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APPENDIX

The appendix is organized as follows:

Appendix A presents the necessary preliminaries for our proofs, including definitions and
properties of monotone games and certain properties of matrix norms.

Appendix B contains the proof of Lemma 1.

Appendix C contains the proofs of Lemmas 2 and 3 and establishes asymptotic upper bounds
on the spectral radius of networks drawn from the Erd6s-Rényi and Stochastic Block models.

Appendix D describes how payoffs are assigned to edges in the network polymatrix game
under Assumption 1. We clarify that the underlying network is undirected.

Appendix E.2 contains further simulation studies and gives details on the computational
schemes used to produce the visualizations from the main body.

Disclaimer: LLMs were used in this work for grammar checks and generally polishing the text and

code.
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A VARIATIONAL INEQUALITIES AND MONOTONE GAMES

The main idea of our convergence proof is to show that, under the conditions (4), the corresponding
network game is a strictly monotone game Melo (2018); Parise & Ozdaglar (2019); Hadikhanloo
et al. (2022); Sorin & Wan (2016). In such games, it is known that the equilibrium solution is unique
Melo (2021); Facchinei & Pang (2004). It is further known, from Hussain et al. (2023), that (QLD)
converges asymptotically in monotone games. We leverage this result to prove Lemma 1.

We begin by framing game theoretic concepts in the language of variational inequalities.
Definition 4 (Variational Inequality). Consider a set X C R? and a map F' : X — R? The
Variational Inequality (VI) problem VI(X, F') is given as

(x—x",F(x*)) >0, forallx e X. @)

We say that x* € X belongs to the set of solutions to a variational inequality problem VI (X, F) if it
satisfies (7).

We now wish to reformulate the problem of finding Quantal Response Equilibria, or Nash Equilibria,
as a problem of solving a variational inequality of a particular form. In such a case, the set & is
identified with the joint simplex A. The map F' is identified with the pseudo-gradient map of the
game.

Definition 5 (Pseudo-Gradient Map). The G be a network polymatrix game with payoff functions
(ug)renr- Then, the pseudo-gradient map of G is F' : x — (— Dy, tup(Xk, X—k) ) ken -

This reformulation has been used, for example, by Melo (2021) to show that a QRE of a game can be
found by solving a variational inequality of a particular form. We reformulate their theorem for the
particular case of network polymatrix games.

Lemma 4 (Melo (2021)). Consider a game G = (N, €, (A )ken, (AF, A™) 4, ee) and for any

Ti,..., Ty > 0, let the regularised game G be the network game in which the payoff uf to each
agent k is given by

ull (x5, X_p) = Z x; ARy — Ty (xp, Inxp,). ©)
L:(k,)EE
Now, let ' be the pseudo-gradient map of G. Then x* € A is a QRE of G if and only if x* is a
solution to VI(A, FH). .

In fact, this same lemma can be used to show that x* is a QRE of G if and only if it is a Nash
Equilibrium of G¥. This concept of regularised games has also been used to show connections
between the replicator dynamics Maynard Smith (1974) and Q-Learning dynamics in Leonardos &
Piliouras (2022), and to design algorithms for Nash Equilibrium seeking Gemp et al. (2022). We
require one final component from the study of variational inequalities which is often used to study
uniqueness of equilibrium solutions: monotonicity Parise & Ozdaglar (2019); Melo (2018).

Definition 6 (Monotone Games). Let G be a network polymatrix game with pseudo-gradient map F'.
G is said to be

1. Monotone if, for all x,y € A,
(F(x) = F(y),x—y) 2 0.
2. Strictly Monotone if, for all x,y € A,
(F(x) = F(y),x—y) > 0.
3. Strongly Monotone with constant « > 0 if, for all x,y € A,
(F(x) = F(y),x —y) > alx - y[3.

By proving monotonicity properties of a game, we can leverage the following results from literature.

Lemma 5 (Melo (2021)). Consider a game G and for any 77,...,Tn > 0, let F be the pseudo-
gradient map of G¥. G has a unique QRE x* € A if G¥ is strongly monotone with any @ > 0.
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Lemma 6 (Hussain et al. (2023)). If the game G is monotone, then the Q-Learning Dynamics (QLD)
converges to a unique QRE x* € A with any positive exploration rates 77, ..., Tn > 0.

Finally, note that a map g : A — R is strongly convex with constant « if, for all x,y € A
!
9(y) = 9(x) + Dg(x) " (y = x) + 5 [x — y|5.

If the map g(x) is twice-differentiable, then it is strongly convex if its Hessian D2 g(x) is strongly
positive definite with constant «.. Thus, all eigenvalues of D2 g(x) are larger than «. It also holds
that, if D2g(x) is strongly positive definite, the gradient Dy g(x) is strongly monotone. To apply this
in our setting, we use the following result.

Proposition 1 (Melo (2021)). The function g(x) = Tk (Xx, In xy) is strongly convex with constant
Ty.

A.1 MATRIX NORMS
We close with a few properties of matrices that are useful towards our decomposition of the payoff
matrices and the graph adjacency matrix.

Proposition 2. For any matrix A, ||All2 = \/Amax(ATA), where Apax(-) denotes the largest
eigenvalue of a matrix. If, in addition, the matrix is symmetric, ||A||2 = p(A), where p(A) is the
spectral radius of A.

Proposition 3 (Weyl’s Inequality). Let J = D + N where D and N are symmetric matrices. Then
it holds that
/\min(J) 2 )\min(D) + )\min(N)7

where A\ (-) denotes the smallest eigenvalue of a matrix.
Proposition 4. Let G, A be matrices and let ® denote the Kronecker product. Then

G ® A2 = ||G2]|All2 )
Proposition 5. Let A be a symmetric matrix. Then
[Amin(A)] < p(A)
Lemma7. Let A, B € M,, , (R) such that 0 < A;; < B;; forany 1 <i <m, 1 < j < n. Then
[All2 < |B]l2.

Proof. Let R"} be the set of n-dimensional nonnegative vectors, i.e. with nonnegative entries. As A
and B have nonnegative entries, we deduce that

[All2 = sup ||Ax]|2 = sup [|Ax]|2,
x€eR” xeRi

[Bll2 = sup [[Bx[l2 = sup [[Bx|.
x€ERN x€ER

"
Further, for any x € R”, it holds that
[Bx|l2 = [[(B — A)x + Ax||2 > [|Ax]|2,

as (B — A)x is nonegative. This increases the norm of any nonnegative vector Ax. Taking supremum
in the above equation, we obtain that

sup [[Ax||2 = sup [|Ax|[2 < sup || Bx||2 = sup ||Bx]2.
x€eR" XGR”+ xER:‘_ x€eR”
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B PROOF OF LEMMA 1

The proof takes the following steps. We first decompose the derivative of the pseudo-gradient, which
we dub the pseudo-jacobian, of the regularised game G into a term involving payoffs and a term
involving exploration rates. In doing so, we can determine how the exploration rates should be
balanced so that the pseudo-jacobian is positive definite, which yields monotonicity of the game. We
then further decompose the payoff term into terms involving the payoff matrices and the network
adjacency matrix. This exposes the connection between each of the three quantities: exploration rate,
payoff matrices and network connectivity.

Proof of Lemma 1. Let F be the pseudo-gradient of the regularised game G . We define the pseudo-
jacobian as the derivative of F, given by

[J(%)]k,1 = Dx, Fi(x)

It holds that if w is positive definite for all x € A then F'(x) is monotone. We decompose
J as
J(x) = D(x) + N(x),

where D(x) is a block diagonal matrix with —D2 . u#!(x,x_;) along the diagonal. N (x) is an
off-diagonal block matrix with

_ =Dy squf (xp,x_p) if (k1) € €
[N(X)]k’l_{o otherwise

Now notice that —uf? (xg, x_j) = Tk (xk, Inx_g) — Dol (kl)es x; AMx,. Therefore, D(z) is simply
the Hessian of the entropy regularisation term Ty (X, In x;). From Proposition 1, it holds then that
D(x) is strongly positive definite with constant 7' = miny, T. Let J(x) be defined as

- N NT
J(x) = D(x) + M
In words, J(x) is the symmetric component of .J(x). We may now use Weyl’s inequality to write

N(x) +N(x)T>

)\min(j(x)) Z )\min(D(X)) + )\min < 9

1 (V0N

=T %\\N(x) + N(x) |2

To determine || N (x) + N(x) T ||2, we first notice that, in network polymatrix games each block of
N(x) is given by

—AH if (k,1) e &

0 otherwise.

NGl = {

whilst
—(A““)—r if (k,1) €&
0 otherwise.

NG = {

To write this in the form of a kronecker product, we leverage Assumption 1, namely that each edge
corresponds to the same bimatrix game with payoff matrices (A, B). We decompose each edge into a
half-edge along which A is played, and a half-edge along which B is played. In doing so, we may
decompose the adjacency matrix G = Gk_,; + Gj_k. The non-zero elements of G_,; correspond to
half edges along which A is played, G;_,, denote the half-edges along which B is played. With this
definition in place, we may write

Nx)+Nx)"=—(A4+B")®@Grs — (AT + B) @ G,
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Then, by Proposition 4

1 1
FING) + N T2 = S1(A+ BT) ® Gt + (AT + B) @ Groll2

IN

1 1
5”(14 + BT ® Groill2 + §||(AT + B) ® Gk ll2

1
§|\A + BT 2(IGk=ill2 + |1Gi=kll2)

<A+ BT|2]Gll
= d1p(G)

where in the final inequality, we use Lemma 7. From this we may establish that

)\min(J(a?)) Z T — 61p(G)

Therefore, if T > §;p¢, the pseudo-jacobian is strongly positive definite with constant 7' — 67 p(G),
from which it is established that G is strongly monotone with the same constant. From Lemma 5
Melo (2021) the QRE is unique, and from Lemma 6, it is asymptotically stable under (QLD). O
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C PROOFS OF LEMMAS 2 AND 3

We now focus on establishing upper bounds on the spectral radius when the network is drawn from
the ErdGs-Rényi or Stochastic Block models. The proof idea is to decompose G into E[G] and
G = G — E[G]. Then, p(E[G]) is deterministic and can be computed with techniques from linear
algebra. For p(é), we require the next result, which is a particular case of Theorem 1.4 from Vu
(2007). Notation-wise, let I be the identity matrix and Jx be the matrix whose elements are all
ones.

Lemma 8. Let A be a symmetric N x N matrix with random entries [A];; = a;;. Suppose that
E[a;;] = 0, that Var(a;;) € [02,;,,02,,] and that |a;;| < K for some omin, Omax, K > 0 and for

all 1 <7 < j < N. Then there exists a constant C' such that the following holds almost surely as
N — oo:
p(A) < 2000V N + C/Komax N4 In N.

The constant C' can be removed. In particular, for any € > 0,

p(A) < (20max + e)\/ﬁ almost surely as N — oco.

Proof of Lemma 2. For the deterministic part, we have that

0 p p DR p
p O p DR p
EG) =P P U o Pl = piy —ply, (10)
p p DR 0
with eigenvalues \y = (N — 1)pand Ay = ... = Ay = —p. Hence p(E[G]) = (N — 1)p. Further,

by applying Lemma 8, we obtain that almost surely as N — oo
p(é) < (2 p(l—p)—|—e> V'N.
The result follows from noting that
p(G) < p(BIG)) +p (G) < (N = 1)p+ (2V/p(T—p) +¢) VN

holds almost surely as N — oo. O

Proof of Lemma 3. For the deterministic part, we have that

b

PQ Q - Q
Q P Q - Q
Eg=|¢ @ 5 - @

RQ Q Q@ - Fo
where ) = ¢Jy and P, = pJ,,, — pl,, for 1 <1 < C, as in equation 10. Thus
p(E[G) < [E[G]l =(N = N/C)g+ max {(N/C —)pi} = (N = N/C)q + (N/C — 1)pmy

=Ngq+ N(pmax - Q)/C — Pmax;

where Pmax maxi<i;<c pi- For G, let O max =

max {\/p1(L —p1),...,v/pc(l = pc),v/a(1 —q)}. By applying Lemma 8, we obtain that
almost surely as N — oo

p (é) < (20max + €) V'N.

The result follows by noting that p(G) < p(E[G]) + p (é) and combining the two upper bounds
above. O
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D ASSIGNMENT OF PAYOFFS TO EDGES

In this section, we clarify the assignment of payoff matrices (A, B) to each edge. In particular, we
begin with an undirected graph (N, £), in particular, one with a symmetric adjacency matrix G. For
each edge (k,1) € £, we randomly assign either A to k and B to [ or vice versa.

As an example, consider a 3 player network game where the adjacency matrix is given by

010
G= <1 0 1)
010

From Assumption 1, it must be that both edges (1, 2), (2, 3) are assigned the same payoff matrices
(A, B). One example is to assign the edge (1, 2) to the payoffs (B, A) and (2, 3) to (B, A). This
yields the following payoffs for each agent
U = .Z';I—BZ‘Q
Uy = x;Axl + xQTBxg
uz = QC;—AZ‘Q.
Another choice is to assign the edge (1, 2) to the payoffs (A, B) and (2, 3) to (A, B).
up = xIAxg
Uy = x;—Bml + m;—Amg
uz = x4 Bas.

Finally, there is also the option to assign to the edge (1, 2) the payoffs (A, B) and (2, 3) to (B, A).
This gives the payoffs

U] = J;lTAJ:Q

Uy = x;Bxl + LL’;B{E:;

uz = x4 Azy.
Notice that, in any case, the underlying graph remains undirected, whilst the payoffs are randomly
assigned and fixed throughout the game. This process can be conceptualised as randomly assigning
a directed payoff matrix to each half-edge. Specifically, for each undirected edge (k, ), we assign

matrix A to the directed half-edge k& — [ and matrix B to the directed half-edge | — k. Theorems 1
and 2 hold regardless of the ordering of the half-edges.
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E FURTHER SIMULATION RESULTS

E.1 SIMULATION SETUP

Q-Learning hyperparameters In all simulations, we iterate the Q-Learning algorithm defined in
Equations 1 and 2. We use learning rate o, = 0.1 for all agents k. As shown in Tuyls et al. (2006),
the o parameter amounts to a time rescaling in the continuous-time dynamic (QLD), so long as all
agents use the same (constant) learning rate.

Numerical convergence In all simulations (e.g., Figure 1), we must evaluate numerically whether
a Q-learning trajectory has converged or not. To this end, we run Q-learning for 4000 steps and
analyse the last 300 steps. For these steps 300, to which we will refer as the trajectory, we compute
(i) the variance of each component of the trajectory and take the mean across components, and (ii)
the componentwise relative difference, defined as the maximum across components of

max(trajectory) — min(trajectory)
max trajectory)

We consider a trajectory to have converged if the mean variance is below 10~2 and relative difference
below 107°. In Figures 4 and 8, we plot on the x-axis the maximum component of the absolute
difference, defined for each agent k as
ax {max(trajectory,,;) — min(trajectory,,)} ,

k

1€
where trajectory,,; refers to the mixed strategy of action % for agent k.

Computational resources All experiments were run on an AMD Rome CPU cluster node with 128
cores and 2 GHz clock.

E.2 ADDITIONAL SIMULATIONS

Figure 5 expands on Figure 1 by analysing network games with networks generated from the Erdés-
Rényi model, with the number of agents N varying from 15 to 50 and the edge probability p over a
wider range (0.05, 1). By examining the boundary between convergent (blue) and divergent (yellow)
regions, we find that convergent behaviours persist for low exploration rates only if p is small. By
contrast, for large p (dense networks), the boundary shifts rapidly as N increases.

Figure 7 extends Figure 3 by illustrating the convergence of (QLD) in Network Sato, Shapley, and
Conflict games. Additionally, Figure 6 explores the impact of varying the number of agents from
N = 15to N = 50 and using the full range of p € (0.05,1). This analysis shows that both p and ¢
influence the location of the boundary separating convergent and non-convergent behaviours. This
finding is notable because it also applies to the Network Conflict game, which lies outside the scope
of Assumption 1

Finally, Figure 8 expands on Figure 4 by simulating Q-Learning on a Network Sato game with
250 agents and 1024 initial conditions. The results show that communities with low probability p,
of intra-community edges exhibit less variation in the final 300 iterations compared to those with
high p.. This suggests that convergence is possible with lower exploration rates 7}, provided that
heterogeneous exploration rates are employed, i.e., allowing for T}, to be a function of p..
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Figure 5: Proportion of (QLD) simulations that diverge in Network Sato, Shapley and Conflict games
with networks drawn from the ErdGs-Rényi model, varying exploration rates T € (0.05,7), edge
probability p € (0.05, 1), and number of agents N € {15, 20, ...,45,50}. Because we are using the
full range of p values up to 1, we only display results up to N = 50.
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Figure 7: Continuation of Figure 6 for larger number of agents N and a restricted p range of
(0.05,0.25), as used in the main body.
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Figure 8: Probability density of final strategy variation in Network Sato games on heterogeneous
stochastic block networks with N = 250 agents, showing the maximum strategy variation across
agents during the final 300 iterations, computed from 1024 independent simulations. Networks
contain five communities with varying intra-community connection probabilities p (shown in legend)
and fixed inter-community probability ¢ = 0.1.
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