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6. Implementation Details
For pertraining, we train the generator and color regressor
for 150 epochs with synthetic data only using an SDG opti-
mizer with 0.9 momentum and a linear scheduler, at a start-
ing learning rate of 0.035. We jointly train the generator
and the color regressor in each iteration similar to how gen-
erators and discriminators are trained in a typical generative
adversarial network [10]. We incorporate random horizon-
tal flip, exposure, and white balance augmentations. We
scale the generator reconstruction loss by 1, and the gener-
ator color loss by 0.1 when calculating the total generator
loss.

For fine-tuning, we train the generator for 50 epochs us-
ing an SDG optimizer with 0.9 momentum and a linear
scheduler, at a starting learning rate of 0.0075. The color
regressor is frozen during fine-tuning. The ratio of labeled
synthetic data to unlabeled real video frames used during
training is two to one. We apply the same set of augmen-
tations to the synthetic and real data as the augmentations
used during pertaining. We scale the reconstruction loss by
1, the color loss by 0.1, and the consistency loss by 0.1 when
calculating the total generator loss.

7. Ablation Study
To investigate the impact of having the color regressor and
fine-tuning on real videos, we perform an ablation study to
compare the following results.
• PT w/o Lcolor: Pretraining the model with reconstruction

loss and without color loss
• PT: Pretraining the model with a reconstruction loss and

a color regressor loss
• FT: Fine-tuning the model with a consistency loss
The analysis is performed on the real-person images in the
LIGHTTEST dataset [5]. The results are shown in Tab. 2.

8. Fairness Analysis
We perform a quantitative and qualitative fairness assess-
ment on our model and on the SPLiT model [5] based on
synthetic data. We measure the siRMSE and RMSE of the
models directly on environment maps, on rendered specu-
lar spheres, and on rendered diffused spheres, as well as,
mean angular error (MAE) on the environment map. The
results in Fig. 5 and Fig. 6 show that our model’s perfor-
mance fluctuates less on different ethnicities or genders.
The box heights of our models are overall shorter and shift
less across all categories. The qualitative analysis shown in

Fig. 7 also demonstrates that our model is more robust to
demographic diversity.



Figure 5. Quantitative fairness analysis on ethnicity (#1-6) in comparison with the SPLiT model.



Figure 6. Quantitative fairness analysis on gender in comparison with SPLiT



Indoor Outdoor
Env. Map ↓ Spec ↓ Diffuse ↓ Env. Map ↓ Spec ↓ Diffuse ↓

siRMSE↓ RMSE↓ siRMSE↓ RMSE↓ siRMSE↓ RMSE↓ siRMSE↓ RMSE↓ siRMSE↓ RMSE↓ siRMSE↓ RMSE↓
PT w/o Lcolor 0.235 0.302 0.017 0.030 0.072 0.074 0.171 0.275 0.015 0.043 0.071 0.076

PT 0.231 0.283 0.017 0.024 0.067 0.069 0.171 0.265 0.015 0.032 0.072 0.076
FT 0.231 0.276 0.016 0.023 0.065 0.067 0.170 0.253 0.015 0.028 0.071 0.074

Table 2. Ablation study on pre-training only without the color loss, pre-training with the reconstruction and color losses, and fine-tuning.

Figure 7. Fairness qualitative analysis. To examine if our model is invariant to demographic differences, we utilize synthetic images
featuring subjects from diverse ethnicities and genders placed in the same lighting background. We render the predictions on the mirror,
specular, and diffused spheres. The objective is to ensure the predictions remain consistent across different faces in the same background.
Each image block in the figure contains the predicted light spheres of portrait images with the same lighting background. Within each
block, the spheres in the same column should look identical.
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