
A Training

We use RLlib’s default PPO implementation. This includes a number of standard optimizations such
as generalized advantage estimation and trajectory segmentation with value function bootstrapping.
We did not modify any of the hyperparameters associated with learning. We did, however, tune a few
of the training scale parameters for memory and batch efficiency. On small maps, batches consist of
8192 environment steps sampled in fragments of 256 steps from 32 parallel rollout workers. On large
maps, batches consist of 512 environment steps sampled in fragments of 32 steps from 16 parallel
workers. Each rollout worker simulates random environments sampled from a pool of game maps.
The optimizer performs gradient updates over minibatches of environment steps (512 for small maps,
256 for large maps) and never reuses stale data. The BPTT horizon for our LSTM is 16 timesteps.

Table 4: Training hyperparameters

Parameter Value Description

batch size 512/8192 Learning batch size
minibatch 256/512 Learning minibatch size
sgd iters 1 Optimization epochs per batch
frag length 32/256 Rollout fragment length
unroll 16 BPTT unroll horizon

λ 1.0 Standard GAE parameter
kl 0.2 Initial KL divergence coefficient
lr 5e-5 Learning rate
vf 1.0 Value function loss coefficient
entropy 0.0 Entropy regularized coefficient
clip 0.3 PPO clip parameter
vf clip 10.0 Value function clip parameter
kl target 0.01 Target value for KL divergence

B Population Size Magnifies Exploration

As described in the main text, agents trained in larger populations learn to survive for longer and
explore more of the map.

Table 5: Accompanying statistics for Figure 5.

Population Lifetime Achievement Player Kills Equipment Explore Forage

4 89.26 1.40 0.00 0.00 7.66 17.36
32 144.14 2.28 0.00 0.00 11.41 19.91
256 227.36 3.32 0.00 0.00 15.44 21.59

C The REPS Measure of Computational Efficiency

Formatted equation accompanying our discussion of efficient complexity on the project site

Real-time experience per second =
Independently controlled agent observations

Simulation time× Real time fps× Cores used
(1)

16



D Architecture

Our architecture is conceptually similar to OpenAI Five’s: the core network is a simple one-layer
LSTM with complex input preprocessors and output postprocessors. These are necessary to flatten
the complex environment observation space and compute hierarchical actions from the flat network
hidden state.

The input network is a two-layer hierarchical aggregator. In the first layer, we embed the attributes
of each observed game object to 64 dimensional vector. We concatenate and project these into a
single 64-dimensional vector, thus obtaining a flat, fixed-length representation for each observed
game object. We apply self-attention to player embeddings and a conv-pool-dense module to tile
embeddings to produce two 64-dimensional summary vectors. Finally, we concat and project these to
produce a 64-dimensional state vector. This is the input to the core LSTM module.

The output network operates over the LSTM output state and the object embeddings produced by
the input network. For each action argument, the network computes dot-product similarity between
the state vector and candidate object embeddings. Note that we also learn embeddings for static
argument types, such as the north/south/east/west movement direction options. This allows us to
select all action arguments using the same approach. As an example: to target another agent with an
attack, the network computes scores the state against the embedding of each nearby agent. The target
is selected by sampling from a softmax distribution over scores.

Table 6: Architecture details

Parameter Value Description

Encoder
discrete range×64 Linear encoder for n attributes
continuous n×64 Linear encoder for n attributes
objects 64n×64 Linear object encoder
agents 64×64 Self-attention over agent objects
tiles conv3-pool2-fc64 3x3 conv, 2x2 pooling, and fc64 projection over tiles
concat-proj 128×64 Concat and project agent and tile summary vectors

Hidden
LSTM 64 Input, hidden, and output dimension for core LSTM

Decoder
fc 64×64 Dimension of fully connected layers
block fc-ReLU-fc-ReLU Decoder architecture, unshared for key/values.
decode block(key) · block(val) state-argument vector similarity
sample softmax Argument sampler over similarity scores

17


