = [b1 b2 . . . bm], we define

D(u, v) = d(Xu,Xv) =

m∑
i=1

|ai − bi|

Cosine Distance: Another popular distance formula using some normalization is the cosine dis-
tance/similarity. We define our cosine distance feature as

Dc(u, v) =
Xu ·Xv

∥Xu∥.∥Xv∥

We would like to note that numerous node attributes may result from a fusion of these three categories.
In such instances, we incorporate all of them by dissecting the node feature vector based on their
respective subtypes, subsequently acquiring the corresponding domain features for the node pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we used six benchmark datasets for link prediction tasks. All the
datasets are used in the transductive setting like most other baselines in the domain. The dataset
statistics are given in Table 1.

The citation network datasets, namely CORA, CITESEER and PUBMED are introduced in (Yang
et al., 2016), and they serve as valuable benchmark datasets for research in the field of semi-
supervised learning with graph representation learning. Within these datasets, individual nodes
correspond to distinct documents, while the edges between them symbolize citation links, elucidating
the interconnectedness of scholarly works within these domains.

In the context of co-purchasing networks, the benchmark datasets, PHOTO, and COMPUTERS, are
introduced in (Shchur et al., 2018) representing the sales network at Amazon. In these networks,
nodes correspond to various products, while edges signify the frequent co-purchasing of two products.
The primary objective of this study is to leverage product reviews, represented as bag-of-words node
features, to establish a mapping between individual goods and their respective product categories, thus
addressing a fundamental categorization task within the context of these interconnected networks.

Finally, the OGBL-COLLAB dataset is a part of the library of large benchmark datasets, namely
Open Graph Benchmark (OGB) collection (Hu et al., 2020; 2021a). This is an undirected graph,
representing a subset of the collaboration network between authors indexed by Microsoft Academic
Graph (MAG) (Wang et al., 2020). Each node represents an author and edges indicate the collaboration
between authors. All nodes come with 128-dimensional features, obtained by averaging the word
embeddings of papers that are published by the authors. All edges are associated with two meta-
information: the year and the edge weight, representing the number of co-authored papers published
in that year. The graph can be viewed as a dynamic multi-graph since there can be multiple edges
between two nodes if they collaborate in more than one year.

Experiment Settings. In the experimental methodology used for analyzing the datasets CORA,
CITESEER, and PUBMED, we followed one of the common settings used for these datasets (Zhao
et al., 2022). Specifically, 70% of the data is allocated for positive training purposes, while 10% is set
aside for validation and another 20% for testing. Correspondingly, an equal number of non-existing
pairs (negative set) are randomly selected for each of these sets.

To ensure accurate training results, graph structures in both the positive validation and test sets are
masked before training on the positive training dataset takes place. This process is repeated a total
of 10 times. On the other hand, for datasets COMPUTERS and PHOTO, we use a different split
configuration with ratios of 85/5/10 respectively following (Guo et al., 2022); and we repeated
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Table 1: Characteristics of our benchmark datasets for link prediction. FV Type represents the type
of the node feature vector provided.

Datasets Nodes Edges Classes Features FV Type
CORA 2,708 5,429 7 1,433 Binary
CITESEER 3,312 4,732 6 3,703 Binary
PUBMED 19,717 44,338 3 500 Binary
PHOTO 7,650 119,081 8 745 Binary
COMPUTERS 13,752 245,861 10 767 Binary
OGBL-COLLAB 235,868 1,285,465 – 128 Real

Table 2: Total number of features used for each dataset in our model.
CORA CITESEER PUBMED PHOTOS COMPUTERS OGBL-COLLAB

# Features 15 15 15 15 15 28

this specific process five times. It should be noted that regarding the OGBL-COLLAB dataset,
the sets including both positive (training/validation/test) as well as negative (validation/test) are
predefined within the dataset. The negative training set is randomly selected through a repetitive
process conducted 10 times.

Feature Sets. In all datasets except OGBL-COLLAB, we used the same feature sets described in
Section 3.2. Since OGBL-COLLAB is dynamic and weighted, we needed to adjust our features in
this dataset to adapt our method to this context. The total number of features used for each dataset is
given in Table 2. We gave the details of our feature sets for each dataset in Appendix A.

Metrics. There are various performance metrics used in the domain. While the most popular one is
AUC (The area under the receiver operating characteristic curve), depending on the context, other
performance metrics are also used. The second metric we use is AP (the area under the precision-
recall rate curve). Our final metric is Hits@K. In particular, after ranking each true link among a
set of 100,000 randomly sampled negative links, we count the ratio of positive links that are ranked
at K-place or above (Hits@K) (Hu et al., 2021b). For OGB datasets, the performance metrics are
suggested by the creators of the datasets. For OGB-COLLAB, we use the predefined metric for this
dataset, i.e., Hits@50.

Hyperparameter Settings. In our study, we utilize XGBoost as our machine learning tool. We
establish the objective function as rank:pairwise with logloss as the evaluation metric. When
evaluating results using the AUC metric, we configure key parameters: maximum tree depth 3,
learning rate 0.1, subsample ratio 0.8, colsample bytree ratio 0.8, the number of estimators 500, and
the regularization parameter lambda 5.0. Nonetheless, for the AP metric, we set the maximum tree
depth to 7 while keeping other hyperparameters unchanged. Conversely, for the challenging metric
Hits@20, we adjust the maximum tree depth to 5, the subsample ratio to 0.5, and the number of
estimators to 200 and maintain the remaining parameters unchanged. For metric Hits@50 we reset
maximum tree depth to 11, learning rate 0.5, and lambda to 1.0, while the othe hyperparameters are
kept same as the hyperparameters utilized for AUC metric.

Implementation and Runtime. We ran experiments on a single machine with 12th Generation
Intel Core i7-1270P vPro Processor (E-cores up to 3.50 GHz, P-cores up to 4.80 GHz), and 32Gb
of RAM (LPDDR5-6400MHz). While end-to-end runtime (computing feature vectors and ML
classifier) for OGBL-COLLAB is 30 minutes, the most time-consuming dataset is COMPUTERS,
requiring 18 hours of parallel task computations. The computational complexities of our similarity
indices are O(|V|.k3) where |V| is the total number of nodes and k is the maximum degree in the
network (Martínez et al., 2016). We provide our code at the link1

1Code link: https://github.com/workrep20232/LinkPrediction
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Table 3: Link prediction performances measured by AUC and Hits@20. Best performance and
second best performance are marked with bold blue and blue, respectively.

CORA CITESEER PUBMED

Models AUC Hits@20 AUC Hits@20 AUC Hits@20

Node2Vec 84.49 ±0.49 49.96 ±2.51 80.00 ±0.68 47.78 ±1.72 80.32 ±0.29 39.19 ±1.02
MVGRL 75.07 ±3.63 19.53 ±2.64 61.20 ±0.55 14.07 ±0.79 80.78 ±1.28 14.19 ±0.85
VGAE 88.68 ±0.40 45.91 ±3.38 85.35 ±0.60 44.04 ±4.86 95.80 ±0.13 23.73 ±1.61
SEAL 92.55 ±0.50 51.35 ±2.26 85.82 ±0.44 40.90 ±3.68 96.36 ±0.28 28.45 ±3.81
GCN 90.25 ±0.53 49.06 ±1.72 71.47 ±1.40 55.56 ±1.32 96.33 ±0.80 21.84 ±3.87
GSAGE 90.24 ±0.34 53.54 ±2.96 87.38 ±1.39 53.67 ±2.94 96.78 ±0.11 39.13 ±4.41
JKNet 89.05 ±0.67 48.21 ±3.86 88.58 ±1.78 55.60 ±2.17 96.58 ±0.23 25.64 ±4.11
CFLP 93.05 ±0.24 65.57 ±1.05 92.12 ±0.47 68.09 ±1.49 97.53 ±0.17 44.90 ±2.00

BFLP 94.54 ±0.30 61.21 ±2.63 95.01 ±0.35 72.03 ±1.47 94.73 ±0.15 42.12 ±2.00

Table 4: Link prediction performances measured by AUC and AP. Best performance and second best
performance are marked with bold blue and blue, respectively.

PHOTO COMPUTERS

Models AUC AP AUC AP

GAE 96.5 ±0.03 96.2 ±0.02 92.5 ±0.03 92.8 ±0.02
VGAE 95.2 ±0.04 94.9 ±0.04 92.5 ±0.04 92.8 ±0.05
ARGA 94.3 ±0.02 93.7 ±0.02 94.2 ±0.02 94.3 ±0.01
ARVGA 93.7 ±0.04 92.5 ±0.05 93.7 ±0.01 93.1 ±0.01
DBGAN 96.3 ±0.01 95.8 ±0.01 94.6 ±0.01 94.2 ±0.02
MSVGAE 96.7 ±0.01 96.3 ±0.01 95.1 ±0.02 94.6 ±0.01

BFLP 99.0 ±0.02 98.9 ±0.02 98.6 ±0.04 98.7 ±0.05

Table 5: Hits@50 Performances for OGBL-COLLAB
N2Vec MF MLP GCN GAT GSAGE SEAL BUDDY Neo-GNN NCN NCNC NBFNet OGB Leader Ours

49.06 41.81 35.81 54.96 55.00 59.44 63.37 64.59 66.13 63.86 65.97 OOM 70.96 76.50

4.2 RESULTS AND DISCUSSION

Baselines. We compare the link prediction performance of our model BFLP against the common
embedding methods and GNNs. The embedding methods include Matrix Factorization (MF) (Menon
& Elkan, 2011), MLP and Node2Vec (Grover & Leskovec, 2016), which are used to learn low-
dimensional node embeddings to predict the likelihood of node pairs existing. For GNNs, we include
GCN (Kipf & Welling, 2016a), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018),
GAE and VGAE (Kipf & Welling, 2016b), SEAL (Zhang & Chen, 2018), JKNet (Xu et al., 2018),
ARGA and ARVGA (Pan et al., 2018), MVGRL (Hassani & Khasahmadi, 2020), DBGAN (Zheng
et al., 2020), LGLP (Cai et al., 2021), MSVGAE (Guo et al., 2022), CFLP (Zhao et al., 2022). For
more details on these baselines, see (Li et al., 2023). For OGB-COLLAB, we used the baseline
performances from (Li et al., 2023) and further reported the performance of the current leader (Wang
et al., 2022) at OGB Leaderboard 2 as of September 28, 2023.

Results. We give our results in the Tables 3 to 5. Further results can be found in the appendix
(Tables 8 to 10). It’s clear that our Bag of Features model outperforms most of the current benchmarks
across the six datasets, with the exception of PUBMED. In the PUBMED dataset, our model closely
trails the top performer, securing the second position for the Hits@20 metric. Impressively, in datasets
like CITESEER, PHOTO, and COMPUTERS, our computationally efficient model leads in every
metric. What’s particularly noteworthy is its performance on the widely recognized benchmark

2https://ogb.stanford.edu
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for GNN models, the OGB-COLLAB dataset. Despite OGB being a benchmark for the best GNN
models, our straightforward model surpasses its competition, marking a remarkable achievement.

Ablation Study. In our ablation study (Table 6), we evaluated the relative contributions of our
structural and domain features. The outcomes are varied: domain features demonstrate greater
significance in datasets like CORA and CITESEER, whereas structural features take precedence in
datasets such as PHOTO and COMPUTERS. However, a consistent observation across all datasets
is the synergistic effect of these features. When combined, they invariably enhance the overall
performance. We reported further ablation studies in the appendix for the importance of individual
features (Table 7) and the performance of different ML classifiers (Table 11).

Table 6: Ablation Study. AUC results for our model for different feature subsets.
Features CORA CITESEER PUBMED PHOTO COMPUTERS
Structural only 83.98 ±0.53 75.96 ±0.96 87.94 ±0.29 98.7 ±0.03 98.2 ±0.04

Domain only 90.87 ±0.28 92.21 ±0.42 87.56 ±0.26 93.1 ±0.15 89.2 ±0.05

All Features 94.54± 0.30 95.01± 0.35 94.73± 0.15 99.0± 0.02 98.6± 0.04

Discussion. Our experiments show that our simple ML model, which is a combination of traditional
feature engineering methods with a tree-based ML classifier, outperforms or gives on-par performance
with most of the current GNN models in benchmark datasets. We would like to note that another
feature engineering method (Adamic-Adar & Edge Proposal Set) by Singh et al. (2021) has a very
high ranking in the OGBL-COLLAB leaderboard. These findings may be seen as unexpected since
GNN models are generally perceived as the frontrunners in graph representation learning. While
deep learning models have established dominance in areas like computer vision and NLP, recent
theoretical studies suggest that the same might not hold true for GNNs. Our data underscores that
there is a pressing need for fresh and innovative approaches within the realm of GNNs to tackle
unique challenges in graph representation learning and enhance performance.

Limitations. The main limitation in our approach comes from the customization of the domain
features depending on the format of the node feature vectors and the context. Unfortunately, there
is no general rule in this part, as the context of the dataset plays a crucial part in extracting useful
domain features. However, considering node features as node embedding in the feature space, it
might be possible to use GNNs to obtain the most effective domain feature vectors by formulating
the question in terms of learnable parameters. In our future projects, we aim to further explore this
direction.

5 CONCLUSION

In this paper, motivated by the theoretical studies questioning the expressivity of GNNs, we have
compared the performance of state-of-the-art GNN models with standard feature engineering methods
in link prediction tasks. Our computationally efficient model, which builds on the established feature
extraction methods in the domain, outperforms or gives highly competitive results with state-of-the-art
GNNs in both small/large benchmark datasets. Our results empirically indicate that GNNs in their
current form are far from their counterparts in computer vision and natural language processing. In
our forthcoming projects, we aim to integrate our feature engineering approach into GNNs to direct
them to learn more robust feature representations, thereby enhancing their overall performance.
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A FEATURE SETS FOR EACH DATASET

FEATURES FOR ALL DATASETS EXCEPT OGBL-COLLAB

In CORA, CITESEER, PUBMED, PHOTO, and COMPUTERS, we used the same feature set as
follows:

Structural Features: J (u, v),Sa(u, v),So(u, v),J 3(u, v),S3
a(u, v),S3

o (u, v),AA(u, v),L2(u, v),
L3(u, v) and D(u, v)

Domain Features: CC(u, v), CI(u, v), CD(u, v), ĈD(u, v)

In particular, in our Bag of Features, we have 10 structural features and 5 domain features (CI(u, v)
is 2-dimensional). The details of these features are given in Section 2.2. The importance of each
feature for each datasets is given in Table 7.

FEATURES FOR OGBL-COLLAB

The OGBL-COLLAB dataset is a time-varying dataset, spanning between years 1963 to the year
2019, where the positive training set spans between years 1963 and 2017, the positive validation set
is set the node pairs appearing in the year 2018, and year 2019 is the positive test set. Each link has a
weight which is the number of collaborations that occur between the authors pair for the given year.
Since it is dynamic and weighted, we needed to adjust our features in this dataset to adapt our method
to this context.

Let wy(u, v) be the number of collaborations that occur between nodes u and v in the year y. For
simplicity let us define the total collaborations of a pair (u, v) through all years as

W(u, v) = {
∑

wy(u, v) : 1963 ≤ y ≤ 2017}.

We define the number of collaborations of the pair (u, v) between the years 2007 and 2017 as

W10(u, v) = {
∑

wy(u, v) : 2007 ≤ y ≤ 2017},

and between years 2012 and 2017 as

W5(u, v) = {
∑

wy(u, v) : 2012 ≤ y ≤ 2017}.

Finally, considering G = {(u, v) : the collaboration between u and v occurs in years 2007 to 2017},

A(u) = {
∑

W10(u, x) : x ∈ Γ(u)}.

Author’s Oldest Paper Index: For this feature we track down the year of the earliest paper of each
author. If this year is before year 1985, we assign the value 0, and 1 otherwise.

Author’s Newest Paper Index: For this feature we track down the year of the latest paper of each
author. If this year is before year 1985, we assign the value 0, and 1 otherwise.

All Time Collaborations: For each pair (u,v) we add-up the weights of the pair through each year
for which the link exists, which is W(u, v).

10-Year Collaborations: For each pair (u,v) we add-up the weights of the pair through each year,
from 2007 to 2017, for which the link exists, W10(u, v).

5-Year Collaborations: For each pair (u,v) we add-up the weights of the pair through each year,
from 2012 to 2017, for which the link exists W5(u, v).

All Time Common Collaborators: For each pair (u,v) we find the neighborhood of node u and node
v over the graph created by combining all the years between 1963 and 2017, and the we take the
intersection of the neighborhoods.

10-Year Common Collaborators: For each pair (u,v) we find the neighborhood of node u and
node v over the graph created by combining the years between 2007 and 2017, and the we take the
intersection of the neighborhoods.
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5-Year Common Collaborators: For each pair (u,v) we find the neighborhood of node u and
node v over the graph created by combining the years between 2012 and 2017, and the we take the
intersection of the neighborhoods.

Preferential Attachment: We evaluate Preferential Attachment (Barabâsi et al., 2002) over the graph
created by combining the years between 2007 and 2017, which formula is

PA(u, v) = A(u) · A(v).

w-Adamic Andar: Considering the graph G,

AAw(u, v) =
∑

z∈N (u)∩N (v)

1

log |A(z)|
.

w-Jaccard Index: Considering the graph G,

J w(u, v) =
{
∑

W10(u, z) +W10(z, v) : z ∈ N (u) ∩N (v)}
{
∑

W10(u, x) +W10(x, v) : x ∈ N (u) ∪N (v)}
.

w-Salton Index: Considering the graph G,

Sw
a (u, v) =

{
∑

W10(u, z) +W10(z, v) : z ∈ N (u) ∩N (v)}√
A(u)A(v)

.

Shortest Path Length: D(u, v) over the graph G.

For each node, a 128 dimensional feature vector of word embedings is provided. We set up three
features to utilize them. These features are:

Common Embedding: For given word embedding X, we define our Common Embedding domain
feature CE(u, v) as the number of matching "1"s in the vectors Xu and Xv . i.e.,

CE(u, v) = #{i | Xi
u = Xi

v}

L1 Distance: Simply, we use L1-norm (Manhattan metric) in the feature space Rm. If Xu =
[a1 a2 . . . am] and Xv = [b1 d2 . . . bm], we define D(u, v) = d(Xu,Xv) =

∑m
i=1 |ai − bi|.

Cosine Distance: Another popular distance formula using some normalization is the cosine dis-

tance/similarity. We define our cosine distance feature as Dc(u, v) =
Xu ·Xv

∥Xu∥.∥Xv∥
Year-wise label: For node pair (u, v), we define LAy = 1 if the pair exists in year y, and 0 otherwise.
In our experiments we iterate y between years 2007 to 2016.

B FURTHER EXPERIMENTS

B.1 FEATURE IMPORTANCE

In Table 7, we present the importance of individual features in our model across various datasets.
Our feature set proves to be highly versatile, effectively adapting to the unique characteristics of
each dataset. Notably, certain features exhibit substantial importance in specific datasets, while
their impact is minimal in others. Additionally, the synergy between domain and structural features
emerges as a key factor contributing to enhanced performance.

14



Under review as a conference paper at ICLR 2024

Table 7: Feature Importance. For each dataset, the importance weights of our features for our ML
classifier XGBoost.

CORA CITESEER PUBMED COMPUTERS PHOTO
Same Class 0.4749 # 3-paths 0.2630 # 3-paths 0.4179 A. Adar 0.4974 A. Adar 0.4708
# 3-paths 0.1255 Same Class 0.1582 Same Class 0.1574 # 2-paths 0.0963 Salton 0.1373
# 2-paths 0.1199 # Com. Digits 0.1237 3-Jaccard 0.1427 Salton 0.0956 3-Salton 0.1319
3-Jaccard 0.0601 # 2-paths 0.1176 distance 0.0966 3-Salton 0.0926 # 2-paths 0.0651
A. Adar 0.0538 N. Com. Digits 0.0992 3-Salton 0.0604 Jaccard 0.0788 Same Class 0.0518

# Com. Digits 0.0355 3-Jaccard 0.0817 N. Com. Digits 0.0487 Same Class 0.0344 # 3-paths 0.0398
N. Com. Digits 0.0346 A. Adar 0.0437 # 2-paths 0.0202 # 3-paths 0.0299 distance 0.0366

distance 0.0308 3-Salton 0.0233 A. Adar 0.0151 distance 0.0278 3-Sorensen 0.0210
3-Salton 0.0117 Jaccard 0.0225 # Com. Digits 0.0104 Class(u) 0.0125 Class(v) 0.0131
Jaccard 0.0110 distance 0.0213 3-Sorensen 0.0094 # Com. Digits 0.0106 Class(u) 0.0121
Class(u) 0.0108 3-Sorensen 0.0107 Class(v) 0.0073 Class(v) 0.0079 # Com. Digits 0.0074

3-Sorensen 0.0087 Class(u) 0.0106 Class(u) 0.0062 N. Com. Digits 0.0044 3-Jaccard 0.0048
Class(v) 0.0085 Class(v) 0.0105 Jaccard 0.0031 3-Jaccard 0.0044 Jaccard 0.0032
Salton 0.0079 Salton 0.0080 Salton 0.0029 3-Sorensen 0.0039 Sorensen 0.0030

Sorensen 0.0063 Sorensen 0.0061 Sorensen 0.0019 Sorensen 0.0036 N. Com. Digits 0.0021

B.2 NEW BASELINES

We add additional SOTA GNN model performances for our benchmark datasets, i.e. BUDDY (Cham-
berlain et al., 2022), Neo-GNN (Yun et al., 2021), NCN and NCNC (Wang et al., 2023), and
NBFNet (Zhu et al., 2021). Note that the accuracy results are taken from different references (Li
et al., 2023; Guo et al., 2022) with different splits.

Table 8: AUC performances of additional GNN models with different splits from (Li et al., 2023).
Model Split CORA CITESEER PUBMED
BUDDY 85:05:10 95.06±0.36 96.72±0.26 98.20±0.05
Neo-GNN 85:05:10 93.73±0.36 94.89±0.60 98.71±0.05
NCN 85:05:10 96.76±0.18 97.04±0.26 98.98±0.04
NCNC 85:05:10 96.90±0.28 97.65±0.30 99.14±0.03
NBFNet 85:05:10 92.85±0.17 91.06±0.15 98.34±0.02

Ours 70:10:20 94.54±0.30 95.01±0.35 94.73±0.15

Table 9: AUC performances of additional GNN models with different splits from (Guo et al., 2022).
Methods Split Cora Citeseer
GAE 85:05:10 91.5±0.02 91.0±0.04
VGAE 85:05:10 91.5±0.04 91.2±0.03
ARGA 85:05:10 91.5±0.03 92.8±0.03
ARVGA 85:05:10 93.1±0.03 92.5±0.01
DBGAN 85:05:10 94.5±0.01 94.5±0.04
MSVGAE 85:05:10 95.3±0.05 95.4±0.03

Ours 70:10:20 94.5±0.30 95.0±0.35
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Table 10: Hits@50 performances with SD for OGBL-COLLAB Dataset.
Model Hits@50
Node2Vec 49.06 ± 1.04
MF 41.81 ± 1.67
MLP 35.81 ± 1.08
GCN 54.96 ± 3.18
GAT 55.00 ± 3.28
GSAGE 59.44 ± 1.37
SEAL 63.37 ± 0.69
BUDDY 64.59 ± 0.46
Neo-GNN 66.13 ± 0.61
NCN 63.86 ± 0.51
NCNC 65.97 ± 1.03
NBFNet OOM
OGB Leader 70.96 ± 0.55

Ours 76.50 ± 0.27

B.3 PERFORMANCE OF ML CLASSIFIERS

In Table 11, we present the performance of various ML classifiers using our feature vectors. The
consistent performance across different classifiers indicates that our features are model-agnostic, and
provide robust information regarding the likelihood of establishing a link between node pairs.

Table 11: ML Classifiers. AUC results for our model for different ML Classifiers.

ML Classifier CORA CITESEER PUBMED PHOTO COMPUTERS
Logistic Regression 93.58 ±0.39 94.45 ±0.36 93.83 ±0.15 98.68 ±0.04 98.17 ±0.03
Naive Bayes 93.32 ±0.37 93.24 ±0.58 92.93 ±0.18 97.14 ±0.08 96.49 ±0.09
XGBoost 94.54 ±0.30 95.01 ±0.35 94.73 ±0.15 98.99 ±0.02 98.65 ±0.04

B.4 HETEROPHILIC DATASETS

We report the performance of our model in heterophilic datasets in Table 12. We’d like to highlight that
our model isn’t tailored specifically for heterophilic datasets; rather, it’s designed to effectively handle
both homophilic and heterophilic datasets. While our model demonstrates superior performance
compared to standard GNN models, it might not match the performance of GNN models specifically
optimized for this particular setting.

For the accuracy metric, we adjusted the objective function as reg:squared with rmse as the evaluation
metric, the maximum tree depth to 5, the learning rate to 0.01, and the number of estimators to
300, while keeping other hyperparameters fixed based on those originally established for the AUC
evaluation.

Table 12: Accuracy results for heterophilic datasets with baselines from Li et al. (2022).
Model Texas Wisconsin Cornell
GCN 55.14±5.16 51.76±3.06 60.54±5.30
GAT 52.16±6.63 49.41±4.09 61.89±5.05
MixHop 77.84±7.73 75.88±4.90 73.51±6.34
GPR-GNN 78.38±4.36 82.94±4.21 80.27±8.11
LINKX 74.60±8.37 75.49±5.72 77.84±5.81
GGCN 84.86±4.55 86.86±3.29 85.68±6.63
GloGNN 84.32±4.15 87.06±3.53 83.51±4.26

Ours 73.98±3.45 77.8±2.67 79.11±3.37
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