
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

The appendix is organized as follows:

• Appendix A presents the necessary preliminaries for our proofs, including definitions and
properties of monotone games and certain properties of matrix norms.

• Appendix B contains the proof of Lemma 1.
• Appendix C contains the proofs of Lemmas 2 and 3 and establishes asymptotic upper bounds

on the spectral radius of networks drawn from the Erdős-Rényi and Stochastic Block models.
• Appendix D describes how payoffs are assigned to edges in the network polymatrix game

under Assumption 1. We clarify that the underlying network is undirected.
• Appendix E.2 contains further simulation studies and gives details on the computational

schemes used to produce the visualizations from the main body.

Disclaimer: LLMs were used in this work for grammar checks and generally polishing the text and
code.
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A VARIATIONAL INEQUALITIES AND MONOTONE GAMES

The main idea of our convergence proof is to show that, under the conditions (4), the corresponding
network game is a strictly monotone game Melo (2018); Parise & Ozdaglar (2019); Hadikhanloo
et al. (2022); Sorin & Wan (2016). In such games, it is known that the equilibrium solution is unique
Melo (2021); Facchinei & Pang (2004). It is further known, from Hussain et al. (2023), that (QLD)
converges asymptotically in monotone games. We leverage this result to prove Lemma 1.

We begin by framing game theoretic concepts in the language of variational inequalities.
Definition 4 (Variational Inequality). Consider a set X ⊂ Rd and a map F : X → Rd. The
Variational Inequality (VI) problem V I(X , F ) is given as

⟨x− x∗, F (x∗)⟩ ≥ 0, for all x ∈ X . (7)

We say that x∗ ∈ X belongs to the set of solutions to a variational inequality problem V I(X , F ) if it
satisfies (7).

We now wish to reformulate the problem of finding Quantal Response Equilibria, or Nash Equilibria,
as a problem of solving a variational inequality of a particular form. In such a case, the set X is
identified with the joint simplex ∆. The map F is identified with the pseudo-gradient map of the
game.
Definition 5 (Pseudo-Gradient Map). The G be a network polymatrix game with payoff functions
(uk)k∈N . Then, the pseudo-gradient map of G is F : x 7→ (−Dxk

uk(xk,x−k))k∈N .

This reformulation has been used, for example, by Melo (2021) to show that a QRE of a game can be
found by solving a variational inequality of a particular form. We reformulate their theorem for the
particular case of network polymatrix games.
Lemma 4 (Melo (2021)). Consider a game G = (N , E , (Ak)k∈N , (Akl, Alk)(k,l)∈E) and for any
T1, . . . , TN > 0, let the regularised game GH be the network game in which the payoff uH

k to each
agent k is given by

uH
k (xk,x−k) =

∑
l:(k,l)∈E

x⊤
k A

klxl − Tk⟨xk, lnxk⟩. (8)

Now, let FH be the pseudo-gradient map of GH . Then x∗ ∈ ∆ is a QRE of G if and only if x∗ is a
solution to V I(∆, FH). .

In fact, this same lemma can be used to show that x∗ is a QRE of G if and only if it is a Nash
Equilibrium of GH . This concept of regularised games has also been used to show connections
between the replicator dynamics Maynard Smith (1974) and Q-Learning dynamics in Leonardos &
Piliouras (2022), and to design algorithms for Nash Equilibrium seeking Gemp et al. (2022). We
require one final component from the study of variational inequalities which is often used to study
uniqueness of equilibrium solutions: monotonicity Parise & Ozdaglar (2019); Melo (2018).
Definition 6 (Monotone Games). Let G be a network polymatrix game with pseudo-gradient map F .
G is said to be

1. Monotone if, for all x,y ∈ ∆,

⟨F (x)− F (y),x− y⟩ ≥ 0.

2. Strictly Monotone if, for all x,y ∈ ∆,

⟨F (x)− F (y),x− y⟩ > 0.

3. Strongly Monotone with constant α > 0 if, for all x,y ∈ ∆,

⟨F (x)− F (y),x− y⟩ ≥ α||x− y||22.

By proving monotonicity properties of a game, we can leverage the following results from literature.
Lemma 5 (Melo (2021)). Consider a game G and for any T1, . . . , TN > 0, let F be the pseudo-
gradient map of GH . G has a unique QRE x∗ ∈ ∆ if GH is strongly monotone with any α > 0.
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Lemma 6 (Hussain et al. (2023)). If the game G is monotone, then the Q-Learning Dynamics (QLD)
converges to a unique QRE x∗ ∈ ∆ with any positive exploration rates T1, . . . , TN > 0.

Finally, note that a map g : ∆ → R is strongly convex with constant α if, for all x,y ∈ ∆

g(y) ≥ g(x) +Dg(x)⊤(y − x) +
α

2
∥x− y∥22.

If the map g(x) is twice-differentiable, then it is strongly convex if its Hessian D2
xg(x) is strongly

positive definite with constant α. Thus, all eigenvalues of D2
xg(x) are larger than α. It also holds

that, if D2
xg(x) is strongly positive definite, the gradient Dxg(x) is strongly monotone. To apply this

in our setting, we use the following result.
Proposition 1 (Melo (2021)). The function g(xk) = Tk⟨xk, lnxk⟩ is strongly convex with constant
Tk.

A.1 MATRIX NORMS

We close with a few properties of matrices that are useful towards our decomposition of the payoff
matrices and the graph adjacency matrix.

Proposition 2. For any matrix A, ∥A∥2 =
√

λmax(A⊤A), where λmax(·) denotes the largest
eigenvalue of a matrix. If, in addition, the matrix is symmetric, ∥A∥2 = ρ(A), where ρ(A) is the
spectral radius of A.
Proposition 3 (Weyl’s Inequality). Let J = D +N where D and N are symmetric matrices. Then
it holds that

λmin(J) ≥ λmin(D) + λmin(N),

where λmin(·) denotes the smallest eigenvalue of a matrix.
Proposition 4. Let G,A be matrices and let ⊗ denote the Kronecker product. Then

∥G⊗A∥2 = ∥G∥2∥A∥2 (9)

Proposition 5. Let A be a symmetric matrix. Then

|λmin(A)| ≤ ρ(A)

Lemma 7. Let A,B ∈ Mm,n (R) such that 0 ≤ Aij ≤ Bij for any 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then

∥A∥2 ≤ ∥B∥2.

Proof. Let Rn
+ be the set of n-dimensional nonnegative vectors, i.e. with nonnegative entries. As A

and B have nonnegative entries, we deduce that

∥A∥2 = sup
x∈Rn

∥Ax∥2 = sup
x∈Rn

+

∥Ax∥2,

∥B∥2 = sup
x∈Rn

∥Bx∥2 = sup
x∈Rn

+

∥Bx∥2.

Further, for any x ∈ Rn
+, it holds that

∥Bx∥2 = ∥(B −A)x+Ax∥2 ≥ ∥Ax∥2,

as (B−A)x is nonegative. This increases the norm of any nonnegative vector Ax. Taking supremum
in the above equation, we obtain that

sup
x∈Rn

∥Ax∥2 = sup
x∈Rn

+

∥Ax∥2 ≤ sup
x∈Rn

+

∥Bx∥2 = sup
x∈Rn

∥Bx∥2.
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B PROOF OF LEMMA 1

The proof takes the following steps. We first decompose the derivative of the pseudo-gradient, which
we dub the pseudo-jacobian, of the regularised game GH into a term involving payoffs and a term
involving exploration rates. In doing so, we can determine how the exploration rates should be
balanced so that the pseudo-jacobian is positive definite, which yields monotonicity of the game. We
then further decompose the payoff term into terms involving the payoff matrices and the network
adjacency matrix. This exposes the connection between each of the three quantities: exploration rate,
payoff matrices and network connectivity.

Proof of Lemma 1. Let F be the pseudo-gradient of the regularised game GH . We define the pseudo-
jacobian as the derivative of F , given by

[J(x)]k,l = Dxl
Fk(x)

It holds that if J(x)+J⊤(x)
2 is positive definite for all x ∈ ∆ then F (x) is monotone. We decompose

J as
J(x) = D(x) +N(x),

where D(x) is a block diagonal matrix with −D2
xkxk

uH
k (xk,x−k) along the diagonal. N(x) is an

off-diagonal block matrix with

[N(x)]k,l =

{
−Dxk,xl

uH
k (xk,x−k) if (k, l) ∈ E

0 otherwise
.

Now notice that −uH
k (xk,x−k) = Tk⟨xk, lnx−k⟩−

∑
l:(k,l)∈E x

⊤
k A

klxl. Therefore, D(x) is simply
the Hessian of the entropy regularisation term Tk⟨xk, lnxk⟩. From Proposition 1, it holds then that
D(x) is strongly positive definite with constant T = mink Tk. Let J̄(x) be defined as

J̄(x) = D(x) +
N(x) +N⊤(x)

2
.

In words, J̄(x) is the symmetric component of J(x). We may now use Weyl’s inequality to write

λmin(J̄(x)) ≥ λmin(D(x)) + λmin

(
N(x) +N(x)⊤

2

)
≥ T − ρ

(
N(x) +N(x)⊤

2

)
= T − 1

2
∥N(x) +N(x)⊤∥2

To determine ∥N(x) +N(x)⊤∥2, we first notice that, in network polymatrix games each block of
N(x) is given by

[N(x)]k,l =

{
−Akl if (k, l) ∈ E
0 otherwise.

whilst

[N(x)⊤]k,l =

{
−(Alk)⊤ if (k, l) ∈ E
0 otherwise.

To write this in the form of a kronecker product, we leverage Assumption 1, namely that each edge
corresponds to the same bimatrix game with payoff matrices (A,B). We decompose each edge into a
half-edge along which A is played, and a half-edge along which B is played. In doing so, we may
decompose the adjacency matrix G = Gk→l +Gl→k. The non-zero elements of Gk→l correspond to
half edges along which A is played, Gl→k denote the half-edges along which B is played. With this
definition in place, we may write

N(x) +N(x)⊤ = −(A+B⊤)⊗Gk→l − (A⊤ +B)⊗Gl→k

18
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Then, by Proposition 4

1

2
∥N(x) +N(x)⊤∥2 =

1

2
∥(A+B⊤)⊗Gk→l + (A⊤ +B)⊗Gl→k∥2

≤ 1

2
∥(A+B⊤)⊗Gk→l∥2 +

1

2
∥(A⊤ +B)⊗Gl→k∥2

=
1

2
∥A+B⊤∥2(∥Gk→l∥2 + ∥Gl→k∥2)

≤ ∥A+B⊤∥2∥G∥2
= δIρ(G)

where in the final inequality, we use Lemma 7. From this we may establish that

λmin(J̄(x)) ≥ T − δIρ(G)

Therefore, if T > δIρG, the pseudo-jacobian is strongly positive definite with constant T − δIρ(G),
from which it is established that GH is strongly monotone with the same constant. From Lemma 5
Melo (2021) the QRE is unique, and from Lemma 6, it is asymptotically stable under (QLD).
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C PROOFS OF LEMMAS 2 AND 3

We now focus on establishing upper bounds on the spectral radius when the network is drawn from
the Erdős-Rényi or Stochastic Block models. The proof idea is to decompose G into E[G] and
G̃ = G − E[G]. Then, ρ(E[G]) is deterministic and can be computed with techniques from linear
algebra. For ρ(G̃), we require the next result, which is a particular case of Theorem 1.4 from Vu
(2007). Notation-wise, let IN be the identity matrix and JN be the matrix whose elements are all
ones.
Lemma 8. Let A be a symmetric N × N matrix with random entries [A]ij = aij . Suppose that
E[aij ] = 0, that Var(aij) ∈ [σ2

min, σ
2
max] and that |aij | < K for some σmin, σmax,K > 0 and for

all 1 ≤ i < j ≤ N . Then there exists a constant C such that the following holds almost surely as
N → ∞:

ρ(A) ≤ 2σmax

√
N + C

√
KσmaxN

1/4 lnN.

The constant C can be removed. In particular, for any ϵ > 0,

ρ(A) ≤ (2σmax + ϵ)
√
N almost surely as N → ∞.

Proof of Lemma 2. For the deterministic part, we have that

E[G] =


0 p p · · · p
p 0 p · · · p
p p 0 · · · p
...

...
...

. . .
...

p p p · · · 0

 = pJN − pIN , (10)

with eigenvalues λ1 = (N − 1)p and λ2 = . . . = λN = −p. Hence ρ(E[G]) = (N − 1)p. Further,
by applying Lemma 8, we obtain that almost surely as N → ∞

ρ
(
G̃
)
≤
(
2
√
p(1− p) + ϵ

)√
N.

The result follows from noting that

ρ(G) ≤ ρ(E[G]) + ρ
(
G̃
)
≤ (N − 1)p+

(
2
√
p(1− p) + ϵ

)√
N

holds almost surely as N → ∞.

Proof of Lemma 3. For the deterministic part, we have that

E[G] =


P1 Q Q · · · Q
Q P2 Q · · · Q
Q Q P3 · · · Q
...

...
...

. . .
...

Q Q Q · · · PC

 ,

where Q = qJN and Pl = pJm − pIm for 1 ≤ l ≤ C, as in equation 10. Thus

ρ (E[G]) ≤ ∥E[G]∥1 =(N −N/C)q + max
1≤l≤C

{(N/C − 1)pl} = (N −N/C)q + (N/C − 1)pmax

=Nq +N(pmax − q)/C − pmax,

where pmax = max1≤l≤C pl. For G̃, let σmax =

max {
√

p1(1− p1), . . . ,
√

pC(1− pC),
√

q(1− q)}. By applying Lemma 8, we obtain that
almost surely as N → ∞

ρ
(
G̃
)
≤ (2σmax + ϵ)

√
N.

The result follows by noting that ρ(G) ≤ ρ(E[G]) + ρ
(
G̃
)

and combining the two upper bounds
above.
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D ASSIGNMENT OF PAYOFFS TO EDGES

In this section, we clarify the assignment of payoff matrices (A,B) to each edge. In particular, we
begin with an undirected graph (N , E), in particular, one with a symmetric adjacency matrix G. For
each edge (k, l) ∈ E , we randomly assign either A to k and B to l or vice versa.

As an example, consider a 3 player network game where the adjacency matrix is given by

G =

(
0 1 0
1 0 1
0 1 0

)

From Assumption 1, it must be that both edges (1, 2), (2, 3) are assigned the same payoff matrices
(A,B). One example is to assign the edge (1, 2) to the payoffs (B,A) and (2, 3) to (B,A). This
yields the following payoffs for each agent

u1 = x⊤
1 Bx2

u2 = x⊤
2 Ax1 + x⊤

2 Bx3

u3 = x⊤
3 Ax2.

Another choice is to assign the edge (1, 2) to the payoffs (A,B) and (2, 3) to (A,B).

u1 = x⊤
1 Ax2

u2 = x⊤
2 Bx1 + x⊤

2 Ax3

u3 = x⊤
3 Bx2.

Finally, there is also the option to assign to the edge (1, 2) the payoffs (A,B) and (2, 3) to (B,A).
This gives the payoffs

u1 = x⊤
1 Ax2

u2 = x⊤
2 Bx1 + x⊤

2 Bx3

u3 = x⊤
3 Ax2.

Notice that, in any case, the underlying graph remains undirected, whilst the payoffs are randomly
assigned and fixed throughout the game. This process can be conceptualised as randomly assigning
a directed payoff matrix to each half-edge. Specifically, for each undirected edge (k, l), we assign
matrix A to the directed half-edge k → l and matrix B to the directed half-edge l → k. Theorems 1
and 2 hold regardless of the ordering of the half-edges.
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E FURTHER SIMULATION RESULTS

E.1 SIMULATION SETUP

Q-Learning hyperparameters In all simulations, we iterate the Q-Learning algorithm defined in
Equations 1 and 2. We use learning rate αk = 0.1 for all agents k. As shown in Tuyls et al. (2006),
the αk parameter amounts to a time rescaling in the continuous-time dynamic (QLD), so long as all
agents use the same (constant) learning rate.

Numerical convergence In all simulations (e.g., Figure 1), we must evaluate numerically whether
a Q-learning trajectory has converged or not. To this end, we run Q-learning for 4000 steps and
analyse the last 300 steps. For these steps 300, to which we will refer as the trajectory, we compute
(i) the variance of each component of the trajectory and take the mean across components, and (ii)
the componentwise relative difference, defined as the maximum across components of

max(trajectory)−min(trajectory)
max(trajectory)

We consider a trajectory to have converged if the mean variance is below 10−2 and relative difference
below 10−5. In Figures 4 and 8, we plot on the x-axis the maximum component of the absolute
difference, defined for each agent k as

max
i∈Ak

{max(trajectoryki)−min(trajectoryki)} ,

where trajectoryki refers to the mixed strategy of action i for agent k.

Computational resources All experiments were run on an AMD Rome CPU cluster node with 128
cores and 2 GHz clock.

E.2 ADDITIONAL SIMULATIONS

Figure 5 expands on Figure 1 by analysing network games with networks generated from the Erdős-
Rényi model, with the number of agents N varying from 15 to 50 and the edge probability p over a
wider range (0.05, 1). By examining the boundary between convergent (blue) and divergent (yellow)
regions, we find that convergent behaviours persist for low exploration rates only if p is small. By
contrast, for large p (dense networks), the boundary shifts rapidly as N increases.

Figure 7 extends Figure 3 by illustrating the convergence of (QLD) in Network Sato, Shapley, and
Conflict games. Additionally, Figure 6 explores the impact of varying the number of agents from
N = 15 to N = 50 and using the full range of p ∈ (0.05, 1). This analysis shows that both p and q
influence the location of the boundary separating convergent and non-convergent behaviours. This
finding is notable because it also applies to the Network Conflict game, which lies outside the scope
of Assumption 1

Finally, Figure 8 expands on Figure 4 by simulating Q-Learning on a Network Sato game with
250 agents and 1024 initial conditions. The results show that communities with low probability pc
of intra-community edges exhibit less variation in the final 300 iterations compared to those with
high pc. This suggests that convergence is possible with lower exploration rates Tk provided that
heterogeneous exploration rates are employed, i.e., allowing for Tk to be a function of pc.
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Figure 5: Proportion of (QLD) simulations that diverge in Network Sato, Shapley and Conflict games
with networks drawn from the Erdős-Rényi model, varying exploration rates T ∈ (0.05, 7), edge
probability p ∈ (0.05, 1), and number of agents N ∈ {15, 20, . . . , 45, 50}. Because we are using the
full range of p values up to 1, we only display results up to N = 50.
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Figure 6: Proportion of (QLD) simulations that diverge in Network Sato, Shapley and Conflict games
with networks drawn from the Stochastic Block model, varying exploration rates T ∈ (0.05, 7),
intra-community edge probability p ∈ (0.05, 1), inter-community edge probability q ∈ {0.1, 0.2}
and number of agents N ∈ {15, 20, . . . , 45, 50}. Because we are using the full range of p values up
to 1, we only display results up to N = 50. 24
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Figure 7: Continuation of Figure 6 for larger number of agents N and a restricted p range of
(0.05, 0.25), as used in the main body.
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Figure 8: Probability density of final strategy variation in Network Sato games on heterogeneous
stochastic block networks with N = 250 agents, showing the maximum strategy variation across
agents during the final 300 iterations, computed from 1024 independent simulations. Networks
contain five communities with varying intra-community connection probabilities p (shown in legend)
and fixed inter-community probability q = 0.1.
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