
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICAL PROTEIN BACKBONE GENERATION
WITH LATENT AND STRUCTURE DIFFUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a hierarchical protein backbone generative model that separates coarse
and fine-grained details. Our approach called LSD consists of two stages: sampling
latents which are decoded into a contact map then sampling atomic coordinates
conditioned on the contact map. LSD allows new ways to control protein generation
towards desirable properties while scaling to large datasets. In particular, the
AlphaFold DataBase (AFDB) is appealing due as its diverse structure topologies but
suffers from poor designability. We train LSD on AFDB and show latent diffusion
guidance towards AlphaFold2 Predicted Alignment Error and long range contacts
can explicitly balance designability, diversity, and noveltys in the generated samples.
Our results are competitive with structure diffusion models and outperforms prior
latent diffusion models.

1 INTRODUCTION

A challenge across diffusion models for protein backbone generation has been scaling to large
datasets: ideally benefiting from improved diversity and generalization, but this empirically results
in unwanted biases from low quality protein structures (Huguet et al., 2024). In this work, we aim
to develop a diffusion model that scales to the AlphaFold DataBase (AFDB) (Varadi et al., 2022)
with the ability to control for desired properties. Previous approaches use structure-based diffusion
models (SDMs) over atomic coordinates, but this presents challenges in respecting equivariance and
physical constraints such as bond lengths and angles. Unfortunately, this can hinder optimization and
generalization of deep learning models – recent works in structure prediction (Abramson et al., 2024),
conformer generation (Wang et al.), and material design (Yang et al., 2023) have found improved
results by removing equivariance and physical constraints.

We hypothesize SDMs can be improved by conditioning the generation process on sampled contact
maps, defined as a 2D binary matrix representing whether each pair of residues are within a short
distance of each other. A contact map is sufficient to describe a protein’s fold topology while the
coordinates can capture biomolecular conformations and elucidate a protein’s function. Prior works
have shown generative models fail to learn meaningful representations and can benefit from alignment
(Yu et al., 2024) or high-level conditioning (Li et al., 2024). We follow the latter intuition to propose
using latent diffusion models (LDMs) to generate contact maps followed by SDMs to generate atomic
coordinates conditioned on the contact map (Fig. 1). Together, our method called LSD (Latent and
Structure Diffusion) allows for training over large datasets then guiding for desired properties.

Our main technical contribution is developing LDMs for contact map generation. We encode protein
structures into a L×K dimensional latent space where L is the protein length and K is the latent
dimensionality. The decoder then reconstructs the contact map given the latents. Next, we train a
modified Diffusion Transformer (DiT) (Peebles & Xie, 2023a) to sample from learned latent space
while FrameFlow (Yim et al., 2024a) is trained to generate atomic coordinates conditioned on contact
maps and latents. Lastly, we demonstrate high-level control over the generated structures by guiding
latent generation towards lower mean Predicted Alignment Error (PAE) and increased Long Range
Contacts (LRC) for improved designability and diversity.

We evaluate LSD on protein backbone generation by training on the AlphaFold Database (AFDB)
(Varadi et al., 2022) which we show is challenging to learn with only FrameFlow. Our results show
LSD improves generalization to more diverse fold topologies which suggests combining LDMs and
SDMs can be beneficial for scaling to large datasets like AFDB. We achieve improved results when
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Figure 1: Overview. We propose separating protein structure generation into two stages. In the first
stage, we generate coarse representations of proteins as a contact map using latent diffusion. High-
level properties can be enforced in the contact map generation using guidance. In the second stage,
we perform structure diffusion to generate structures conditioned on the coarse protein representation.

LSD is used with PAE or LRC guidance – demonstrating a novel capability of high-level protein
generation control with LDMs. LSD is competitive with SDMs on AFDB and outperforms existing
LDMs for protein backbone generation. Our contributions are summarized as follows:

1. We develop LSD, a novel hierarchical protein generative model that uses LDMs for contact
map generation and SDMs for atomic coordinate generation.

2. We demonstrate the first instance of high-level guidance for protein backbone generation.
PAE guidance improves designability while LRC guidance improves diversity and novelty.

3. When trained on AFDB, LSD is competitive with state-of-the-art SDMs on AFDB and
outperforms the only publicly available LDMs for protein backbone generation.

2 BACKGROUND: LATENT DIFFUSION MODELS

Latent Diffusion Models (LDMs) use two components: an autoencoder to embed the data in a latent
space and a diffusion model to generate samples from the latent space which are decoded back to data
with the decoder (Vahdat et al., 2021; Rombach et al., 2022). In this section, we provide background
of both components.

Notation. Superscript with parentheses denote time while subscripts are used to denote the index
of a matrix or vector, i.e. x(t)

i is the data at index i and time t in the diffusion process. Scalars and
probability distributions will use subscripts for time.

2.1 AUTOENCODER: MAPPING DATA TO LATENT SPACE

Autoencoders consist of an encoder pϕ(z|x) that maps data x ∼ pdata into a latent variable z while the
decoder pψ(x|z) maps z back to x. The encoder and decoder are parameterized by neural networks
with weights ϕ and ψ respectively. Following (Vahdat et al., 2021), we use a Variational AutoEncoder
(VAE) (Kingma, 2013) which is trained by minimizing the variational upper bound

Epdata(x)

[
Epϕ(z|x) [− log pψ(x|z)]︸ ︷︷ ︸

Reconstruction

+λKL [pϕ(z|x)||N (0, I)]︸ ︷︷ ︸
Regularization

]
(1)

where λ is the regularization weight for the Kullback-Leibler divergence (KL). Rombach et al. (2022)
utilized additional regularization terms. We plan to explore more regularizations in future work.

2.2 DIFFUSION MODEL OVER LATENT SPACE

Once the autoencoder is trained, we define p(0) = pϕ as the target distribution of the latent diffusion
process. Next, a diffusion model is trained to generate data by learning to map samples from Gaussian
noise z(1) ∼ N (0, I) with identity I towards latents z(0) ∼ p0 which is then decoded back into data
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pψ(x|z(0)). The time variable t ∈ [0, 1] controls the mapping between noise and latents based on the
time-dependent process1:

z(t) = α(t)z(0) + σ(t)z(1). (2)

While many choices for α(t) and σ(t) have been proposed, we use a simple linear interpolation
popularized in flow models (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023): α(t) = 1− t,
σ(t) = t. The conditional distribution and score of eq. (2) can be analytically computed as

∇z(t) log qt(z
(t)|z(0)) = z(t) − α(t)z(0)

σ(t)2
where qt(z

(t)|z(0)) = N (z(t);α(t)z(0), σ(t)2I). (3)

We require qt=1(·|z(0)) = p1(·) and qt=0(·|z(0)) = p0(·). This allows learning to approximate the
marginal score∇z(t) log pt(z

(t)) through the score matching objective (Hyvärinen & Dayan, 2005).
Equivalently, we optimize the denoising autoencoder objective (Vincent, 2011)

Ep0 [z(0)|z(t)] ≈ argmin
ẑθ

Eqt(z(t)|z(0))
U(t;0,1)

p0(z
(0))

[
1

σ(t)2
∥ẑθ(z(t), t)− z(0)∥22

]

where U is the uniform distribution and 1/σ(t)2 is a weighting term to encourage equal loss weighting
across t. ẑθ is a neural network with weights θ trained to predict the true latents. Using eq. (3),
the marginal score can then be approximated as sθ(z(t), t) =

z(t)−α(t)ẑθ(z
(t),t)

σ(t)2 . Once the score is

learned, we can obtain samples z(0) by integrating the reverse SDE starting with z(1) towards z(0),

dz(t) =
[
a(t)z(t) − b(t)2s(z(t); t)

]
dt+ γ · b(t)dw(t) (4)

where w(t) is a Wiener process, a(t) = ∂
∂t logα(t), and b(t) = 2σ(t)(∂σ(t)∂t − a(t)σ(t)). γ is a

scale to control the variance of the noise which by default is set to γ = 1. Prior works have found
setting γ < 1 to improve sample quality (Ajay et al., 2022; Yim et al., 2023). In this work, we use
Euler-Maruyama integrator for all samples. We provide a derivation in App. A that eq. (4) is the
reverse SDE of the interpolant in eq. (2).

3 METHOD: LATENT AND STRUCTURE DIFFUSION (LSD)

In this section, we present our method for hierarchical protein backbone generation. The method
consists of three components: a structure-to-contact autoencoder (Sec. 3.1), LDM to sample latents
from the autoencoder latent space and a SDM to samples structures from the sampled latents (Sec. 3.2).
We discuss training and sampling in Sec. 3.3. Lastly, we discuss PAE and LRC guidance in Sec. 3.4.

3.1 STRUCTURE-TO-CONTACT AUTOENCODER

We denote a protein backbone’s atomic coordinates as x ∈ RL×3×3 where L is the length of the
protein (number of residues), 3 corresponds to the Nitrogen, Carbonα, and Carbon atom in each
residue. For our encoder, we use the ProteinMPNN (Dauparas et al., 2022) architecture to embed
x into a latent pϕ(x) = z ∈ RL×K where K is the latent dimensionality with K ≪ L. We modify
ProteinMPNN to output the mean and variance Gaussian parameters of each latent.

We aim to learn a coarse representation of x in the latent space. Our approach is to train the decoder
to predict the contact map c ∈ {0, 1}L×L where cij = 1 if the distance between the Carbonα atoms
of xi, xj is less than 8Å and cij = 0 otherwise.2. The decoder pψ takes the Kronecker product of the
latents and predicts contact map probabilities: pψ(zi ⊗ zj) for all i, j. We parameterize pψ with a 3
layer multi-layer perceptron with ReLU activations. The Kronecker product zi ⊗ zj ∈ RK×K is the
matrix of all possible products between the entries of zi and zj . The encoder and decoder are trained

1Technically each z(t) qualifies as a latent variable. However, we will strictly refer to z(0) as latents in our
context since these directly map to data via the decoder.

28Å is commonly used to define a contact (Hopf et al., 2014)
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using eq. (1) where the reconstruction term is modified to minimize the negative log-likelihood of the
ground truth contacts:

Epϕ(z|x)
[ 1

|Z0|
∑

(i,j)∈Z0

− log pψ(cij = 0|zi ⊗ zj) +
1

|Z1|
∑

(i,j)∈Z1

− log pψ(cij = 1|zi ⊗ zj)
]

where Z0 = {(i, j) : cij = 0} and Z1 = {(i, j) : cij = 1} are the set of indices where cij = 0
and cij = 1 respectively. Due to the sparsity of the contacts, we weight each class separately by
its propensity. For short-hand notation, we will refer to the full decoded contact probabilities as
ĉψ(z) ∈ [0, 1]L×L where ĉψ(z)ij = pψ(zi ⊗ zj).

3.2 LATENT AND STRUCTURE DIFFUSION MODELS

The LDM requires learning the latent score function sθ(z(t), t) where z(t) is a noisy version of the
encoded latents z(0) = pϕ(x) as defined in eq. (2). For neural network architecture, we use the
Diffusion Transformer (DiT) (Peebles & Xie, 2023b) since it is successfully used across computer
vision. We adapt DiT for our purposes by treating each residue latent z(t)i as a token. We use Rotary
Positional Encodings (RoPE) (Su et al., 2024) instead of absolute positional encodings as done in
Hayes et al. (2024).

The SDM is a modified version of FrameFlow (Yim et al., 2024a) that is trained to predict the
denoised atomic coordinates x̂φ(x(t), ĉψ(z

(0)), z(0), t) where φ are the FrameFlow neural network
weights. We condition the SDM by concatenating z(0) and ĉψ(z

(0)) to the initial set 1D and 2D
features provided to FrameFlow. FrameFlow uses flow matching over SE(3) (Chen & Lipman, 2024)
which is equivalent to the probabilistic Ordinary Differential Equation (ODE) perspective of diffusion
models. We follow the training and sampling procedure of FrameFlow with the addition of our latent
conditioning, no self-conditioning, and no rotation annealing. We choose FrameFlow over other
SDMs due to the ease of its open sourced code but any other SDM can be used in our framework.
Due to the architecture choice, our LDM is SE(3) invariant while the SDM is SE(3) equivariant.

3.3 MULTI-STAGE TRAINING AND SAMPLING

The VAE training loss is described in Sec. 3.1 while the LDM and SDM losses are described in
Sec. 3.2. While end-to-end training of all models is possible, we found this to be unstable and
difficult to optimize. We instead use a training procedure inspired by Rombach et al. (2022) where
the autoencoder is frozen during latent diffusion training. It involves three stages: (1) pre-training the
VAE by itself, (2) jointly training the VAE and SDM, and (3) freezing the VAE weights and training
only the LDM. In our experiments, we use the same optimizer and learning rate across all stages.
App. B.1 provides more details on the training setup.

To sample, we first generate latents z(0) from the LDM using eq. (4) and obtain the contact map
ĉψ(z

(0)). Both z(0) and ĉψ(z
(0)) are then provided to the SDM to sample atomic coordinates condi-

tioned on ĉψ(z
(0)) using the SE(3) flow, see Yim et al. (2024a). Fig. 1 illustrates the sampling process.

In the next section, we describe sampling with guidance towards desired high-level properties.

3.4 PAE AND LRC GUIDANCE

Let y denote a property such as a class label associated with each latent z(0). Dhariwal & Nichol
(2021) proposed to train a classifier to predict the property from each noised latent z(t) which is
then used to guide the LDM towards a desired class label. This is achieved using Bayes rule to
approximate the property conditioned score,

∇z(t) log pt(z
(t)|y) = ∇z(0) log pt(z

(t)) +∇z(t) log pt(y|z(t)) ≈ sθ(z(t); t) + s(z(t); t) (5)

where s(z(t); t) is parameterized to approximate∇z(0) log p0(y|z(t)). We then substitute eq. (5) as
the score into eq. (8) to approximately sample from p(z(0)|y),

dz(t) =
[
a(t)z(t) − b(t)2

(
sθ(z

(t); t) + s(z(t); t)
)]

dt+ γ · b(t)dw(t). (6)

We describe multiple options of s(z(t); t) for guiding towards PAE and long range contacts.
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Long range contact (LRC). Protein generative models often exhibit a preference for predominantly
alpha-helical structures – due to the prevalence of alpha-helices in protein datasets (Dawson et al.,
2017) – which can limit the diversity of generated fold topologies. To address this bias, we use
guidance towards more LRCs by leveraging the decoder’s contact map predictions pψ. Following
Hayes et al. (2024), a LRC is defined as a contact cij with sequence distance greater than 12. Let
ZLR = {(i, j) : |i− j| > 12} be the set of pairwise indices with sequence distance greater than 12.
With y = {cij = 1 ∀(i, j) ∈ ZLR} as the LRC property, we define the LRC guidance score

sLRC(z
(t); t) = e−rLRC·(1−t) · ∇z(t)

[ 1

|ZLR|
∑

(i,j)∈ZLR

log pψ

(
cij = 1|ẑθ(z(t), t)i ⊗ ẑθ(z

(t), t)j

)]
where rLRC ∈ R is a hyperparameter controlling the decay of the score coefficient. To perform
guidance towards more LRCs, we substitute sLRC(y, z

(t); t) for s(z(t); t) in eq. (6).

Predicted Alignment Error (PAE). Since lower PAE is often correlated with protein design
success (Bennett et al., 2023), we are interested in generating protein structures with lower PAE. Our
main metric, designability, also correlates with lower PAE (see Fig. 10). We train a neural network
fϑ(ẑθ(z

(t), t), t) with weights ϑ to predict the global average PAE of the structure x corresponding
to each latent noised latent z(t). See App. B.2 for data curation, architecture, and training details.
Since PAE is a scalar value, classifier guidance does not directly work. Instead, we substitute
pt(y|z(t)) with a Boltzmann distribution that assign high probability to lower PAE predictions:
pPAE
t (z(t)) ∝ e−ωPAE·fϑ(ẑθ(z

(t),t),t) with weight ωPAE ∈ R. We define the PAE gudiance score as

sPAE(z
(t), t) = ∇z(t) log pPAE

t (z(t)) = −ωPAE∇z(t)fϑ(ẑθ(z
(t), t).

While not principled, we find sPAE intuitive in guiding towards lower PAE and works well in practice.
To perform guidance towards lower PAE, we substitute sPAE for s in eq. (6) and sweep over different
ωPAE values in the experiments.

Joint guidance. Lowering PAE is correlated with improved designability but could come at the
cost of diversity and novelty. On the other hand, increasing LRCs results in more diverse, novel
protein structures but could hurt designability. Thus it makes sense to combine both. We will make
use of the following score when guiding towards both properties,

sJ(z
(t); t) = sPAE(z

(t); t) + sLRC(z
(t); t)

where we still have two hyperparameters ωPAE and rLRC to control the strength of each guidance.

4 RELATED WORK

Latent Diffusion Models (LDMs). Latent Score-based Generative Model (LSGM) (Vahdat et al.,
2021) first proposed using a combination of a VAE and diffusion model over the latent space. Stable
diffusion (Rombach et al., 2022) extended LSGM with architectural and training improvements that
achieved state-of-the-art (SOTA) results in image synthesis. DiT (Peebles & Xie, 2023a) and SiT
(Ma et al., 2024) further improved the scalability with a Transformer (Vaswani, 2017) architecture
tailored for diffusion models.

The success of LDMs has motivated their use in protein applications. OmniProt (McPartlon et al.,
2024) is a LDM for protein-protein docking but with no open source code. LatentDiff (Fu et al., 2023)
is the only other LDM for protein structure generation to the best of our knowledge. We also consider
methods FoldToken (Gao et al., 2024) and ESM3 (Hayes et al., 2024) that learn discrete latent tokens
and use autoregressive masked language models to be discrete LDMs for protein structure generation.
Likewise, DiffTopo (Correia, 2024) and TopoDiff (Zhang et al., 2023) do not exactly fit the LDM
framework but are related by using diffusion to sample a coarse protein fold topology followed by a
diffusion model to produce a structure conditioned on the topology. DiffTopo and TopoDiff do not
have open source code to compare with. In Sec. 5, we use LatentDiff and ESM3 as baselines.

Structure Diffusion Models (SDMs). RFdiffusion (Watson et al., 2022) is a widely used SDM
with proven results in real-world protein design applications. Numerous other SDMs have been
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Figure 2: Secondary structure distribution of the training data compared to samples from LSD
Frameflow trained on AFDB or PDB. 10 samples of each length between 60-128 were generated
with 100timesteps each. LSD used γ = 1 while no modifications were made for FrameFlow. We
computed helix and strand percents of each sample then produced a 2D histogram distribution with
10 bins along each axis. See Sec. 5.2 for discussion.

developed such as GENIE2 (Lin et al., 2024), FoldFlow2 (Huguet et al., 2024), Chroma (Ingraham
et al., 2023), MultiFlow (Campbell et al., 2024), and AlphaFold3 (Abramson et al., 2024). See Yim
et al. (2024b) for a survey of SDMs. As mentioned in Sec. 1, a challenge with SDMs has been scaling
to large datasets while mitigating unwanted biases from low quality protein structures. We show LSD
is a novel approach to train on a large dataset, AFDB, with varying data quality and use guidance
to control protein properties. Since our approach is built on top of FrameFlow, we show in Sec. 5
that LSD improves upon FrameFlow’s limitations when training on AFDB. We include RFdiffusion
and GENIE2 as reference points of SOTA protein structure generation methods. Since MultiFlow is
a co-design extension of FrameFlow, we use FrameFlow’s results as representative of MultiFlow’s
performance. Lastly, we benchmark against ProteinSGM (Lee et al., 2023), a diffusion model over
pairwise distances and dihedral angles.

5 EXPERIMENTS

In this section, we run experiments with LSD to analyze its performance on protein structure
generation. Sec. 5.1 describe our training and evaluation set-up. Sec. 5.2 analyzes LSD with ablations
and demonstrates improved results over only using FrameFlow. Sec. 5.3 then demonstrates capabilites
with PAE and contact guidance to control high-level properties. Lastly, Sec. 5.4 compares LSD to
prior protein structure generation baselines discussed in Sec. 4.

5.1 SET-UP

Training Details. We train LSD on the Foldseek (Van Kempen et al., 2024) clustered AlphaFold
DataBase (AFDB) (Varadi et al., 2022) as done in GENIE2 (Lin et al., 2024). We filter out examples
that are longer than 128 residues and minimum pLDDT (AlphaFold2 predicted confidence metric)
lower than 80. The latter is a commonly used filter to remove low quality protein structures from
AFDB but is not suffucient (Varadi et al., 2022). This results in 282936 training examples. Dimensions
and training details of all our neural networks are provided in App. B.1.

Evaluation Details. For each method, we sample 10 proteins of each length between 60-128.
Standard metrics for protein backbone generation are designability (Des), diversity (Div), and
novelty (Nov) as described in Yim et al. (2023). Novelty was computed against the AFDB database.
Designable Pairwise TM-score (DPT) is defined as the average pairwise TM-score (Zhang & Skolnick,
2004) between designable proteins. We include H/S/C as the average helix, strand and coil secondary
structure composition (Kabsch & Sander, 1983) of the designable samples, i.e. 60/10/20 means each
structure is made up of 60% helix, 10% strands, and 20% coil on average. Designability is not a
accurate indicator of how well a generative model matches the training distribution since the training
dataset is far from 100% designable (Huguet et al., 2024). Instead, we measure how well a protein
structure generative model captures the training distribution by computing Secondary Structure
Distance (SSD), defined as the Wasserstein distance between the discretized secondary structure
distribution of the training dataset and the generated proteins with no designability filtering. Alg. 1
describes how we compute SSD. See App. B.3 for more explanation of our metrics.
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Figure 3: Visualization of the contact map after sampling latents and structures with LSD. We observe
the agreement between the latent decoded contact map and the structure contact map is high. The
PRAUC and ROCAUC is on average 0.99 and 0.92 between the latent decoded contact map and
structure contact map in our evaluation benchmark with γ=1.

5.2 LSD ANALYSIS

Hyperparameter and ablations. We swept over the number of latents K and KL regularization
weight λ in eq. (1) to select the best setting based on performance in the VAE pre-training stage. To
evaluate, we held out 32 random protein clusters based on Foldseek and computed the decoder’s
ROCAUC and PRAUC of long range contacts (LRC) defined as all contacts cij with |i− j| > 12
which are visualized in Fig. 4. We found LRC performance to be most indicative of autoencoder
performance. Our results are shown in tab. 5 where we find K = 4 and λ = 0.1 to be optimal. We
next ablated architecture choices of the LDM by removing RoPE and using a standard Transformer
instead of DiT. Tab. 6 shows RoPE and DiT all contribute to achieve the best performance. We sweep
over noise scales in tab. 8 where we show γ = 0.7 gives the best designability and diversity trade-off.

LSD samples diverse structures while FrameFlow AFDB collapses to alpha helices. We
consider two versions of FrameFlow: the published FrameFlow PDB trained on the Pro-
tein Data Bank (PDB)3 (Berman et al., 2000) and FrameFlow AFDB where we re-trained
FrameFlow on the same dataset as LSD. We then sampled both FrameFlows and LSD with
the procedure described in Sec. 5.1 and focus on their secondary structure distributions.

Figure 4: Visualization of long
range contacts (LRC) in blue.

Fig. 2 shows that FrameFlow PDB samples a spread of helix and
strand compositions while FrameFlow AFDB collapses to almost
always sampling alpha helices despite the AFDB training data having
a diverse secondary structure distribution. Prior works Huguet et al.
(2024); Lin et al. (2024) have found neural network modifications
such as triangle layers to improve performance on AFDB but this
incurs cubic memory consumption. Instead, LSD uses a hierarchical
approach to improve generalization to diverse fold topologies. These
results indicate the contact map generation with LDM is beneficial
to help induce diverse protein folds in the subsequent generation of
protein structures with FrameFlow.

Contact map and structure generation are consistent. We ver-
ify the generated structures from the SDM are consistent with the
conditioned contact maps from the LDM; in other words, we check
the SDM is not ignoring the contact map. The LDM first samples
latents z(0) which are provided to the decoder to produce a latent decoded contact map ĉψ(z

(0)). Con-
ditioned on ĉψ(z

(0)), the SDM samples structures x from which we can compute the binary structure
contact map c(x) ∈ {0, 1}L×L and look at the contact map difference |c(x)− argmax(ĉψ(z

(0)))|.
Fig. 3 shows a visualization of these quantities. If SDM is ignoring the contact map, we would expect
many contact map differences which is not the case visually. Quantititatively, the ROCAUC and
PRAUC of c(x) and ĉψ(z

(0)) are 0.99 and 0.92 respectively on average when sampling in the protein
backbone generation benchmark. This indicates high consistency between the contact map and the
generated structures.

3Weights were downloaded from https://github.com/microsoft/protein-frame-flow

7

https://github.com/microsoft/protein-frame-flow


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Samples at γ=1 with different guidance scales. LSDPAE: Increasing ωPAE leads to lower
PAE of sampled structures with more secondary structure. LSDLRC: Decreasing rLRC leads to more
globular and diverse folds. We see rLRC = 1 leads to increase of coils.

5.3 LSD GUIDANCE

We next explore the ability to control the properties of the generated samples using guidance. Here
we use γ = 1 to study guidance under the correct reverse SDE eq. (8). In Tab. 1, we evaluate structure
generation for different guidances and parameters.

Table 1: LSD results with γ = 1. We use 100 timesteps for both latent and structure diffusion.

Method ωPAE rLRC Des (↑) Div (↑) DPT (↓) Nov (↓) SSD (↓) H/S/C
LSD 15% 84 0.6 0.74 0.13 61/10/28

LSDPAE

10 31% 133 0.54 0.7 0.25 61/12/28
50 66% 204 0.48 0.68 0.58 67/8/25
100 76% 202 0.46 0.66 0.78 69/7/24

LSDLRC

10 15% 89 0.62 0.67 0.23 52/16/31
5 16% 94 0.63 0.66 0.32 40/23/35
1 10% 62 0.66 0.61 0.24 34/26/40

LSDJ 50 5 61% 217 0.51 0.65 0.22 56/21/30

Each variant shows a different property being optimized. Using no guidance (LSD) gives the best
fit to the training distribution as indicated by the lowest SSD value. PAE guidance (LSDPAE) shows
designability increases as ωPAE increases but structures become more helical. Fig. 11 demonstrates
that increasing ωPAE leads to decreasing mean PAE values across varying lengths as computed by
AlphaFold2. LRC guidance (LSDLRC) gives the best novelty and more strands as the weight decay
rate rLRC decreases but suffers from low designability. We visualize the structures for PAE and
LRC guidance in Fig. 5 as ωPAE and rLRC vary. The structures reflect the H/S/C values where PAE
guidance leads to more “simple” helical structures and LRC guidance leads to more diverse fold
topologies. Using both guidances (LSDJ) reflects a balance between all metrics while achieving the
best diversity. In summary, we are able to control for different properties using a single diffusion
model and guidance techniques.

Analyzing the contact map diffusion trajectories ĉψ(ẑθ(z
(t))) across t leads to insights into how

guidance affects the generation process. Fig. 6 shows a prototypical trajectory for each variant. All
trajectories start with a blurred contact map at t = 1.0 that sharpens as t = 0.0. We see PAE guidance
encodes helices for most residues early on. PAE guided trajectories tend to encourage short range
contacts (near the diagonal) at the beginning while LRC guided trajectories encourage long range
contacts (far from the diagonal).

5.4 PROTEIN STRUCTURE GENERATION BENCHMARK

We benchmark our best settings against previous protein structure generative models for backbone
generation. We compare against both LDMs and SDMs described in Sec. 4. However, LDMs are the
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Figure 6: Contact map diffusion trajectories. We show prototypical examples of how the contact
map evolves over time as latent diffusion progresses by visualizing the latent decoded contact map
ĉψ(ẑθ(z

(t))) as t goes from 1.0 to 0.0. Each row corresponds to a different guidance variant discussed
in Sec. 5.3. At the far right, we show the structure generated from the final latent z(0).

most direct comparison since contact map generation with LDM is the main step in LSD where most
of the protein is determined. App. C.3 describes how we ran each baseline using their open source
implementation. As discussed in Sec. 5.2, our best results are achieved with γ = 0.7. Analogous to
Sec. 5.3, we ran a sweep to find the best hyperparameters at γ = 0.7 for LSDPAE, LSDLRC, and LSDJ;
see App. C.3 for details and hyperparameters. We found more timesteps to not give improvements
worth the extra compute. Tab. 2 shows our results.

Table 2: Protein backbone generation results. ∗ LatentDiff does not allow for controlling the length
of generated proteins since it sample the length. Out of 10,000 samples, we were unable to sample
above length 100. Therefore, only 10 proteins per length 60-100 were evaluated for LatentDiff.

Type Method Des (↑) Div (↑) DPT(↓) Nov(↓) SSD(↓) H/S/C

SDM

RFdiffusion 96% 247 0.43 0.71 0.99 78/7/15
ProteinSGM 49% 122 0.37 0.51 61 /10 /29
FrameFlow PDB 91% 278 0.48 0.65 0.35 52/20/27
FrameFlow AFDB 23% 54 0.42 0.70 1.32 77 /0 /23
GENIE2 97% 369 0.51 0.62 0.84 47/7/24

Lang. ESM3 61% 127 0.37 0.84 0.21 60/11/29
LDM LatentDiff∗ 17% 34 0.51 0.73 0.75 74/2/25

LDM+
SDM

LSD (γ=0.7) 69% 203 0.46 0.74 0.86 76/4/20
LSDPAE (γ=0.7) 94% 204 0.42 0.71 1.03 75/4/20
LSDLRC (γ=0.7) 33% 182 0.59 0.61 0.24 44/21/35
LSDJ (γ=0.7) 74% 296 0.53 0.66 0.26 57/15/28

Our first observation is that all LSD variants outperform LatentDiff on all metrics thus achieves state-
of-the-art (SOTA) performance for LDMs. LSDJ beats ESM3 on all metrics except DPT and SSD.
SDMs are known to be SOTA in protein backbone generation – we focus on comparing to GENIE2

9
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Figure 7: Left: Secondary structure distribution of designable samples from GENIE2 and LSDJ.
Despite GENIE2’s increased diversity, we see LSDJ achieves more diverse folds in terms of secondary
structure. Right: Novel samples with diverse folds from LSDLRC where “novel” is defined as
designable and <0.5 max TM-score to the AFDB as computed by Foldseek. We show 8 out of 19
novel samples from LSDLRC. Notice the diverse secondary structure topologies while staying novel.

which achieves the best overall results. GENIE2 is impressive in achieving SOTA performance
in most categories with a single setting. LSD requires different guidances to be competitive in
each category. Looking at H/S/C, we see LSDJ achieves two times higher beta strand composition
indicating more diverse secondary structure compositions than GENIE2 and adheres to the training
closer indicated by the lower SSD. Fig. 7 shows the difference in designable secondary structure
composition and shows the diverse fold topologies in novel samples from LSDLRC which achieves
the best novelty score. We note GENIE2 is a far more expensive model that makes use of O(L3)
memory intensive triangle update layers (Jumper et al., 2021). One length 100 protein generation
takes 2.3 min. for GENIE2 while LSDJ takes 0.3 min. on a Nvidia A6000 GPU. We found using
triangle updates to substantially slow down training and research iteration. We plan to investigate
different architectures and scaling up LSD.

LSD achieves a significant improvement over previous LDMs to close the performance gap between
LDMs and state-of-the-art SDMs by combining the two. Compared to only FrameFlow, LSD allows
options to guide generation towards which property we wish to optimize. More novelty? Use LSDLRC.
More designable? Use LSDPAE. Higher diversity with diverse H/S/C? Use LSDJ. Our approach
demonstrates versatility of controlling generation towards various properties. A natural extension is
to consider properties such as binding affinity, thermostablity, or catalytic activity.

6 DISCUSSION

The goal of LSD is to develop a new framework for protein structure generation capable of separating
high- and low-level details during the generation process. We combined latent and structure diffusion
to break up the generative procedure into first sampling latents, contact maps, and finally the atomic
coordinates. We showed how including intermediate contact maps helps learn large datasets such
as AFDB and how guidance techniques can improve the quality of the generated structures. We
compared LSD to existing protein structure generation methods and showed that it is competitive
with state-of-the-art SDMs and outperforms prior LDMs for protein backbone generation.

Our limitations include not achieving state-of-the-art performance on all metrics with a single setting
compared to SDMs and limiting LSD to unconditional backbone generation. We propose several
directions to address these. First, performance can likely be improved with further investigation into
the neural network architectures, i.e. triangle update layers that are widely utilized in Huguet et al.
(2024); Lin et al. (2024) or swapping out FrameFlow with GENIE2 as the SDM in our framework.
Second, we can optimize the LDM with the latest techniques report in the LDM for computer vision
literature such as Autoguidance (Karras et al., 2024) and Stable Diffusion 3 (Esser et al., 2024).
Lastly, we plan to extend our method to all-atomic biomolecular generation (Abramson et al., 2024)
and design tasks – binder design and motif-scaffolding (Krishna et al., 2024). Extending to protein
complexes involving multiple chains will require scaling up the model size to handle larger proteins.
Our latent space only encode protein backbone coordinates but a natural extension is to include
side-chain coordinates and protein sequence information. Having a malleable latent space opens up
new possibilities for protein generative modeling and design.
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7 REPRODUCIBILITY STATEMENT

Our implementations uses FrameFlow’s open source code https://github.com/
microsoft/protein-frame-flow as a starting point. We downloaded foldseek clus-
tered AFDB dataset from GENIE2 https://github.com/aqlaboratory/genie2
and processed the data with FrameFlow’s process pdb files.py script to be in
a format usable in the FrameFlow experiment code. To implement DiT, we used
https://github.com/facebookresearch/DiT in which we incorporated RoPE with
https://github.com/lucidrains/rotary-embedding-torch. Our encoder uses
ProteinMPNN’s code downloaded from https://github.com/dauparas/ProteinMPNN.
Code for this work will be made publicly available on Github with the deanonymized version. We
provide sufficient details and references in our work such that our results can be reproduced. Sec. 3
and App. B.1 provide model and training details. Our metrics are defined in App. B.3. Instructions
for how each baseline were ran is included in App. C.3.

8 ETHICS STATEMENT

We develop a novel method for protein structure generation that can be used in real world protein
design applications. Our work is purely academic to advance machine learning techniques for
protein data which can be used in down stream applications that are both ethical and unethical.
Fortunately most applications with protein design are targeted at developing new drugs and medicines
for which the benefits can outweight harmful impact. Protein design is a rapidly developing field with
biosecurity becoming a crucial consideration to which we refer to responsiblebiodesign.ai
for more detail.
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Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Frank Noé, et al. Improved
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A ADDITIONAL BACKGROUND

Here we provide a formal derivation of eq. (4) based on linear SDEs. Using SDEs for generative
modeling can be traced back to Song et al. (2021); Sohl-Dickstein et al. (2015); Ho et al. (2020).
Our derivation is not novel and follows the same steps as Song et al. (2021); Zheng et al. (2023). It
comprises of two main objects: a forward SDE to corrupt data and a reverse SDE to generate data
from noise. The most common SDE for generative modeling is of the Itô form and with linear drift
and diffusion coefficients. The forward SDE is defined as

dz(t) = a(t)z(t)dt+ b(t)dw(t) (7)

where a(t) : [0, 1] → R and b(t) : [0, 1] → R are the drift and diffusion coefficients, respectively,
and w(t) is a Wiener process. The seminal result of Anderson (1982) showed that eq. (7) can be
reversed in time analytically with the following reverse SDE

dz(t) =
[
a(t)z(t) − b(t)2∇z(t) log p0(z

(0))
]
dt+ b(t)dw(t) (8)

in the sense that the marginal distributions pt(z(t)) agree between the two SDEs.

The key idea will be to derive a(t) and b(t) for the forward SDE in eq. (7) that matches the time-
dependent noising process in eq. (2). With this, we can plug a(t) and b(t) into the reverse SDE in
eq. (8) to generate samples from the latent space. The time derivative of the mean and covariance of
eq. (7) at each time t is a result found in Section 5.5 of Särkkä & Solin (2019),

∂

∂t
logE[z(t)] = a(t)

∂

∂t
Var(z(t)) = 2a(t)Var(z(t)) + b(t)2.

From eq. (2), we know the mean and variance: E[z(t)] = α(t)z(0) and Var(z(t)) = σ(t)2I . First
solving for a(t),

a(t) =
∂

∂t
log

(
α(t)z(0)

)
=

∂

∂t
logα(t).

Next solving for b(t),

b(t)2 = 2a(t)σ(t)2 − ∂

∂t
σ(t)2

= 2σ(t)

(
∂

∂t
σ(t)− a(t)σ(t)

)
.

This matches the form of a(t) and b(t) in eq. (4).
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B ADDITIONAL METHOD

B.1 LSD DETAILS

We describe LSD training and neural network architecture details. First, we recall the training
objetives and neural networks described in Sec. 3. As a reminder, L is the length of the protein and
K is the number of latent dimensions.

1. Encoder pϕ with weights ϕ parameterized as a modified version of ProteinMPNN (Dauparas
et al., 2022) to output the mean and variance of the latent distribution instead than amino acid
probabilities. The input to the encoder is the protein structure x ∈ RL×K while the output
is the mean µ ∈ RL×K and log standard deviation log σ ∈ RL×K of the latent distribution
z ∈ RL×K . We use a hidden dimension of 128, no dropout, and 6 message passing layers.
All other details of ProteinMPNN are kept the same as reported in its original paper.

2. Decoder pψ with weights ψ parameterized as a three layer multi-layer perceptron with 128
hidden dimensions and ReLU activations. The input to the decoder is the latent z while the
output is the contact map ĉψ ∈ RL×L.

3. Latent Diffusion Model (LDM) ẑθ with weights θ parameterized as a Diffusion Transformer
(DiT) (Peebles & Xie, 2023b). To use DiT for our purposes, we treat each residue as a token.
Specifically, since the noisy latent z(t) is an input to the model, each z

(t)
i for i ∈ [1, . . . , L]

is a token where z(t) = [z
(t)
1 , . . . , z

(t)
L ]. We use 24 DiT blocks with 384 hidden dimension,

0.1 Dropout, and Rotary Positional Encodings (RoPE) (Su et al., 2024) in place of abolsute
positional encodings during the attention operations.

4. Structure Diffusion Model (SDM) x̂φ with weights φ parameterized as FrameFlow (Yim
et al., 2024a). We use the same hyperparameters as FrameFlow, 256 single dimension and
128 pair dimension, with the addition of concatenating the latents z(0) and the predicted
contact map ĉψ(z

(0)) to the initial set of 1D and 2D features provided to FrameFlow. We
found rotation annealing, auxiliary losses, and self-conditioning unnecessary and removed
them for a simpler model.

Each model is trained with the following losses. We have slighlty modified each loss from its initial
presentation in the main text to be more explicit:

Encoder and decoder loss:

Lrec(z,x) =
1

|Z0|
∑

(i,j)∈Z0

− log pψ(cij = 0|zi ⊗ zj) +
1

|Z1|
∑

(i,j)∈Z1

− log pψ(cij = 1|zi ⊗ zj)

LVAE(x) = Epϕ(z|x) [Lrec(z,x)] + λKL [pϕ(z|x)||N (0, I)]

with Z0 = {(i, j) : cij = 0} and Z1 = {(i, j) : cij = 1} as the set of indices where cij = 0 and
cij = 1 respectively.

LDM loss:
LLDM(z) = Eqt(z(t)|z)

U(t;0,1)

[
1

σ(t)2
∥ẑθ(z(t), t)− z∥22

]
.

SDM loss: Following FrameFlow, we represent the atomic coordinates x as elements of SE(3)
called frames, T(x) ∈ SE(3)L. For brevity, we will use T = T(x). Let T = [T1, . . . ,TL] be
the L frames of the structure obtained by converting atomic coordinates to frames. Since SE(3) =
R3 ⋉ SO(3), we can represent each frame Ti = (τi,R)i for all i by an translation τi ∈ R3 and
rotation Ri ∈ SO(3). Converting atomic coordinates to the frame representation is achieved by
setting the Carbon-alpha coordinate as translation and using the Gram-Schmidt process to construct
the orthonormal basis of the remaining residues (Yim et al., 2023). For shorthand, we will use
T = (τ,R) where τ ∈ RL×3 and R ∈ SO(3)

L. In other words, τ and R refers to the translations
and rotations of all residues. The SDM’s predictions can be written as

x̂φ(x
(t), ĉψ(z), z, t) = T̂(x(t), ĉψ(z), z, t) = (τ̂(x(t), ĉψ(z), z, t), R̂(x(t), ĉψ(z), z, t))
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We can now write the SDM loss:

Ltrans(T,T
(t), z, t) =

∥∥τ − τ̂(T(t), ĉψ(z), z, t)
∥∥2

σ(t)2

Lrot(T,T
(t), z, t) =

∥∥∥logR(t)(R)− logR(t)(R̂(T(t), ĉψ(z), z, t))
∥∥∥2

σ(t)2
.

LSDM(T, z) = Eq∗t (T(t)|T)
U(t;0,1)

[
Ltrans(x,x

(t), z, t) + Lrot(x,x
(t), z, t)

]
where q∗t (T

(t),T) = [Φt]∗q0(T
(1)) is defined with the prior q0 = U(SO(3))L × N (0, 1)L×3

and push-forward using the conditional flow Φt(T
(1)|T(0)) = T(t) = [T

(t)
1 , . . . ,T

(t)
L ] where

T
(t)
i = (τ

(t)
i ,R

(t)
i ) defined as the geodesics

τ
(t)
i = (1− t)τ (0)i + tτ

(1)
i , R

(t)
i = exp

R
(1)
i

(
(1− t)log

R
(1)
i
(R

(0)
i )

)
.

exp and log refer to the exponential and logarithm map onto the respective manifolds. For more
details of the SDM training, we refer to (Yim et al., 2024a).

Multi-stage training. We use three stages of training as described in Sec. 3.3. In stage 1, the VAE
is trained. In stage 2, the SDM is trained and the VAE is fine-tuned jointly with the SDM. In stage 3,
the LDM is trained with the VAE weights fixed. A summary of the training stages, losses and number
of epochs is provided in Tab. 3. Each stage uses the AdamW optimizer (Loshchilov, 2017) with
learning rate 1e-4 and weight decay 1e-5. We trained on 8 Nvidia A6000 GPUs for each stage. We
used the length-based mini-batching strategy from (Yim et al., 2023) that came with the FrameFlow
codebase.

Table 3: Training stages.

Stage Loss Epochs/Days
1: VAE training Ep(x) [LVAE(x)] 16/0.5
2: VAE & SDM training Ep(x)

[
LVAE(x) + Epϕ(z|x) [LSDM(T(x), z)]

]
16/1

3: LDM training Ep(x),pϕ(z|x) [LLDM(z)] 48/2

B.2 PAE GUIDANCE DETAILS

The training dataset is constructed by sampling 500 proteins of each length in the range 60 to 128 from
AFDB. ProteinMPNN samples three sequences per backbone and AlphaFold2 in single sequence
mode is used to compute a mean PAE value per sequence. The minimum mean PAE value amongst
the sequences for each backbone is used as the corresponding label. A min-max norm is used to
transform the PAE values to lie between 0 and 1. To parameterize the regressor we use two 1D
convolutional layers with kernel size k = 5 and 256 channels. Following each convolutional layer,
ReLU activation and dropout p = 0.2 are applied. An attention pooling mechanism aggregates
the embeddings across the length dimension, and a linear projection transforms the fixed length
embedding to a single dimension. While Dhariwal & Nichol (2021) propose training the guide
function on noisy z(t) samples, we found pt(y|z(t)) difficult to learn as seen in the Table 4 below.

Table 4: Guide model ablation.

Input PearsonR
Noised latents 0.34

Denoised latents 0.40
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Since the LDM is tasked with predicting denoised latents, z(0), we can train with the following L2
loss:

L = ∥ẑθ(z(t), t)− y∥22
where y ∈ R is the designed PAE label. Models were trained on 2 A100s for 12 hours, and the best
checkpoint was selected by computing PearsonR on a held-out set of designed backbones from the
PDB. Sweeps over ωPAE from 0-200 across proteins of length 75, 100, and 125 demonstrate the ability
of PAE guidance to reduce mean PAE of generated samples evaluated with Alphafold2 see Figure 6.

B.3 METRIC DETAILS

We describe each metric used in Sec. 5 for completeness. Designability, diversity, and novelty are
standard metrics used in multiple prior related works (Yim et al., 2023; Watson et al., 2022; Lin et al.,
2024; Bose et al., 2024; Huguet et al., 2024). Designable Pairwise TM-score and secondary structure
composition are an additional metric reported in recent works as well (Lin et al., 2024; Bose et al.,
2024; Huguet et al., 2024). We introduce Secondary Structure Distance to supplement the above
metrics. Below we describe each metric.

1. Designability (Des): Let x be a protein backbone structure sampled from a protein structure
generative model. We use the open-sourced ProteinMPNN code4 to generate 8 sequences
for each backbone. ESMFold (Lin et al., 2023) then predicts the structure of each sequence.
We compute the atomic Root Mean Squared Deviation (RMSD) of each predicted structure
against the sampled structure x. If RMSD < 2.0 then we consider x to be designable in
the sense that a sequence can be found which would fold into the x structure. Clearly this
evaluation is purely in-silico and only serves as a approximation of whether a structure is
designable. Despite that, designability has been found to correlate with wet-lab success
especially when more specialized sequence and structure prediction models are used (Watson
et al., 2022; Zambaldi et al., 2024). We report designability as the percentage of samples
that are designable. It is currently debated whether a protein generative model should aim
to have as high designability as possible since designability is influenced by the inductive
biases of the structure prediction model. Many natural occurring proteins are known to
not pass the designability crition (Huguet et al., 2024; Campbell et al., 2024) yet are real
proteins. We present our experiments with designability as a metric we wish to increase in
order to follow prior works.

2. Diversity (Div): A generative model can achieve 100% designability by repeatedly sampling
the same designable structure. To detect this exploitation, we report diversity as the number
of clusters after running a clustering algorithm over the designable samples. Following prior
works starting with (Trippe et al., 2022), we MaxCluster (Herbert & Sternberg, 2008) to run
hierarchical clustering over all designable structures with average linkage, 0.5 TM-score
cutoff, and no sequence filtering. The goal is to maximize the number of clusters in the
samples.

3. Designable Pairwise TM-score (DPT): Reporting the number of clusters can be biased
since there are many hyperparameters and algorithms for clustering. To present a unbiased
view of diverisy, we report the average TM-score of all the pairwise TM-scores between
designable samples. This is part of an auxiliary output after running MaxCluster.

4. Novelty: We measure how a method extrapolates beyond the training set by computing
the average of the maximum TM-scores of each designable structure x when compared
to AFDB. We use FoldSeek with the following command: foldseek easy-search
<path-to-designable-pdb-files> <path-to-afdb-database>
alignments.m8 tmp --alignment-type 1 --format-output
query,target,alntmscore,lddt --tmscore-threshold 0.0
--exhaustive-search --max-seqs 10000000000 --comp-bias-corr
0 --mask 0. Foldseek commands are chosen to ignore sequence filtering and turn off
pre-filtering steps before running a efficent structural search algorithm against all structures
in the AFDB. The goal is to minimize the novelty metric as this corresponds to more
extrapolation beyond the training set while adhering to the designability criterion. We note

4https://github.com/dauparas/ProteinMPNN
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this is just one definition of novelty and other definitions as possible but we aim to follow
precedent set by prior works.

5. (Designable) Helix/Strand/Coil percentage (H/S/C): Out of the designable samples, we
use DSSP (Kabsch & Sander, 1983) to compute the average alpha-helix, beta-strand, and
coil percent the set of designable samples. Previous works have noted protein generative
models are susceptible to preferring helices over strands (Huguet et al., 2024). This metric
helps see how diverse the designable structures are from a secondary structure perspective.
There is no inherently desirable value of this metric but serves to provide intuition into how
biased a model is to sampling helices over strands.

6. Secondary Structure Distance (SSD): As mentioned in Sec. 5.1, SSD is meant to supple-
ment the above metrics since none of them address how well a protein generative model is
learning the training distribution. For instance, datasets such as PDB and AFDB have less
than 100% designability; a generative model trained on these datasets cannot achieve 100%
designability if they learn the datasets perfectly. There is a need for a distributional metric
that measures how well a generative model captures the training distribution. We propose
SSD to provide insight into how well a generative model learns the secondary structure
distribution of the training dataset. The goal is to lower SSD as that corresponds to a lower
distributional distance between the alpha and helical composition of the training set and
the generated samples. Unlike the above metrics, we compute SSD over all the generated
samples without filtering for designability for the reasons just discussed. Computation of
SSD is provided in Alg. 1.

Algorithm 1 Computation of the Secondary Structure Distance (SSD) Metric

1: Input: Training dataset Dtrain, Generated samples Dgen
2: Dtrain sampled ← Random Sample 10,000 proteins from Dtrain
3: for D ∈ {Dtrain sampled,Dgen} do
4: Initialize set SSD ← ∅
5: for protein p in D do
6: Compute helix percentage P (p)

H and strand percentage P (p)
S

7: Store (P
(p)
S , P

(p)
H ) in SSD

8: end for
9: end for

10: Divide [0, 1] into n equal bins B1, B2, . . . , Bn
11: for D ∈ {SStrain sampled,SSgen} do
12: for i = 1 to n do
13: for j = 1 to n do
14: PD(i, j)← |{(PS ,PH)∈SSD|PS∈Bi∧PH∈Bj}|

|SSD|
15: end for
16: end for
17: end for
18: W ←WassersteinDistance(Ptrain sampled, Pgen)
19: return W
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C ADDITIONAL EXPERIMENTS

C.1 LSD EXPERIMENTS

To find the optimal hyperparameters for the VAE, we performed a hyperparameter sweep over
the number of latent dimensions K and the regularization weight λ. For each combination of
K ∈ {2, 4, 8} and the regularization weight λ ∈ {0.01, 0.1, 1.0}, we ran stage 1 training followed
by evaluating long range contact ROC and PRAUC on a held out set of randomly chosen 32 protein
clusters using Foldseek’s cluster assignment. The results are presented in Tab. 5 where we see K = 4
and λ = 0.01 to be optimal.

Table 5: VAE hyperparameter sweep.

K λ ROCAUC PRAUC
2 0.01 0.5 0.5
2 0.1 0.5 0.5
2 1.0 0.5 0.51
4 0.01 0.99 0.99
4 0.1 0.5 0.5
4 1.0 0.5 0.5
8 0.01 0.99 0.99
8 0.1 0.99 0.99
8 1.0 0.5 0.5

Using K = 4 and λ = 0.01, we ran the full three stage training procedure for different ablations of
the LDM in Tab. 6. We report the standard Designability, Diversity, and Novelty metrics where we
find using DiT and RoPE presented the best combined of the metrics.

Table 6: Ablations

Ablation Des Div Nov
DiT+RoPE 68.7 % 203 0.74

DiT No RoPE 57.25% 212 0.74
Transformer instead of DiT 51.88% 190 0.73

Next, we investigated if (1) separate training of the autoencoder and FrameFlow is necessary and (2)
if the contact map loss is necessary. We trained three different settings:

1. End-to-end training of autoencoder and FrameFlow from scratch for 32 epochs without
contact map loss.

2. End-to-end training of autoencoder and FrameFlow from scratch for 32 epochs with contact
map loss.

3. Two stage training of autoencoder and FrameFlow as defined in Tab. 3 with 16 epochs for
each stage.

Tab. 7 shows the results after training where we evaluated the average reconstruction RMSD on the
autoencoder validation set. Specifically, we encoded each protein in the validation set then sampled
with FrameFlow to reconstruction the protein. We take the RMSD of the sampled protein against the
encoded protein and report the average RMSD across all examples. We clearly see that the two stage
training with contact map loss results in the lowest RMSD. Hence, both the contact map loss and two
stage training are necessary.

With K = 4 and λ = 0.01 and our DiT+ROPE LDM, we sampled at different values of γ and tried
the noiseless ODE formulation of sampling. We find γ = 0.7 provided the sweet spot of highest
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diversity with good designability. As discussed in App. B.3, one should not always try to maximize
designability but also consider diversity and novelty.

We show scRMSD results across different lengths for each variant of LSD in Fig. 8. We perform
analysis of dihedral angles in Fig. 9 between samples from LSD and the training dataset.

Table 7: Autoencoder training ablations.

Training Contact map loss Reconstruction RMSD
End-to-end training of autoencoder

and FrameFlow from scratch.
No 12.0
Yes 4.1

Two stage training of autoencoder
then FrameFlow as done in Tab. 3. Yes 1.8

Table 8: γ hyperparameter sweep.

γ Des (↑) Div (↑) Nov (↓) SCC (↓)
0.5 SDE 89.4% 148 0.78 1.094
0.6 SDE 81.1% 197 0.75 1.036
0.7 SDE 68.7% 203 0.74 0.859
0.8 SDE 46.2% 164 0.72 0.589
0.9 SDE 30.9% 130 0.72 0.398
1.0 SDE 15.3% 84 0.70 0.132

ODE 5.5% 20 0.75 0.608

Table 9: AFDB Metrics. We took 10 random proteins across each length between 60-128 and
evaluated designability and diversity. This demonstrates the low designability but high diversity
nature of AFDB.

Des (↑) Div
AFDB 12.9% 453
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Figure 8: scRMSD plotted against sample length for all variants of our LSD with γ = 0.7.

Figure 9: Ramachandran plot of LSD (γ = 0.7) samples from Sec. 5.4 compared to 1000 structures
randomly sampled from the AFDB training set. For visualization purposes, we separated Ramachan-
dran plots between α-helical and mixed α-helical/β-sheet samples. In the last column we plot the ω
dihedral angle. We find LSD and AFDB have very similar dihedral angle distributions.

C.2 LSD GUIDANCE EXPERIMENTS

Similar to Tab. 1, we sweep hyperparameters ωPAE, rLRC at γ = 0.7 to find the best setting for each
model. Our results are shown in Tab. 10. We selected hyperparameters with the following logic:

• LSDPAE (ωPAE=25): We increased ωPAE until designability was maximized without decreas-
ing diversity.

• LSDLRC (rLRC=1): We selected the weight with the best novelty.
• LSDJ (ωPAE=5, rLRC=5): We selected the weights that maximized diversity.

that maximized designability without sacrificing diversity for LSDPAE (ωPAE=25);
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Figure 10: Correlation of normalized rmsd to input and mean PAE values.

Figure 11: Samples at γ=1 with different guidance scales. Increasing ωPAE leads to lower mean PAE
of sampled structures from Alphafold2.

C.3 BASELINE EXPERIMENTS

To facilitate a comprehensive comparison with our proposed method, we evaluated several pro-
tein generative models. This section details the procedures followed, including the selection of
hyperparameters.
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Table 10: LSD results with γ = 0.7. We use 100 timesteps for both latent and structure diffusion.

Method ωPAE rLRC Des (↑) Div (↑) DPT (↓) Nov (↓) SSD (↓) H/S/C
LSD 69% 203 0.46 0.74 0.86 76/4/20

LSDPAE

50 95% 176 0.4 0.7 1.06 76/5/20
25 94% 204 0.42 0.71 1.03 75/4/20
10 88% 211 0.43 0.73 0.95 76/4/20
5 78% 193 0.43 0.74 0.87 75/4/21

LSDLRC

10 73% 240 0.49 0.69 0.47 64/11/25
5 67% 272 0.53 0.65 0.22 55/16/29
1 33% 182 0.59 0.61 0.24 44/21/35

LSDJ 10 5 76% 262 0.49 0.65 0.26 60/13/27
5 5 74% 296 0.52 0.65 0.26 57/15/28

10 1 48% 232 0.56 0.61 0.47 47/20/33
5 1 38% 265 0.54 0.61 0.23 46/20/23

C.3.1 ESM3 UNCONDITIONAL GENERATION

Following Appendix A.3.6 of ESM3, which outlines the procedure for unconditional genera-
tion, we employed the open-source 1.4B parameter model available at https://github.com/
evolutionaryscale/esm.

To generate a protein sequence of length l, we input a sequence of mask tokens of the same length
into the model. We set the temperature to 0.5 and configured the number of decoding steps to equal
the protein length l. Subsequently, we conditioned the 1.4B model to generate structure tokens using
the same number of decoding steps (l) with argmax decoding, where the temperature was set to 0.

We conducted ablation studies to determine the optimal number of decoding steps by testing values
of l/2, 2l/3, and l with a temperature of 0.7. Our experiments revealed that setting the number of
decoding steps to l yielded higher diversity than 2l/3 with slightly lower designability . Additionally,
we performed ablation on the temperature parameter by evaluating temperatures of 0.3, 0.5, and 0.7
for the optimal number of decoding steps l. We found that a temperature of 0.5 provided the best
results.

Table 11: Ablation on Decoding Steps with Fixed Temperature (0.7)

Decoding Steps Des (↑) Div (↑) Novelty (↓)
l/2 23.1% 62 0.83
2l/3 28.5% 72 0.84
l 26 % 78 0.82

Table 12: Ablation on Temperature with Fixed Decoding Steps (l)

Temperature Des (↑) Div (↑) Novelty (↓)
0.3 44.8% 37 0.9
0.5 40.3% 84 0.87
0.7 26 % 72 0.82
1.0 14.5 % 41 0.81

To verify our baseline results for the ESM3 model, we consulted with the ESM3 authors. They rec-
ommended employing a chain-of-thought experiment that involves sampling the secondary structure
with a temperature of 0.7, followed by sampling structure tokens with the same temperature. This
approach significantly enhances designability. Consequently, the ESM3 results presented in the main
text are based on this approach.
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C.3.2 GENIE 2

To generate samples using Genie2, we utilize the open-source repository available at https:
//github.com/aqlaboratory/genie2. We used a sampling temperature of 0.6. This
hyperparameter was selected based on the paper’s findings, which indicated that these settings yielded
the best performance in terms of sample designability and diversity.

C.3.3 LATENTDIFF

We benchmarked Latentdiff model using the open-source code available at https://github.
com/divelab/AIRS/tree/main/OpenProt/LatentDiff. However, due to stochastic
sampling of the length in the reconstruction process, we were unable to control the lengths of the
sampled proteins. During the upsampling stage in the decoder this MLP was used to process the
final node embeddings and predict whether a reconstructed node corresponds to a padded node, this
introduced stochasticity in the lengths of the sampled proteins restricting our ability to generate
specific lengths reliably especially those longer than 100.
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