
STEM: A Stochastic Two-Sided Momentum
Algorithm Achieving Near-Optimal Sample and

Communication Complexities for Federated Learning

Prashant Khanduri
University of Minnesota
khand095@umn.edu

Pranay Sharma
Carnegie Mellon University
pranaysh@andrew.cmu.edu

Haibo Yang
The Ohio State University

yang.5952@buckeyemail.osu.edu

Mingyi Hong∗
University of Minnesota

mhong@umn.edu

Jia Liu
The Ohio State University

liu@ece.osu.edu

Ketan Rajawat
Indian Institute of Technology Kanpur

ketan@iitk.ac.in

Pramod K. Varshney
Syracuse University
varshney@syr.edu

Abstract

Federated Learning (FL) refers to the paradigm where multiple worker nodes
(WNs) build a joint model by using local data. Despite extensive research, for a
generic non-convex FL problem, it is not clear, how to choose the WNs’ and the
server’s update directions, the minibatch sizes, and the number of local updates, so
that the WNs use the minimum number of samples and communication rounds to
achieve the desired solution. This work addresses the above question and considers
a class of stochastic algorithms where the WNs perform a few local updates before
communication. We show that when both the WN’s and the server’s directions are
chosen based on certain stochastic momentum estimator, the algorithm requires
Õ(ε−3/2) samples and Õ(ε−1) communication rounds to compute an ε-stationary
solution. To the best of our knowledge, this is the first FL algorithm that achieves
such near-optimal sample and communication complexities simultaneously. Fur-
ther, we show that there is a trade-off curve between the number of local updates
and the minibatch sizes, on which the above sample and communication complexi-
ties can be maintained. Finally, we show that for the classical FedAvg (a.k.a. Local
SGD, which is a momentum-less special case of the STEM), a similar trade-off
curve exists, albeit with worse sample and communication complexities. Our
insights on this trade-off provides guidelines for choosing the four important design
elements for FL algorithms, the number of local updates, WNs’ and server’s update
directions, and minibatch sizes to achieve the best performance.

1 Introduction

In Federated Learning (FL), multiple worker nodes (WNs) collaborate with the goal of learning a
joint model, by only using local data. Therefore it has become popular for machine learning problems
where datasets are massively distributed [1]. In FL, the data is often collected at or off-loaded to
multiple WNs which in collaboration with a server node (SN) jointly aim to learn a centralized model
∗Corresponding Author: Mingyi Hong.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

(a) Communication complexity. (b) Minibatch sizes vs Local Updates.

Figure 1: The 3D surface in (a) plots the communication complexity of the proposed STEM for different
minibatch sizes and number of local updates. The surface is generated such that each point represents STEM with
a particular choice of (b, I), so that it requires Õ(ε−3/2) samples to achieve ε-stationarity. Plot (b) shows the
optimal trade off between the minibatch sizes and the number of local updates at each WN (i.e., achieving the
lowest communication and sample complexities). Both plots are generated for an accuracy of ε = 10−3 and
all the constants dependent on system parameters (variance of stochastic gradients, heterogeneity parameter,
optimality gap, Lipschitz constants, etc.) are assumed to be 1. Fed STEM is a special case of STEM where
O(1) minibatch is used; Minibatch STEM is a special case of STEM where O(1) local updates are used.

[2, 3]. The local WNs share the computational load and since the data is local to each WN, FL also
provides some level of data privacy [4]. A classical distributed optimization problem that K WNs
aim to solve:

min
x∈Rd

{
f(x) :=

1

K

K∑
k=1

f (k)(x) :=
1

K

K∑
k=1

Eξ(k)∼D(k) [f (k)(x; ξ(k))]

}
. (1)

where f (k) : Rd → R denotes the smooth (possibly non-convex) objective function and ξ(k) ∼ D(k)

represents the sample/s drawn from distribution D(k) at the kth WN with k ∈ [K]. When the
distributions D(k) are different across the WNs, it is referred to as the heterogeneous data setting.

The optimization performance of non-convex FL algorithms is typically measured by the total number
of samples accessed (cf. Definition 2.2) and the total rounds of communication (cf. Definition
2.3) required by each WN to achieve an ε-stationary solution (cf. Definition 2.1). To minimize the
sample and the communication complexities, FL algorithms rely on the following four key design
elements: (i) the WNs’ local model update directions, (ii) Minibatch size to compute each local
direction, (iii) the number of local updates before WNs share their parameters, and (iv) the SN’s
update direction. How to find effective FL algorithms by (optimally) designing these parameters has
received significant research interest recently.

Contributions. The main contributions of this work are listed below:

1) We propose the Stochastic Two-Sided Momentum (STEM) algorithm, that utilizes certain
momentum-assisted stochastic gradient directions for both the WNs and SN updates. We show
that there exists an optimal trade off between the minibatch sizes and number of local updates, such
that on the trade-off curve STEM requires Õ(ε−3/2)2 samples and Õ(ε−1) communication rounds to
reach an ε-stationary solution; see Figure 1 for an illustration. These complexity results are the best
achievable for first-order stochastic FL algorithms (under certain assumptions, cf. Assumption 1);
see [5–8] and [9, 10], as well as Remark 1 of this paper for discussions regarding optimality. To the
best of our knowledge, STEM is the first algorithm which – (i) simultaneously achieves the optimal
sample and communication complexities for FL and (ii) can optimally trade off the minibatch sizes
and the number of local updates.

2) A momentum-less special case of our STEM result further reveals some interesting insights of the
classical FedAvg algorithm (a.k.a. the Local SGD) [11–13]. Specifically, we show that for FedAvg,
there also exists a trade-off between the minibatch sizes and the number of local updates, such that it
requires O(ε−2) samples and O(ε−3/2) communication rounds to achieve an ε-stationary solution.

2The notation Õ(·) hides the logarithmic factors.

2

Algorithm Work Sample Comm. Minibatch (b) Local Updates (I) /round

FedAvg�
[12] /[14]

O(ε−2)

O(ε−3/2) O(1) O(ε−1/2)

[15]/[16] O(ε−2) O(1) O(1)

this work O(ε−3/2) O
(
ε
− 2(1−ν)

(4−ν)
)

O
(
ε
− 3ν

2(4−ν)
)

SCAFFOLD∗ [15] O(ε−2) O(ε−2) O(1) O(1)
FedPD/FedProx‡ [9]/ [10] O(ε−2) O(ε−1) O(1) O(ε−1)

MIME†/FedGLOMO [17]/[18] O(ε−3/2) O(ε−3/2) O(1) O(1)

STEM� O
(
ε
− 3(1−ν)

2(3−ν)
)

O
(
ε
− ν

(3−ν)
)

Fed STEM O(1) O(ε−1/2)

Minibatch STEM∗
this work Õ(ε−3/2) Õ(ε−1)

O(ε−1/2) O(1)

Table 1: Comparison of FedAvg and STEM with different FL algorithms for various choices of the minibatch
sizes (b) and the number of per node local updates between two rounds of communication (I).
�ν ∈ [0, 1] trades off b and I; ν = 1 (resp. ν = 0) uses multiple (resp. O(1)) local updates and O(1) (resp.
multiple) samples. Fed STEM and Minibatch STEM are two variants of the proposed STEM.
‡The data heterogeneity assumption is weaker than Assumption 2 (please see [9] for details).
†Requires bounded Hessian dissimilarity to model data heterogeneity across WNs.
∗Guarantees for Minibatch STEM with I = 1 and SCAFFOLD are independent of the data heterogeneity.

Collectively, our insights on the trade-offs provide practical guidelines for choosing different design
elements for FL algorithms.

Related Works. FL algorithms were first proposed in the form of FedAvg [11], where the local update
directions at each WN were chosen to be the SGD updates. Earlier works analyzed these algorithms
in the homogeneous data setting [19–25], while many recent studies have focused on designing new
algorithms to deal with heterogeneous data settings, as well as problems where the local loss functions
are non-convex [9, 10, 12–16, 18, 26–32]. In [12], the authors showed that Parallel Restarted SGD
(Local SGD or FedAvg [11]) achieves linear speed up while requiring O(ε−2) samples and O(ε−3/2)
rounds of communication to reach an ε-stationary solution. In [14], a Momentum SGD was proposed,
which achieved the same sample and communication complexities as Parallel Restarted SGD [12],
without requiring that the second moments of the gradients be bounded. Further, it was shown that
under the homogeneous data setting, the communication complexity can be improved to O(ε−1)
while maintaining the same sample complexity. The works in [15, 16] conducted tighter analysis for
FedAvg with partial WN participation withO(1) local updates and batch sizes. Their analysis showed
that FedAvg’s sample and communication complexities are both O(ε−2). Additionally, SCAFFOLD
was proposed in [15], which utilized variance reduction based local update directions [33] to achieve
the same sample and communication complexities as FedAvg. Similarly, VRL-SGD proposed in
[29] also utilized variance reduction and showed improved communication complexity of O(ε−1),
while requiring the same computations as FedAvg. Importantly, both SCAFFOLD and VRL-SGD’s
guarantees were independent of the data heterogeneity. The FedProx proposed in [10] used a penalty
based method to improve the communication complexity of FedAvg (i.e., the Parallel Restarted and
Momentum SGD [14, 12]) to O(ε−1). FedProx used a gradient similarity assumption to model data
heterogeneity which can be stringent for many practical applications. This assumption was relaxed
by FedPD proposed in [9].

Recently, the works [17, 18] proposed to utilize hybrid momentum gradient estimators [7, 8]. The
MIME algorithm [17] matched the optimal sample complexity (under certain smoothness assump-
tions) of O(ε−3/2) of the centralized non-convex stochastic optimization algorithms [5–8]. Similarly,
Fed-GLOMO [18] achieved the same sample complexity while employing compression to further
reduce communication. Both MIME and Fed-GLOMO required O(ε−3/2) communication rounds to
achieve an ε-stationary solution. Please see Table 1 for a summary of the above discussion.

The comparison of Local SGD (FedAvg) to Minibatch SGD for convex and strongly convex problems
with homogeneous data setting was first conducted in [19] and later extended to heterogeneous setting
in [13]. It was shown that Minibatch SGD almost always dominates the Local SGD. In contrast, it
was shown in [24] that Local SGD dominates Minibatch SGD in terms of generalization performance.
Although existing FL results are rich, but they are somehow ad hoc and there is a lack of principled

3

understanding of the algorithms. We note that the proposed STEM algorithmic framework provides a
theoretical framework that unifies all existing FL results on sample and communication complexities.

Notations. The expected value of a random variable X is denoted by E[X] and its expectation
conditioned on an Event A is denoted as E[X|Event A]. We denote by R (and Rd) the real line
(and the d-dimensional Euclidean space). The set of natural numbers is denoted by N. Given a
positive integer K ∈ N, we denote [K] , {1, 2, . . . ,K}. Notation ‖ · ‖ denotes the `2-norm and
〈·, ·〉 the Euclidean inner product. For a discrete set B, |B| denotes the cardinality of the set. Uniform
distribution over a discrete set {1, . . . , T} is denoted as U{1, . . . , T}.

2 Preliminaries

Before we proceed to the algorithms, we make the following assumptions about problem (1).

Assumption 1 (Sample Gradient Lipschitz Smoothness). The stochastic functions f (k)(·, ξ(k)) with
ξ(k) ∼ D(k) for all k ∈ [K], satisfy the mean squared smoothness property, i.e, we have

E‖∇f (k)(x; ξ(k))−∇f (k)(y; ξ(k))‖2 ≤ L2‖x− y‖2 for all x, y ∈ Rd.

Assumption 2 (Unbiased gradient and Variance Bounds). (i) Unbiased Gradient. The stochastic
gradients computed at each WN are unbiased

E[∇f (k)(x; ξ(k))] = ∇f (k)(x), ∀ ξ(k) ∼ D(k), ∀ k ∈ [K].

(ii) Intra- and inter- node Variance Bound. The following bounds hold:

E‖∇f (k)(x; ξ(k))−∇f (k)(x)‖2 ≤ σ2, ‖∇f (k)(x)−∇f (`)(x)‖2 ≤ ζ2, ∀ ξ(k) ∼ D(k),∀k, ` ∈ [K].

Note that Assumption 1 is stronger than directly assuming f (k)’s are Lipschitz smooth (which we
will refer to as the averaged gradient Lipschitz smooth condition), but it is still a rather standard
assumption in SGD analysis. For example it has been used in analyzing centralized SGD algorithms
such as SPIDER [5], SNVRG [6], STORM [7] (and many others) as well as in FL algorithms such
as MIME [17] and Fed-GLOMO [18]. The second relation in Assumption 2-(ii) quantifies the data
heterogeneity, and we call ζ > 0 as the heterogeneity parameter. This is a typical assumption
required to evaluate the performance of FL algorithms. If data distributions across individual WNs
are identical, i.e., D(k) = D(`) for all k, ` ∈ [K] then we have ζ = 0.

Next, we define the ε-stationary solution for non-convex optimization problems, as well as quantify
the computation and communication complexities to achieve an ε-stationary point.
Definition 2.1 (ε-Stationary Point). A point x is called ε-stationary if ‖∇f(x)‖2 ≤ ε. Moreover,
a stochastic algorithm is said to achieve an ε-stationary point in t iterations if E[‖∇f(xt)‖2] ≤ ε,
where the expectation is over the stochasticity of the algorithm until time instant t.
Definition 2.2 (Sample complexity). We assume an Incremental First-order Oracle (IFO) frame-
work [34], where, given a sample ξ(k) ∼ D(k) at the kth node and iterate x, the oracle returns
(f (k)(x; ξ(k)),∇f (k)(x; ξ(k))). Each access to the oracle is counted as a single IFO operation. We
measure the sample (and computational) complexity in terms of the total number of calls to the IFO
by all WNs to achieve an ε-stationary point given in Definition 2.1.
Definition 2.3 (Communication complexity). We define a communication round as a one back-and-
forth sharing of parameters between the WNs and the SN. Then the communication complexity is
defined to be the total number of communication rounds between any WN and the SN required to
achieve an ε-stationary point given in Definition 2.1.

3 The STEM algorithm and the trade-off analysis

In this section, we discuss the proposed algorithm and present the main results. The key in the
algorithm design is to carefully balance all the four design elements mentioned in Sec. 1, so that
sufficient and useful progress can be made between two rounds of communication.

Let us discuss the key steps of STEM, listed in Algorithm 1. In Step 10, each node locally updates
its model parameters using the local direction dkt , computed by using b stochastic gradients at two

4

Algorithm 1 The Stochastic Two-Sided Momemtum (STEM) Algorithm

1: Input: Parameters: c > 0, the number of local updates I , batch size b, stepsizes {ηt}.
2: Initialize: Iterate x(k)

1 = x̄1 = 1
K

∑K
k=1 x

(k)
1 , descent direction d(k)

1 = d̄1 = 1
K

∑K
k=1 d

(k)
1

with d(k)
1 = 1

B

∑
ξ
(k)
1 ∈B

(k)
1
∇f (k)(x

(k)
1 ; ξ

(k)
1) and |B(k)

1 | = B for k ∈ [K].

3: Perform: x(k)
2 = xk1 − η1d

(k)
1 , ∀ k ∈ [K]

4: for t = 1 to T do
5: for k = 1 to K do #at the WN
6: d

(k)
t+1 =

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t+1; ξ

(k)
t+1)+(1−at+1)

(
d

(k)
t −

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t ; ξ

(k)
t+1)

)
where we choose |B(k)

t+1| = b, and at+1 = c · η2
t ;

7: if t mod I = 0 then #at the SN
8: d

(k)
t+1 = d̄t+1 := 1

K

∑K
k=1 d

(k)
t+1

9: x
(k)
t+2 := x̄t+1 − ηt+1d̄t+1 = 1

K

∑K
k=1 x

(k)
t+1 − ηt+1d̄t+1 #server-side momentum

10: else x(k)
t+2 = x

(k)
t+1 − ηt+1d

(k)
t+1 #worker-side momentum

11: end if
12: end for
13: end for
14: Return: x̄a where a ∼ U{1, ..., T}.

consecutive iterates x(k)
t+1 and x(k)

t . After every I local steps, the WNs share their current local models
{x(k)

t+1}Kk=1 and directions {d(k)
t+1}Kk=1 with the SN. The SN aggregates these quantities, and performs

a server-side momentum step, before returning x̄t+1 and d̄t+1 to all the WNs. Because both the
WNs and the SN perform momentum based updates, we call the algorithm a stochastic two-sided
momentum algorithm. The key parameters are: b the minibatch size, I the local update steps between
two communication rounds, ηt the stepsizes, and at the momentum parameters.

One key technical innovation of our algorithm design is to identify the most suitable way to incorporate
momentum based directions in FL algorithms. Although the momentum-based gradient estimator
itself is not new and has been used in the literature before (see e.g., in [7, 8] and [17, 18] to improve the
sample complexities of centralized and decentralized stochastic optimization problems, respectively),
it is by no means clear if and how it can contribute to improve the communication complexity of FL
algorithms. We show that in the FL setting, the local directions together with the local models have to
be aggregated by the SN so to avoid being influenced too much by the local data. More importantly,
besides the WNs, the SN also needs to perform updates using the (aggregated) momentum directions.
Finally, such two-sided momentum updates have to be done carefully with the correct choice of
minibatch size b, and the number of local updates I . Overall, it is the judicious choice of all these
design elements that results in the optimal sample and communication complexities.

Next, we present the convergence guarantees of the STEM algorithm.

3.1 Main results: convergence guarantees for STEM

In this section, we analyze the performance of STEM. We first present our main result, and then
provide discussions about a few parameter choices. In the next subsection, we discuss a special case
of STEM related to the classical FedAvg and minibatch SGD algorithms.

Theorem 3.1. Under the Assumptions 1 and 2, suppose the stepsize sequence is chosen as:

ηt =
κ̄

(wt + σ2t)1/3
, (2)

where we define :

κ̄ =
(bK)2/3σ2/3

L
, wt = max

{
2σ2, 4096L3I3κ̄3 − σ2t,

c3κ̄3

4096L3I3

}
.

5

Further, let us set c = 64L2

bK + σ2

24κ̄3LI = L2

(
64
bK + 1

24(bK)2I

)
, and set the initial batch size as

B = bI; set the local updates I and minibatch size b as follows:

I = O
(
(T/K2)ν/3

)
, b = O

(
(T/K2)1/2−ν/2) (3)

where ν satisfies ν ∈ [0, 1]. Then for STEM the following holds:

(i) For x̄a chosen according to Algorithm 1, we have:

E‖∇f(x̄a)‖2 = O
(

f(x̄1)− f∗

K2ν/3T 1−ν/3

)
+ Õ

(
σ2

K2ν/3T 1−ν/3

)
+ Õ

(
ζ2

K2ν/3T 1−ν/3

)
. (4)

(ii) For any ν ∈ [0, 1], we have
Sample Complexity: The sample complexity of STEM is Õ(ε−3/2). This implies that each WN
requires at most Õ(K−1ε−3/2) gradient computations, thereby achieving linear speedup with
the number of WNs present in the network.
Communication Complexity: The communication complexity of STEM is Õ(ε−1).

The proof of this result is relegated to the Supplemental Material. A few remarks are in order.
Remark 1 (Near-Optimal sample and communication complexities). Theorem 3.1 suggests that
when I and b are selected appropriately, then STEM achieves Õ(ε−3/2) and Õ(ε−1) sample and
communication complexities. Taking them separately, these complexity bounds are the best achievable
by the existing FL algorithms (upto logarithmic factors regardless of sample or batch Lipschitz smooth
assumption) [35]; see Table 1. We note that the O(ε−3/2) complexity is the best possible that can be
achieved by centralized SGD with the sample Lipschitz gradient assumption; see [5]. On the other
hand, the O(ε−1) complexity bound is also likely to be the optimal, since in [9] the authors showed
that even when the local steps use a class of (deterministic) first-order algorithms, O(ε−1) is the best
achievable communication complexity. The only difference is that [9] does not explicitly assume
the inter-node variance bound (i.e., the second relation in Assumption 2-(ii)). We leave the precise
characterization of the communication lower bound with inter-node variance as future work.
Remark 2 (Large Batch Sizes and/or Local Updates). At first glance, it may seem that the requirement
of STEM to compute large mini-batches and/or local updates (cf. Table 1) to achieve this (near)
optimal performance is a drawback, however, we note that it is in fact an advantage of STEM that it
allows the WNs to perform larger number of local updates (or compute large minibatches) without
communicating often. This follows from the fact that irrespective of the number of local updates
(or batch sizes) STEM achieves near-optimal communication complexity while attaining optimal
overall sample complexity. Moreover, note that even with b = I = O(1) (i.e., b and I are chosen as
constants), STEM achieves the same (optimal) sample and communication complexities as achieved
by FedGLOMO [18] and MIME [17]. We further note that to the best of our knowledge the algorithms
that achieve the communication complexity of O(ε−1) either require the number of local updates or
the batch-sizes that depend on the solution accuracy ε. For example, FedProx [10], FedPD [9], and
FedDyn [36] rely on solving the “local problems" to achieve an ε-accuracy, which implies that the
number of local updates (or the batch sizes) implicitly depends on the desired solution accuracy ε, as
is the case for STEM. Similarly, as shown in [12] and [14] the communication complexity of FedAvg
and its momentum version can be improved from O(ε−2) to O(ε−3/2) when the number of local
updates (or batch size) is chosen as O(ε−1/2) (cf. Section 3.2 for a more detailed discussion).
Remark 3 (The Optimal Batch Sizes and Local Updates Trade-off). The parameter ν ∈ [0, 1] is
used to balance the local minibatch sizes b, and the number of local updates I . Eqs. in (3) suggest
that when ν increases from 0 to 1, b decreases and I increases. Specifically, if ν = 1, then b is a
constant but I = O(T 1/3/K2/3). In this case, each WN chooses a small minibatch while executing
multiple local updates, and STEM resembles a FedAvg (a.k.a. Local SGD) algorithm but with
double-sided momentum update directions, and is referred to as Fed STEM. In contrast, if ν = 0,
then b = O(T 1/2/K) but I is a constant. In this case, each WN chooses a large batch size while
executing only a few, or even one, local updates, and STEM resembles the Minibatch SGD, but
again with different update directions, and is referred to as Minibatch STEM. Such a trade-off can
be seen in Fig. 1b. Due to space limitation, these two special cases will be precisely stated in the
supplementary materials as corollaries of Theorem 3.1.

6

Algorithm 2 The FedAvg Algorithm

1: Input: {ηt}Tt=0; I , the # of local updates per communication round; b, the minibatch sizes.
2: for t = 1 to T do
3: for k = 1 to K do
4: d

(k)
t = 1

b

∑
ξ
(k)
t ∈B

(k)
t
∇f (k)(x

(k)
t ; ξ

(k)
t) with |B(k)

t | = b

5: x
(k)
t+1 = x

(k)
t − ηtd

(k)
t

6: if t mod I = 0 then
7: x

(k)
t+1 = x̄t+1 = 1

K

∑K
k=1 x

(k)
t+1

8: end if
9: end for

10: end for
11: Return: x̄a where a ∼ U{1, ..., T}.

Remark 4 (The Sub-Optimal Batch Sizes and Local Updates Trade-off). From our proof (Theo-
rem C.10 included in the supplemental material), we can see that STEM requires Õ

(
max

{
(b ·

I)ε−1,K−1ε−3/2
})

samples and Õ
(

max
{
ε−1, (b · I)−1K−1ε−3/2

})
and communication rounds.

According to the above expressions, if b · I increases beyond O(K−1ε−1/2), then the sample com-
plexity will increase from the optimal Õ(ε−3/2); otherwise, the optimal sample complexity Õ(ε−3/2)
is maintained. On the other hand, if b · I decreases beyond O(K−1ε−1/2), the communication
complexity increases from Õ(ε−1). For instance, if we choose b = O(1) and I = O(1) the communi-
cation complexity becomes Õ(ε−3/2) while the optimal sample complexity Õ(ε−3/2) is maintained.
This trade-off is illustrated in Figure 1a, where we maintain the optimal sample complexity, while
changing b and I to generate the trade-off surface.

Remark 5 (Data Heterogeneity). The term Õ
(

ζ2

K2ν/3T 1−ν/3

)
in the gradient bound (4) captures the

effect of the heterogeneity of data across WNs, where ζ is the parameter characterizing the intra-node
variance and has been defined in Assumption 2-(ii). Highly heterogeneous data with large ζ2 can
adversely impact the performance of STEM. Note that such a dependency on ζ also appears in other
existing FL algorithms, such as [9, 14, 18]. However, there is one special case of STEM that does
not depend on the parameter ζ. This is the case where I = 1, i.e., the minibatch SGD counterpart
of STEM where only a single local iteration is performed between two communication rounds. We
have the following corollary.

Corollary 1 (Minibatch STEM). Under Assumptions 1 and 2 , and choose the algorithm parameters
as in Theorem 3.1. At each WN, choose I = 1, b = (T/K2)1/2, and the initial batch size B = b · I .
Then STEM satisfies:

(i) For x̄a chosen according to Algorithm 1, we have

E‖∇f(x̄a)‖2 = O
(f(x̄1)− f∗

T

)
+ Õ

(σ2

T

)
.

(ii) Minibatch STEM achieves Õ(ε−3/2) sample and Õ(ε−1) communication complexity.

Next, we show that FedAvg also exhibits a trade-off similar to that of STEM but with worse sample
and communication complexities.

3.2 Special cases: The FedAvg algorithm

We briefly discuss another interesting special case of STEM, where the local momentum update
is replaced by the conventional SGD (i.e., at = 1, ∀ t), while the server does not perform the
momentum update (i.e., d̄t = 0,∀ t). This is essentially the classical FedAvg algorithm, just that it
balances the number of local updates I and the minibatch size b. We show that this algorithm also
exhibits a trade-off between b and I and on the trade-off curve it achieves O(ε−2) sample complexity
and O(ε−3/2) communication complexity.

7

Algorithm Training Acc. Testing Acc.
FedAvg 78.2 74.1

FedProx 79.2 74.8

FedDyn 68.9 66.0

SCAFFOLD 71.9 74.0

MIME 82.6 76.8

FedGLOMO 76.1 72.8

STEM 80.1 78.8

(a) Mild heterogeneity, b = 64, and I = 7.

Algorithm Training Acc. Testing Acc.
FedAvg 73.6 75.4

FedProx 80.0 75.2

FedDyn 76.1 71.3

SCAFFOLD 72.5 73.7

MIME 61.5 58.6

FedGLOMO 10.0 10.0

STEM 81.1 78.5

(b) Moderate heterogeneity, b = 8, and I = 61.

Table 2: Training and testing accuracy of different algorithms on CIFAR-10 dataset for different
batch-sizes, number of local updates, and heteregeneity settings.

Theorem 3.2 (The FedAvg Algorithm). Under Assumptions 1 and 2, suppose the stepsize is chosen

as: η =
√

bK
T ; Let us set:

I = O
(
(T/K3)ν/4

)
, b = O

(
(T/K3)1/3−ν/3) (5)

where ν ∈ [0, 1] is a constant. Then for FedAvg with T ≥ 81L2I2bK, the following holds

(i) For x̄a chosen according to Algorithm 2, we have

E‖∇f(x̄a)‖2 = O
(

f(x̄1)− f∗

Kν/2T 2/3−ν/6

)
+O

(
σ2

Kν/2T 2/3−ν/6

)
+O

(
ζ2

Kν/2T 2/3−ν/6

)
.

(ii) For any choice of ν ∈ [0, 1] we have:
Sample Complexity: The sample complexity of FedAvg is O(ε−2). This implies that each WN
requires at most O(K−1ε−2) gradient computations, thereby achieving linear speedup with the
number of WNs in the network.
Communication Complexity: The communication complexity of FedAvg is O(ε−3/2).

Note that the requirement on T being lower bounded is only relevant for theoretical purposes, a
similar requirement was also imposed in [14] to prove convergence. Again, the parameter ν ∈ [0, 1] in
the statement of Theorem 3.2 balances I and b at each WN while maintaining state-of-the-art sample
and communication complexities; please see Table 1 for a comparison of those bounds with existing
FedAvg bounds. For ν = 1, FedAvg (cf. Theorem 3.2) reduces to FedAvg proposed in [12, 14]
and for ν = 0, the algorithm can be viewed as a large batch FedAvg with constant local updates
[15, 16]. Note that similar to STEM, it is known that for I = 1, the Minibatch SGD’s performance
is independent of the heterogeneity parameter, ζ [13]. We also point out that if Algorithm 1 uses
Nesterov’s or Polyak’s momentum [14] at local WNs instead of the recursive momentum estimator
we get the same guarantees as in Theorem 3.2.

In summary, this section established that once the WN’s and the SN’s update directions (SGD in
FedAvg and momentum based directions in STEM) are fixed, there exists a sequence of optimal
choices of the number of local updates I , and the batch sizes b, which guarantees the best possible
sample and communication complexities for the particular algorithm. The trade-off analysis presented
in this section provides some useful guidelines for how to best select b and I in practice. Our
subsequent numerical results will also verify that if b or I are not chosen judiciously, then the
practical performance of the algorithms can degrade significantly.

4 Numerical results

In this section, we validate the proposed STEM algorithm and compare its performance with the
de facto standard FedAvg [11], and the algorithms stated in Table 1. Note that instead of FedPD
we include the performance comparison with FedDyn [36] since they are known to be very closely

8

Algorithm Training Acc. Testing Acc.
FedAvg 57.6 57.1

FedProx 59.1 58.5

FedDyn 51.2 51.3

SCAFFOLD 53.1 54.7

MIME 56.1 55.1

FedGLOMO 56.8 56.1

STEM 58.5 57.4

Table 3: Training and testing accuracy on
CIFAR-10 dataset for high heterogeneity, b =
128 and I = 6.

Algorithm Training Acc. Testing Acc.
FedAvg 40.1 39.2

FedProx 43.5 43.2

FedDyn 43.7 43.2

SCAFFOLD 40.3 41.3

MIME 32.1 32.1

FedGLOMO 40.3 40.1

STEM 44.5 43.8

Table 4: Training and testing accuracy on
Shakespeare dataset.

Figure 2: Training loss and the testing accuracy for classification on MNIST data set against the
number of samples accessed at each WN for moderate heterogeneity setting with b = 8.

related. The goal of our experiments are three-fold: (1) To show that STEM performs on par, if not
better, compared to other algorithms in different heterogeneity settings, (2) there are multiple ways
to reach the desired solution accuracy, one can either choose a large batch size and perform only a
few local updates or select a smaller batch size and perform multiple local updates, and finally, (3) if
the local updates and the batch sizes are not chosen appropriately, the WNs might need to perform
excessive computations to achieve the desired solution accuracy, thereby slowing down convergence.

Data and Parameter Settings: We compare the algorithms for image classification tasks on CIFAR-
10 and MNIST data sets with 100 WNs, and for next character prediction task on Shakespeare
dataset [37] with 143 WNs in the network. For both CIFAR-10 and MNIST, each WN implements a
two-hidden-layer convolutional neural network (CNN) architecture followed by three linear layers for
CIFAR-10 and two for MNIST. For CIFAR-10 (and MNIST) datset, we consider three settings with
mild, moderate and high heterogeneity. For all the three settings, the data is partitioned into disjoint
sets among the WNs. In the mild heterogeneity setting, the WNs have access to partitioned data from
all the classes. In the moderate (resp. high) heterogeneity setting the data is partitioned such that
each WN can access data from only 5 (resp. 2) out of 10 classes. For CIFAR-10 (resp. MNIST), each
WN has access to 490 (resp. 540) samples for training and 90 (resp. 80) samples for testing purposes.

We also compare the performance of algorithms on a popular FL benchmarking dataset, Shakespeare
dataset [37]. For this task, we adopt the settings from [10] and utilize a 2-Layer LSTM network with
100 hidden units and an 8-D embedding layer at each WN. Each WN has access to 3616 samples
on average, and the samples are randomly split into an 80% training set and a 20% testing set. We
randomly sample 10 nodes out of 143 for the training purpose. All the experiments are implemented
on a single NVIDIA Quadro RTX 5000 GPU. More details are provided in appendix.

For the proposed STEM algorithm, recall that the step-size is ηt = κ̄/(wt +σ2t)1/3 with momentum
parameter defined as at = cη2

t . The step-size is used to update the iterates while the momentum

9

parameter is used to construct the stochastic gradient estimate (cf. Algorithm 1 and Theorem 3.1). For
the experiments, we set wt = σ2 = 1 and c = c̄/κ̄2 and tune for κ̄ ∈ [10−1, 10−2] for the CIFAR-10
dataset and for κ̄ ∈ {101, 100, 10−1, 10−2} for the Shakespeare dataset. For both the datasets we tune
for c̄ in the range [1, 10]. For FedProx [10] and FedDyn [36] we choose the regularization constant to
be 0.1. The momentum parameters for FedGLOMO [18] and MIME [17] are set based on the choices
given in the respective papers. Specifically, for FedGLOMO we choose the parameter βk = 0.2 and
design the momentum gradient using a damping factor given in Appendix A.4 of FedGLOMO [18].
Moreover, for MIME we choose the momentum parameter as 0.9. For the rest of the algorithms
(including FedAvg and SCAFFOLD), the step-size is tuned from the set {101, 100, 10−1, 10−2}.

Discussion: We evaluate the training and testing performance of STEM against multiple algorithms
for different heterogeneity settings, minibatch sizes, and number of local updates. In Tables 2a,
2b and 3, we compare the training and testing accuracy of STEM to that of other algorithms on
the CIFAR-10 dataset. Specific, heterogeneity settings, the choices of minibatches, and number of
local updates are stated along with the tables. Note that STEM performs uniformly well under all
the conditions. Moreover, note from Table 2b that FedGLOMO diverges once the number of local
updates are high. Also, note from Table 3 that FedProx and STEM adapt well to high heterogeneity.
Finally, with the next set of experiments we emphasize the importance of choosing b and I carefully.
In Figure 2, we compare the training and testing performance of STEM, FedAvg and SCAFFOLD,
against the number of samples accessed at each WN for the classification task on MNIST dataset with
moderate heterogeneity. We fix b = 8 and conduct experiments under two settings, one with I = 67,
and the other with I = 536 local updates at each WN. Note that although a large number of local
updates might lead to fewer communication rounds but it can make the sample complexity extremely
high as is demonstrated by Figure 2. For example, Figure 2 shows that to reach testing accuracy
of 96 − 97% with I = 67, STEM requires approximately 5000 − 6000 samples, in contrast with
I = 536 it requires more than 25000 samples at each WN. Similar behavior can be observed if we fix
I > 1 and increase the local batch sizes. This implies not choosing the local updates and the batch
sizes judiciously might lead to increased sample complexity. Additional experiments are included in
the supplementary material to further evaluate the performance of the proposed algorithms.

Conclusion

In this work, we proposed a novel algorithm STEM, for distributed stochastic non-convex optimiza-
tion with applications to FL. We showed that STEM reaches an ε-stationary point with Õ(ε−3/2)
sample complexity while achieving linear speed-up with the number of WNs. Moreover, the algo-
rithm achieves a communication complexity of Õ(ε−1). We established a (optimal) trade-off that
allows interpolation between varying choices of local updates and the batch sizes at each WN while
maintaining (near optimal) sample and communication complexities. We showed that FedAvg (a.k.a
LocalSGD) also exhibits a similar trade-off while achieving worse complexities. Our results provide
guidelines to carefully choose the number of local updates, update directions, and minibatch sizes to
achieve the best performance. The future directions of this work include developing lower bounds on
communication complexity that establishes the tightness of the analysis conducted in this work.

Acknowledgement

We thank the anonymous reviewers for their valuable comments and suggestions. The work of
Prashant Khanduri and Mingyi Hong was supported by NSF grant CMMI-1727757, AFOSR grant
19RT0424 and ARO grant W911NF-19-1-0247. The work of Mingyi Hong was also supported by
an IBM Faculty Research award. The work of Jia Liu has been supported in part by NSF grants
CAREER CNS-2110259, CNS-2112471, CNS-2102233, CCF-2110252, ECCS-2140277, and a
Google Faculty Research Award.

10

References
[1] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed

machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527, 2016.

[2] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient distributed machine
learning with the parameter server,” in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2014, pp. 19–27.

[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang et al., “Large scale distributed deep networks,” in Advances in neural information
processing systems, 2012, pp. 1223–1231.

[4] T. Léauté and B. Faltings, “Protecting privacy through distributed computation in multi-agent
decision making,” Journal of Artificial Intelligence Research, vol. 47, pp. 649–695, 2013.

[5] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal non-convex optimization via
stochastic path-integrated differential estimator,” in Advances in Neural Information Processing
Systems, 2018, pp. 689–699.

[6] D. Zhou, P. Xu, and Q. Gu, “Stochastic nested variance reduction for nonconvex optimization,”
arXiv preprint arXiv:1806.07811, 2018.

[7] A. Cutkosky and F. Orabona, “Momentum-based variance reduction in non-convex SGD,” in
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019, pp.
15 236–15 245.

[8] Q. Tran-Dinh, N. H. Pham, D. T. Phan, and L. M. Nguyen, “Hybrid stochastic gradient descent
algorithms for stochastic nonconvex optimization,” arXiv preprint arXiv:1905.05920, 2019.

[9] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated learning framework
with adaptivity to non-iid data,” IEEE Transactions on Signal Processing, pp. 1–1, 2021.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization
in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient
learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics.
PMLR, 2017, pp. 1273–1282.

[12] H. Yu, S. Yang, and S. Zhu, “Parallel restarted sgd with faster convergence and less communica-
tion: Demystifying why model averaging works for deep learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 5693–5700.

[13] B. Woodworth, K. K. Patel, and N. Srebro, “Minibatch vs local sgd for heterogeneous distributed
learning,” arXiv preprint arXiv:2006.04735, 2020.

[14] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication efficient mo-
mentum sgd for distributed non-convex optimization,” in International Conference on Machine
Learning. PMLR, 2019, pp. 7184–7193.

[15] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic
controlled averaging for federated learning,” in International Conference on Machine Learning.
PMLR, 2020, pp. 5132–5143.

[16] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial worker participation in
non-iid federated learning,” arXiv preprint arXiv:2101.11203, 2021.

[17] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh,
“Mime: Mimicking centralized stochastic algorithms in federated learning,” arXiv preprint
arXiv:2008.03606, 2020.

[18] R. Das, A. Hashemi, S. Sanghavi, and I. S. Dhillon, “Improved convergence rates for non-convex
federated learning with compression,” arXiv preprint arXiv:2012.04061, 2020.

11

[19] B. Woodworth, K. K. Patel, S. U. Stich, Z. Dai, B. Bullins, H. B. McMahan, O. Shamir, and
N. Srebro, “Is local sgd better than minibatch sgd?” arXiv preprint arXiv:2002.07839, 2020.

[20] H. Yu and R. Jin, “On the computation and communication complexity of parallel sgd with
dynamic batch sizes for stochastic non-convex optimization,” in International Conference on
Machine Learning. PMLR, 2019, pp. 7174–7183.

[21] J. Wang and G. Joshi, “Cooperative sgd: A unified framework for the design and analysis of
local-update sgd algorithms,” Journal of Machine Learning Research, vol. 22, no. 213, pp. 1–50,
2021.

[22] A. Khaled, K. Mishchenko, and P. Richtárik, “Better communication complexity for local sgd,”
arXiv, 2019.

[23] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv preprint
arXiv:1805.09767, 2018.

[24] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi, “Don’t use large mini-batches, use local sgd,” in
International Conference on Learning Representations, 2020.

[25] F. Zhou and G. Cong, “On the convergence properties of a k-step averaging stochastic gra-
dient descent algorithm for nonconvex optimization,” in Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, 7 2018, pp. 3219–3227.

[26] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and communication-efficient
federated learning from non-iid data,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 9, pp. 3400–3413, 2019.

[27] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with non-iid
data,” arXiv preprint arXiv:1806.00582, 2018.

[28] J. Wang, V. Tantia, N. Ballas, and M. Rabbat, “Slowmo: Improving communication-efficient
distributed sgd with slow momentum,” arXiv preprint arXiv:1910.00643, 2019.

[29] X. Liang, S. Shen, J. Liu, Z. Pan, E. Chen, and Y. Cheng, “Variance reduced local sgd with
lower communication complexity,” arXiv preprint arXiv:1912.12844, 2019.

[30] P. Sharma, P. Khanduri, S. Bulusu, K. Rajawat, and P. K. Varshney, “Parallel restarted SPI-
DER – communication efficient distributed nonconvex optimization with optimal computation
complexity,” arXiv preprint arXiv:1912.06036, 2019.

[31] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” arXiv preprint
arXiv:1904.09237, 2019.

[32] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified theory of decentralized
sgd with changing topology and local updates,” in International Conference on Machine
Learning. PMLR, 2020, pp. 5381–5393.

[33] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive variance
reduction,” in Advances in Neural Information Processing Systems 26. Curran Associates,
Inc., 2013, pp. 315–323.

[34] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,”
SIAM Review, vol. 60, no. 2, pp. 223–311, 2018.

[35] Y. Drori and O. Shamir, “The complexity of finding stationary points with stochastic gradient
descent,” in International Conference on Machine Learning. PMLR, 2020, pp. 2658–2667.

[36] D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama, “Federated
learning based on dynamic regularization,” in International Conference on Learning Represen-
tations, 2020.

[37] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Tal-
walkar, “Leaf: A benchmark for federated settings,” 2019.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In the conclusion section.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In the appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] The datasets and the models used for experiments involve
large number of parameters. With given computational resources it takes long time to
run a single experiment.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In the experiments section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Figure 3: Training loss and testing accuracy for classification on CIFAR-10 dataset against the
number of communication rounds for mild heterogeneity setting with b = 64 and I = 7.

Appendix

The organization of the Appendix is given below. In Appendix A we present the experimental details
with along with additional numerical results on CIFAR-10 and MNIST datasets. Then in Appendix
B, we present the proof of the convergence guarantees associated with the FedAvg algorithm given in
Algorithm 2. Finally in Appendix C, we present the proof of the convergence for STEM given in
Algorithm 1. Our proof is further divided into two parts, where in Appendix C.1 we present some
useful lemmas, and the main body of the proof is given in Appendix C.2.

A Additional experiments

Shakespeare Dataset. The Shakespeare dataset considers a classification problem of next character
prediction with 80 classes in total. We associate with each node a different speaking role (same
setting as in [10]). We have a total of 143 nodes with a total of 517, 106 samples that are unevenly
split among 143 nodes with each node having 3616 samples on average. We randomly split the data
at each node into an 80% training set and a 20% testing set. We randomly sample 10 nodes out of
143 for the training purpose. For this task, we utilize a 2-Layer LSTM network with 100 hidden units
and an 8-D embedding layer at each node. For each algorithm, we select a batch size of 128 and tune
for the rest of the hyperparameters as discussed in Section 4.

In this section, we present additional numerical results conducted for the classification task on
CIFAR-10 and MNIST datasets. Here we focus on mild and moderate heterogeneity settings defined
in Section 4. We compare the proposed STEM algorithm to two most popular baselines FedAvg
and SCAFFOLD. We show that STEM outperforms both FedAvg and SCAFFOLD. Moreover, we
corroborate the theoretical findings by showing that the algorithms converge in both cases, one where
large batch sizes with a few local updates are used, and second where small batch sizes with a large
number of local updates are employed. We utilize the same experimental settings as discussed in
Section 4. Next, we present the results.

Discussion. In Figures 4 and 3, we compare the training and testing performance of STEM with
FedAvg and SCAFFOLD for CIFAR-10 dataset under mild heterogeneity setting. For Figure 4, we
choose b = 8 and I = 61, whereas for Figure 3, we choose b = 64 and I = 7. We first note that
for both cases STEM performs better than FedAvg and SCAFFOLD. Moreover, observe that for
both settings, small batches with multiple local updates (Figure 4) and large batches with few local
updates (Figure 3), the algorithms converge with approximately similar performance, corroborating
the theoretical analysis (see Discussion in Section 1). Next, in Figure 5 we evaluate the performance
of the proposed algorithms on CIFAR-10 with moderate heterogeneity setting for b = 8 and I = 61.
We note that STEM outperforms FedAvg and SCAFFOLD in this setting as well.

Next, in Figure 6, we compare the training and testing performance of STEM and FedAvg against
SCAFFOLD with the number of communication rounds. The figures are generated for local batch
size of b = 64 while the number of local updates are chosen to be I = 8. The initial batch size, B,
is chosen the same as b. Note form Figure 6 that STEM performs on par if not better than FedAvg
under all settings. Moreover, STEM and FedAvg perform better than SCAFFOLD. In the next set

14

Figure 4: Training loss and testing accuracy for classification on CIFAR-10 dataset against the
number of communication rounds for mild heterogeneity setting with b = 8 and I = 61.

Figure 5: Training loss and testing accuracy for classification on CIFAR-10 dataset against the
number of communication rounds for moderate heterogeneity setting with b = 8 and I = 61.

of simulations we trade the batch sizes for the number of local updates. Specifically, we choose
b = 8 and I = 67, while choosing the same initial batch size, B, as b. The top two figures plot the
performance of algorithms with mild heterogeneity setting while the lower two plot the performance
for the moderate heterogeneity setting. Again note that STEM performs better than FedAvg and
SCAFFOLD in both settings. Importantly, Figures 6 and 7 jointly imply that the algorithms can
converge with acceptable performance while employing either “large batch sizes with few local
updates” or “smaller batch sizes with multiple local updates”.

Next, we present in detail the proofs of the results presented in the paper.

15

Figure 6: Training loss and the testing accuracy against the number of communication rounds with
b = 64 and I = 8 for MNIST.

Figure 7: Training loss and the testing accuracy against the number of communication rounds with
b = 8 and I = 67 for MNIST.

B Proofs of Convergence Guarantees for FedAvg

In this section, we present the proofs for the FedAvg algorithm. Before stating the proofs in detail we
first present some preliminaries lemmas which shall be used for proving the main results of the paper.
We first fix some notations:

16

We define t̄s := sI + 1 with s ∈ [S]. Note from Algorithm 2 that at (s × I)th iteration, i.e., when
t mod I = 0, the iterates, {x(k)

t }Kk=1 corresponding to t = (t̄s)
th time instant are shared with the SN.

We define the filtration Ft as the sigma algebra generated by iterates x(k)
1 , x

(k)
2 , . . . , x

(k)
t as

Ft = σ(x
(k)
1 , x

(k)
2 , . . . , x

(k)
t , for all k ∈ [K]).

Also, throughout the section we assume Assumptions 1 and 2 to hold.

B.1 Preliminary Lemmas

Lemma B.1. For d̄t = 1
K

∑K
k=1 d

(k)
t where d(k)

t for all k ∈ [K] and t ∈ [T] is chosen according to
Algorithm 2, we have:

E
∥∥∥d̄t − 1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2

≤ σ2

bK
,

where the expectation is w.r.t the stochasticity of the the algorithm.

Proof. Using the definition of d̄t we have:

E
∥∥∥∥d̄t − 1

K

K∑
k=1

∇f (k)(x
(k)
t)

∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
k=1

∇f (k)(x
(k)
t)

∥∥∥∥2

= E
∥∥∥∥ 1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)∥∥∥∥2

(a)
=

1

b2K2

K∑
k=1

E
∥∥∥∥ ∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)∥∥∥∥2

+
1

b2K2

∑
k 6=`

E
〈
E
[∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)∣∣∣∣Ft]︸ ︷︷ ︸

=0

,E
[∑
ξ
(`)
t ∈B

(`)
t

(
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x

(`)
t)
)∣∣∣∣Ft]︸ ︷︷ ︸

=0

〉

(b)
=

1

b2K2

K∑
k=1

∑
ξ
(k)
t ∈B

(k)
t

E
∥∥∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
∥∥2

+
1

b2K2

K∑
k=1

∑
ξ
(k)
t 6=ζ

(k)
t

E
〈
E
[
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
∣∣Ft]︸ ︷︷ ︸

=0

,E
[
∇f (k)(x

(k)
t ; ζ

(k)
t)−∇f (k)(x

(k)
t)
∣∣Ft]︸ ︷︷ ︸

=0

〉
(c)

≤ σ2

bK
,

where (a) follows from Assumption 2 that given Ft we have: E
[
∇f (k)(x

(k)
t ; ξ

(k)
t)
]

= ∇f (k)(x
(k)
t),

for all k ∈ [K]. Moreover, given Ft the samples ξ(k)
t and ξ(`)

t at the kth and the `th WNs are chosen
uniformly randomly, and independent of each other for all k, ` ∈ [K] and k 6= `, therefore we have

E
[〈 ∑

ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
,
∑

ξ
(`)
t ∈B

(`)
t

(
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x̄t)

)〉]

= E
[〈 ∑

ξ
(k)
t ∈B

(k)
t

E
[
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
∣∣∣Ft]︸ ︷︷ ︸

=0

,
∑

ξ
(`)
t ∈B

(`)
t

E
[
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x

(`)
t)
∣∣∣Ft]︸ ︷︷ ︸

=0

〉]

17

= 0.

The equality (b) follows from the fact that ξ(k)
1 and ζ(k)

1 for all k ∈ [K] are chosen independently of
each other. Then we conclude (b) from an argument similar to that of (a). Finally, (c) results from
the intra-node variance bound given in Assumption 2(ii).

Hence, the lemma is proved.

Lemma B.2. For a finite sequence x(k) ∈ Rd for k ∈ [K] define x̄ := 1
K

∑K
k=1 x

(k), we then have

K∑
k=1

‖x(k) − x̄‖2 ≤
K∑
k=1

‖x(k)‖2.

Proof. Using the notation x =
[
(x(1))

T
, (x(2))

T
, . . . , (x(K))

T
]T
∈ RKd, denoting Id ∈ Rd×d and

IKd ∈ RKd×Kd as identity matrices and representing 1 ∈ RK as the vector of all ones. We rewrite
the left hand side of the statement as

K∑
k=1

‖x(k) − x̄‖2 =

∥∥∥∥x− (I⊗ 11T

K

)
x

∥∥∥∥2

=

∥∥∥∥(IKd − (Id ⊗ 11T

K

))
x

∥∥∥∥2

(a)

≤ ‖x‖2 =

K∑
k=1

‖x(k)‖2,

where (a) follows from the fact that the induced matrix norm
∥∥∥∥IKd − (Id ⊗ 11T

K

)∥∥∥∥ ≤ 1.

Lemma B.3 (From [7]). Let a0 > 0 and a1, a2, . . . , aT ≥ 0. We have

T∑
t=1

at

a0 +
∑t
i=t ai

≤ ln

(
1 +

∑t
i=1 ai
a0

)
.

Lemma B.4. For X1, X2, . . . , Xn ∈ Rd, we have

‖X1 +X2 + . . .+Xn‖2 ≤ n‖X1‖2 + n‖X2‖2 + . . .+ n‖Xn‖2.

Next, we present the proof of Theorem 3.2. The proof follows in few steps which are discussed next.

B.2 Proof of Main Results: FedAvg

Lemma B.5 (Error Accumulation from Iterates). For the choice of stepsize η ≤ 1/9 · L · I , the
iterates x(k)

t for each k ∈ [K] generated from Algorithm 2 satisfy:

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ 3η2(I − 1)σ2T + 5η2(I − 1)2ζ2T,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Note from Algorithm 2 and the definition of t̄s that at t = t̄s−1 with s ∈ [S], x(k)
t = x̄t, for

all k. This implies

1

K

K∑
k=1

‖x(k)
t̄s−1
− x̄t̄s−1

‖2 = 0.

18

Therefore, the statement of the lemma holds trivially. Moreover, for t ∈ [t̄s−1 + 1, t̄s − 1], with
s ∈ [S], we have from Algorithm 2: x(k)

t = x
(k)
t−1 − ηd

(k)
t−1, this implies that:

x
(k)
t = x

(k)
t̄s−1
−

t−1∑
`=t̄s−1

ηd
(k)
` and x̄t = x̄t̄s−1

−
t−1∑

`=t̄s−1

ηd̄`.

This implies that for t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S] we have

1

K

K∑
k=1

‖x(k)
t − x̄t‖2 =

1

K

K∑
k=1

∥∥∥x(k)
t̄s−1
− x̄t̄s−1

−
(t−1∑
`=t̄s−1

ηd
(k)
` −

t−1∑
`=t̄s−1

ηd̄`

)∥∥∥2

(a)
=

η2

K

K∑
k=1

∥∥∥ t−1∑
`=t̄s−1

(
d

(k)
` − d̄`

)∥∥∥2

(b)
=
η2

K

K∑
k=1

∥∥∥∥ t−1∑
`=t̄s−1

(
1

b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
` ∈B

(j)
`

∇f (j)(x
(j)
` ; ξ

(j)
`)

)∥∥∥∥2

(c)

≤ 2η2

K

K∑
k=1

∥∥∥∥ t−1∑
`=t̄s−1

[(
1

b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)

)

− 1

K

K∑
j=1

(
1

b

∑
ξ
(j)
` ∈B

(j)
`

∇f (j)(x
(j)
` ; ξ

(j)
`)−∇f (j)(x

(j)
`)

)]∥∥∥∥2

+
2η2

K

K∑
k=1

∥∥∥∥ t−1∑
`=t̄s−1

(
∇f (k)(x

(k)
`)− 1

K

K∑
j=1

∇f (j)(x
(j)
`)

)∥∥∥∥2

(d)

≤ 2η2

K

K∑
k=1

∥∥∥∥ t−1∑
`=t̄s−1

(
1

b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)

)∥∥∥∥2

+
2η2

K

K∑
k=1

∥∥∥∥ t−1∑
`=t̄s−1

(
∇f (k)(x

(k)
`)− 1

K

K∑
j=1

∇f (j)(x
(j)
`)

)∥∥∥∥2

, (6)

where the equality (a) follows from the fact that x(k)
t̄s−1

= x̄t̄s−1
for t = t̄s−1; (b) results from the

definition of the stochastic gradient employed by FedAvg in Algorithm 2; (c) uses Lemma B.4 and
(d) follows from the application of Lemma B.2.

Taking expectation on both sides and let us next consider each term of (6) above separately, we have
for any k ∈ [K] from the first term of (6) above

E
∥∥∥∥ t−1∑
`=t̄s−1

(
1

b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)

)∥∥∥∥2
(a)
=

t−1∑
`=t̄s−1

E
∥∥∥∥1

b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)

∥∥∥∥2

(b)
=

t−1∑
`=t̄s−1

1

b2

∑
ξ
(k)
` ∈B

(k)
`

E
∥∥∇f (k)(x

(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)
∥∥2

(c)

≤ (I − 1)

b
σ2

(d)

≤ (I − 1)σ2, (7)

where (a) results from the fact that E
[

1
b

∑
ξ
(k)
` ∈B

(k)
`

∇f (k)(x
(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)
∣∣∣F¯̀

]
= 0 for any

¯̀< `; (b) uses the fact that E
[
∇f (k)(x

(k)
` ; ξ

(k)
`)−∇f (k)(x

(k)
`)
∣∣∇f (k)(x

(k)
` ; ζ

(k)
`)−∇f (k)(x

(k)
`)
]

=

0 for samples ξ(k)
` , ζ

(k)
` ∼ D(k) chosen independent; (c) utilizes intra-node variance bound in

19

Assumption 2(ii) and the fact that (t− 1)− t̄s−1 ≤ I − 1 for t ∈ [t̄s−1 + 1, t̄s − 1]; and finally, (d)
uses the fact that b ≥ 1.

Next, we consider the second term of (6) for any k ∈ [K], we have

K∑
k=1

E
∥∥∥∥ t−1∑
`=t̄s−1

(
∇f (k)(x

(k)
`)− 1

K

K∑
j=1

∇f (j)(x
(j)
`)

)∥∥∥∥2

(a)

≤ (I − 1)

t−1∑
`=t̄s−1

K∑
k=1

E
∥∥∥∥∇f (k)(x

(k)
`)− 1

K

K∑
j=1

∇f (j)(x
(j)
`)

∥∥∥∥2

(b)

≤ (I − 1)

t−1∑
`=t̄s−1

[
4

K∑
k=1

E
∥∥∇f (k)(x

(k)
`)−∇f (k)(x̄`)

∥∥2
+ 4

K∑
k=1

E
∥∥∥∥∇f(x̄`)−

1

K

K∑
j=1

∇f(x
(j)
`)

∥∥∥∥2

+ 2

K∑
k=1

E
∥∥∇f (k)(x̄`)−∇f(x̄`)

∥∥2
]

(c)

≤ (I − 1)

t−1∑
`=t̄s−1

[
8L2

K∑
k=1

E
∥∥x(k)

` − x̄`
∥∥2

+ 2

K∑
k=1

E
∥∥∥∥∇f (k)(x̄`)−

1

K

K∑
j=1

∇f (j)(x̄`)

∥∥∥∥2]
(d)

≤ 8L2(I − 1)

t−1∑
`=t̄s−1

K∑
k=1

E
∥∥x(k)

` − x̄`
∥∥2

+ 2K(I − 1)2ζ2, (8)

where (a) utilizes the fact that (t− 1)− t̄s−1 ≤ I − 1 for t ∈ [t̄s−1 + 1, t̄s − 1]; (b) results from the
application of Lemma B.4; (c) follows from Assumption 1; and (d) utilizes the inter-node variance
Assumption 2 and the fact that (t− 1)− t̄s−1 ≤ I − 1 for t ∈ [t̄s−1 + 1, t̄s − 1].

Substituting (7) and (8) in (6) and taking expectation on both sides we get

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ 2η2(I − 1)σ2 + 4η2(I − 1)2ζ2

+ 16L2(I − 1)η2
t−1∑

`=t̄s−1

1

K

k∑
k=1

E‖x(k)
` − x̄`‖

2.

Summing both sides from t = t̄s−1 to t̄s − 1, we get

t̄s−1∑
t=t̄s−1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2

≤ 2η2(I − 1)σ2I + 4η2(I − 1)2ζ2I + 16L2(I − 1)η2
t̄s−1∑
t=t̄s−1

t−1∑
`=t̄s−1

1

K

K∑
k=1

E‖x(k)
` − x̄`‖

2

(a)

≤ 2η2(I − 1)σ2I + 4η2(I − 1)2ζ2I + 16L2(I − 1)η2
t̄s−1∑
t=t̄s−1

t̄s−1∑
`=t̄s−1

1

K

K∑
k=1

E‖x(k)
` − x̄`‖

2

(b)

≤ 2η2(I − 1)σ2I + 4η2(I − 1)2ζ2I + 16L2(I − 1)η2I

t̄s−1∑
t=t̄s−1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2,

where (a) uses that fact that t ≤ t̄s − 1; (b) results from ts − ts−1 ≤ I for all s ∈ [S]. Finally,
summing over s ∈ [S] and using T = SI we get

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ 2η2(I − 1)σ2T + 4η2(I − 1)2ζ2T + 16L2I2η2

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2.

20

Rearranging the terms, we get

(1− 16L2I2η2)

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ 2η2(I − 1)σ2T + 4η2(I − 1)2ζ2T.

Finally, using the fact that η ≤ 1/9 · L · I we have 1− 16L2I2η2 ≥ 4/5. Multiplying, both sides by
5/4 we get

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ 3η2(I − 1)σ2T + 5η2(I − 1)2ζ2T.

Therefore, the lemma is proved.

Lemma B.6 (Descent Lemma). For all t ∈ [t̄s−1, t̄s − 1] and s ∈ [S], with the choice of stepsizes
η ≤ 1/9 · L · I , the iterates generated by Algorithm 2 satisfy:

Ef(x̄t+1) ≤ Ef(x̄t)−
η

2
E‖∇f(x̄t)‖2 +

ηL2

2K

K∑
k=1

E‖x(k)
t − x̄t‖2 +

η2L

bK
σ2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of f (Assumption 1) we have:

E[f(x̄t+1)]

≤ E
[
f(x̄t) + 〈∇f(x̄t), x̄t+1 − x̄t〉+

L

2
‖x̄t+1 − x̄t‖2

]
(a)
= E

[
f(x̄t)− η〈∇f(x̄t), d̄t〉+

η2L

2
‖d̄t‖2

]
(b)
= E

[
f(x̄t)− η

〈
∇f(x̄t),

1

K

K∑
k=1

∇f (k)(x
(k)
t)
〉

+
η2L

2
‖d̄t‖2

]
(c)
= E

[
f(x̄t)−

η

2

∥∥∥ 1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2

− η

2
‖∇f(x̄t)‖2 +

η

2

∥∥∥∇f(x̄t)−
1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2

+ η2L
∥∥∥d̄t − 1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2

+ η2L
∥∥∥ 1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2
]

(d)

≤ E
[
f(x̄t)−

(η
2
− η2L

)∥∥∥ 1

K

K∑
k=1

∇f (k)(x
(k)
t)
∥∥∥2

− η

2
‖∇f(x̄t)‖2 +

ηL2

2K

K∑
k=1

‖x(k)
t − x̄t‖2 +

η2L

bK
σ2

]
(e)

≤ E
[
f(x̄t)−

η

2
‖∇f(x̄t)‖2 +

ηL2

2K

K∑
k=1

‖x(k)
t − x̄t‖2 +

η2L

bK
σ2

]
,

where equality (a) follows from the iterate update given in Step 5 of Algorithm 2; (b) results
from E[∇f (k)(x

(k)
t ; ξ

(k)
t)|Ft] = ∇f (k)(x

(k)
t); (c) uses 〈a, b〉 = 1

2 [‖a‖2 + ‖b‖2 − ‖a − b‖2] and
Lemma B.4; (d) results from (9) below and Lemma B.1; and (e) results from the stepsize choice of
η ≤ 1/9LI .

E
∥∥∥∥ 1

K

K∑
k=1

(
∇f (k)(x

(k)
t)−∇f (k)(x̄t)

)∥∥∥∥2

≤ 1

K

K∑
k=1

E
∥∥∇f (k)(x

(k)
t)−∇f (k)(x̄t)

∥∥2

≤ L2

K

K∑
k=1

E‖x(k)
t − x̄t‖2, (9)

where the first inequality follows from Lemma B.4, and the second follows from the L-Smoothness
of f (k)(·) (Assumption 1).

Hence, the lemma is proved.

21

B.2.1 Proof of Theorem 3.2

The proof of Theorem 3.2 follows by replacing the choices of b and I given in (5) in the following
result.

Theorem B.7. Under Assumptions 1 and 2, with stepsize η =
√

bk
T . Then for T ≥ 81L2I2bK with

any choice of minibatch sizes, b ≥ 1, and number of local updates, I ≥ 1, the iterates generated from
Algorithm 2 satisfy

E‖∇f(x̄a)‖2 ≤ 2(f(x̄t))− f∗)
(bk)1/2T 1/2

+
2L

(bk)1/2T 1/2
σ2 +

3L2bK(I − 1)

T
σ2 +

5L2bK(I − 1)2

T
ζ2.

Proof. Summing the result of Lemma B.6 for t = [T] and multiplying both sides by 2/ηT we get

1

T

T∑
t=1

E‖∇f(x̄t)‖2 ≤
2(f(x̄t)− f(x̄t+1))

ηT
+

2ηL

bK
σ2 +

L2

T

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2

≤ 2(f(x̄t)− f∗)
ηT

+
2ηL

bK
σ2 +

L2

T

T∑
t=1

1

K

K∑
k=1

E‖x(k)
t − x̄t‖2

where the second inequality uses f(x̄t−1) ≥ f∗. Next, using Lemma B.5 we get

1

T

T∑
t=1

E‖∇f(x̄t)‖2 ≤
2(f(x̄t)− f∗)

ηT
+

2ηL

bK
σ2 + 3L2η2(I − 1)σ2 + 5L2η2(I − 1)2ζ2.

Finally, using the definition of x̄a from Algorithm 2 and the choice of η =
√

bK
T , we get

E‖∇f(x̄a)‖2 ≤ 2(f(x̄t)− f∗)
(bK)1/2T 1/2

+
2L

(bK)1/2T 1/2
σ2 +

3L2bK(I − 1)

T
σ2 +

5L2bK(I − 1)2

T
ζ2.

Therefore, we have the theorem.

Finally, substituting the choice of I and b given in (5) we get the statement of Theorem 3.2. Next two
remarks characterize the behavior of FedAvg for two extreme choices of I and b.
Remark 6 (FedAvg: multiple local updates). Choosing ν = 1 in Theorem 3.2 implies I =
(T/b3K3)1/4 and b = O(1), we have

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f∗

K1/2T 1/2

)
+O

(
σ2

K1/2T 1/2

)
+O

(
ζ2

K1/2T 1/2

)
,

while the sample and communication complexities are still O(ε−2) and O(ε−3/2), respectively. Note
that these are the same guarantees for FedAvg analyzed in [14, 20].
Remark 7 (FedAvg: large batch). Choosing ν = 0 in Theorem 3.2 implies I = O(1) > 1 (we allow
multiple local updates, i.e. I > 1) and b = (T/I4K3)1/3, then we have

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f∗

T 2/3

)
+O

(
σ2

T 2/3

)
+O

(
ζ2

T 2/3

)
.

while the sample and communication complexities are againO(ε−2) andO(ε−3/2), respectively.

Minibatch SGD: When the parameters are shared after each local update, for such case we have
I = 1 and for the choice of b = O(T/K) we have:

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f∗

T

)
+O

(
σ2

T

)
.

This implies that the sample and communication complexitiess are O(ε−2) and O(ε−1). Again, this
result is independent of the heterogeniety parameter ζ (cf. Assumption 2) as the algorithm for I = 1
is essentially a centralized algorithm.

Next, we present the main result of the work presented in Theorem 3.1.

22

Algorithm 3 The Stochastic Two-Sided Momemtum (STEM) Algorithm

1: Input: Parameters: c > 0, the number of local updates I , batch size b, stepsizes {ηt}.
2: Initialize: Iterate x(k)

1 = x̄1 = 1
K

∑K
k=1 x

(k)
1 , descent direction d(k)

1 = d̄1 = 1
K

∑K
k=1 d

(k)
1

with d(k)
1 = 1

B

∑
ξ
(k)
1 ∈B

(k)
1
∇f (k)(x

(k)
1 ; ξ

(k)
1) and |B(k)

1 | = B for k ∈ [K].

3: Perform: x(k)
2 = xk1 − η1d

(k)
1 , ∀ k ∈ [K]

4: for t = 1 to T do
5: for k = 1 to K do #at the WN
6: d

(k)
t+1 =

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t+1; ξ

(k)
t+1)+(1−at+1)

(
d

(k)
t −

1

b

∑
ξ
(k)
t+1∈B

(k)
t+1

∇f (k)(x
(k)
t ; ξ

(k)
t+1)

)
where we choose |B(k)

t+1| = b, and at+1 = c · η2
t ;

7: if t mod I = 0 then #at the SN
8: d

(k)
t+1 = d̄t+1 := 1

K

∑K
k=1 d

(k)
t+1

9: x
(k)
t+2 := x̄t+1 − ηt+1d̄t+1 = 1

K

∑K
k=1 x

(k)
t+1 − ηt+1d̄t+1 #server-side momentum

10: else x(k)
t+2 = x

(k)
t+1 − ηt+1d

(k)
t+1 #worker-side momentum

11: end if
12: end for
13: end for
14: Return: x̄a where a ∼ U{1, ..., T}.

C Proofs of Convergence Guarantees for STEM

In this section we present the proofs of the convergence of STEM. First, we present some preliminary
lemmas to be utilized throughout the proof. For reader’s convenience here we restate the steps of the
Algorithm 1 in Algorithm 3.

C.1 Preliminary Lemmas

Lemma C.1. Define ēt := d̄t − 1
K

∑K
k=1∇f (k)(x

(k)
t), then the iterates generated according to

Algorithm 3 satisfy

E

[〈
(1− at)ēt−1,

1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)

)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]〉]
= 0,

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. Note that, given the filtration

Ft = σ(x
(k)
1 , x

(k)
2 , . . . , x

(k)
t , d

(k)
1 , d

(k)
2 , . . . , d

(k)
t−1 for all k ∈ [K]),

the gradient error term, ēt−1, is fixed. The only randomness in the left hand side of the statement of
the Lemma is with respect to ξ(k)

t , for all k ∈ [K]. This implies that we can write it as

E

[〈
(1− at)ēt−1,

1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)

)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]〉]

23

= E

[〈
(1− at)ēt−1,

1

K

K∑
k=1

E
[

1

b

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)

)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]∣∣∣∣Ft]〉
]
.

The result then follows from the fact that ξ(k)
t is chosen uniformly randomly at each k ∈ [K], and we

have from (Assumption 2) that: E
[
∇f (k)(x

(k)
t ; ξ

(k)
t)
]

= ∇f (k)(x
(k)
t). This implies we have

E
[

1

b

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)] ∣∣∣∣Ft] = 0

for all k ∈ [K].

Therefore the lemma is proved.

Lemma C.2. For k, ` ∈ [K] with k 6= `, the iterates generated according to Algorithm 3 satisfy

E

[〈 ∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]
,

∑
ξ
(`)
t ∈B

(`)
t

[(
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x

(`)
t)
)
− (1− at)

(
∇f (`)(x

(`)
t−1; ξ

(`)
t)−∇f (`)(x

(`)
t−1)

)]〉]
= 0

Proof. Again note from the fact that conditioned on Ft the batches B(k)
t and B(`)

t for all k, ` ∈ [K]
with k 6= ` across WNs are chosen independently of each other. Therefore, we have

E

[〈 ∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]
,

∑
ξ
(`)
t ∈B

(`)
t

[(
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x

(`)
t)
)
− (1− at)

(
∇f (`)(x

(`)
t−1; ξ

(`)
t)−∇f (`)(x

(`)
t−1)

)]〉]

= E

[〈
E
[∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]∣∣∣∣Ft],
E
[∑
ξ
(`)
t ∈B

(`)
t

[(
∇f (`)(x

(`)
t ; ξ

(`)
t)−∇f (`)(x

(`)
t)
)
− (1− at)

(
∇f (`)(x

(`)
t−1; ξ

(`)
t)−∇f (`)(x

(`)
t−1)

)]∣∣∣∣Ft]〉
]
.

The result then follows from the fact that ξ(k)
t is chosen uniformly randomly across k ∈ [K] and

we have from the unbiased gradient Assumption 2 that: E
[
∇f (k)(x

(k)
t ; ξ

(k)
t)
]

= ∇f (k)(x
(k)
t). This

implies we have

E
[∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]∣∣∣∣Ft] = 0

for all k ∈ [K].

Therefore, the lemma is proved.

Lemma C.3. For ē1 := d̄1 − 1
K

∑K
k=1∇f (k)(x

(k)
1) where d̄1 chosen according to Algorithm 3, we

have:

E‖ē1‖2 ≤
σ2

KB
.

24

Proof. The proof follows from an argument similar to that of Lemma B.1

Next, using the preliminary lemmas developed in this section we prove the main results of the work.

C.2 Proof of Main Results: STEM

In this section, we utilize the results developed in earlier sections to derive the main result of the
paper presented in Section 3.1. Throughout the section we assume Assumptions 1 and 2 to hold.
Before proceeding, we first define some notations.

We define t̄s := sI + 1 with s ∈ [S]. Note from Algorithm 3 that at (s × I)th iteration, i.e., when
t mod I = 0, the descent directions, {d(k)

t }Kk=1, corresponding to t = (t̄s)
th time instant are shared

with the SN. At the same time instant, the iterates, {x(k)
t }Kk=1 are also shared and the SN performs

the “server side momentum step” (cf. Step 9 of Algorithm 3).

C.2.1 Proof of Descent Lemma

In the first step, we bound the error accumulation via the iterates generated by Algorithm 3.
Lemma C.4 (Error Accumulation from Iterates). For each t ∈ [t̄s−1, t̄s−1] and s ∈ [S], the iterates
x

(k)
t for each k ∈ [K] generated from Algorithm 3 satisfy:

K∑
k=1

E‖x(k)
t − x̄t‖2 ≤ (I − 1)

t∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Note from Algorithm 3 and the definition of t̄s that at t = t̄s−1 with s ∈ [S], x(k)
t = x̄t, for

all k. This implies
K∑
k=1

‖x(k)
t̄s−1
− x̄t̄s−1

‖2 = 0.

Therefore, the statement of the lemma holds trivially. Moreover, for t ∈ [t̄s−1 + 1, t̄s − 1], with
s ∈ [S], we have from Algorithm 3: x(k)

t = x
(k)
t−1 − ηt−1d

(k)
t−1, this implies that:

x
(k)
t = x

(k)
t̄s−1
−

t−1∑
`=t̄s−1

η`d
(k)
` and x̄t = x̄t̄s−1

−
t−1∑

`=t̄s−1

η`d̄`.

This implies that for t ∈ [t̄s−1 + 1, t̄s − 1], with s ∈ [S] we have
K∑
k=1

‖x(k)
t − x̄t‖2 =

K∑
k=1

∥∥∥x(k)
t̄s−1
− x̄t̄s−1

−
(t−1∑
`=t̄s−1

η`d
(k)
` −

t−1∑
`=t̄s−1

η`d̄`

)∥∥∥2

(a)
=

K∑
k=1

∥∥∥ t−1∑
`=t̄s−1

(
η`d

(k)
` − η`d̄`

)∥∥∥2

(b)

≤ (I − 1)

t−1∑
`=t̄s−1

η2
`

K∑
k=1

‖d(k)
` − d̄`‖

2

≤ (I − 1)

t∑
`=t̄s−1

η2
`

K∑
k=1

‖d(k)
` − d̄`‖

2,

where the equality (a) follows from the fact that x(k)
t̄s−1

= x̄t̄s−1
and inequality (b) uses the Lemma

B.4 along with the fact that we have d(k)
t = d̄t for t = t̄s−1.

Taking expectation on both sides yields the statement of the lemma.

25

Next, we utilize Lemma C.4 along with the smoothness of the function f(·) (Assumption 1) to show
descent in the objective function value at consecutive iterates.

Lemma C.5 (Descent Lemma). With ēt := d̄t − 1
K

∑K
k=1∇f (k)(x

(k)
t), for all t ∈ [t̄s−1, t̄s − 1]

and s ∈ [S], then the iterates generated by Algorithm 3 satisfy:

Ef(x̄t+1) ≤ Ef(x̄t)−
(
ηt
2
− η2

tL

2

)
E‖d̄t‖2 −

ηt
2
E‖∇f(x̄t)‖2 + ηtE‖ēt‖2

+
ηtL

2(I − 1)

K

t∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Using the smoothness of f (Assumption 1) we have:

f(x̄t+1) ≤ f(x̄t) + 〈∇f(x̄t), x̄t+1 − x̄t〉+
L

2
‖x̄t+1 − x̄t‖2

(a)
= f(x̄t)− ηt〈∇f(x̄t), d̄t〉+

η2
tL

2
‖d̄t‖2

(b)
= f(x̄t)− ηt‖d̄t‖2 + ηt〈d̄t −∇f(x̄t), d̄t〉+

η2
tL

2
‖d̄t‖2

(c)
= f(x̄t)−

(
ηt
2
− η2

tL

2

)
‖d̄t‖2 −

ηt
2
‖∇f(x̄t)‖2 +

ηt
2
‖d̄t −∇f(x̄t)‖2

(d)

≤ f(x̄t)−
(
ηt
2
− η2

tL

2

)
‖d̄t‖2 −

ηt
2
‖∇f(x̄t)‖2 + ηt

∥∥∥∥d̄t − 1

K

K∑
k=1

∇f (k)(x
(k)
t)

∥∥∥∥2

+ ηt

∥∥∥∥ 1

K

K∑
k=1

(
∇f (k)(x

(k)
t)−∇f (k)(x̄t)

)∥∥∥∥2

, (10)

where equality (a) follows from the iterate update given in Step 10 of Algorithm 3, (b) results by
adding and subtracting d̄t to ∇f(x̄t) in the inner product term and using the linearity of the inner
product, (c) follows from the relation 〈x, y〉 = 1

2‖x‖
2 + 1

2‖y‖
2 − 1

2‖x− y‖
2, finally inequality (d)

results from adding and subtracting 1
K

∑K
k=1∇f (k)(x

(k)
t) in the last term of (c) and using Lemma

B.4.

Taking expectation on both sides and considering the last term of (10), we have

E
∥∥∥∥ 1

K

K∑
k=1

(
∇f (k)(x

(k)
t)−∇f (k)(x̄t)

)∥∥∥∥2

≤ 1

K

K∑
k=1

E
∥∥∇f (k)(x

(k)
t)−∇f (k)(x̄t)

∥∥2

≤ L2

K

K∑
k=1

E‖x(k)
t − x̄t‖2, (11)

where the first inequality follows from Lemma B.4, and the second follows from the L-smoothness
of f (k)(·) (Assumption 1).

Substituting (11) in (10) and using the definition ēt := d̄t −
1

K

K∑
k=1

∇f (k)(x
(k)
t) we get:

Ef(x̄t+1) ≤ Ef(x̄t)−
(
ηt
2
− η2

tL

2

)
E‖d̄t‖2 −

ηt
2
E‖∇f(x̄t)‖2 + ηtE‖ēt‖2

+
ηtL

2

K

K∑
k=1

E‖x(k)
t − x̄t‖2. (12)

Finally, using Lemma C.4 to bound the last term of (12), we get:

26

Ef(x̄t+1) ≤ Ef(x̄t)−
(
ηt
2
− η2

tL

2

)
E‖d̄t‖2 −

ηt
2
E‖∇f(x̄t)‖2 + ηtE‖ēt‖2

+
ηtL

2(I − 1)

K

t∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2.

Hence, the lemma is proved.

Lemma C.5 shows that the expected descent in the function f depends on the magnitude of the
expected gradient error term ēt, and the expected gradient drift across WNs, i.e., E‖d(k)

` − d̄`‖2. This
implies that to ensure sufficient descent we need to control the gradient error, and the gradient drift
across WNs. We achieve this by carefully designing the number of local updates, I , at each WN, and
the batch-sizes b (and initial batch size B), that each WN uses to compute the descent direction.

Next, we present the error contraction lemma which analyzes how the term E‖ēt‖2 contracts across
time.

C.2.2 Proof of Gradient Error Contraction

Lemma C.6 (Gradient Error Contraction). Define ēt := d̄t − 1
K

∑K
k=1∇f (k)(x

(k)
t), then for every

t ∈ [T] the iterates generated by Algorithm 3 satisfy

E‖ēt+1‖2 ≤ (1− at+1)2E‖ēt‖2 +
8(1− at+1)2L2

bK2

(I − 1)

I
η2
t

K∑
k=1

E
∥∥d(k)

t − d̄t
∥∥2

+
4(1− at+1)2L2η2

t

bK
E‖d̄t‖2 +

2a2
t+1σ

2

bK
,

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. Consider the error term ‖ēt‖2 as

E‖ēt‖2 = E
∥∥∥∥d̄t − 1

K

K∑
k=1

∇f (k)(x
(k)
t)

∥∥∥∥2

(a)
= E

∥∥∥∥ 1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t) + (1− at)

(
d̄t−1 −

1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)

)

− 1

K

K∑
k=1

∇f (k)(x
(k)
t)

∥∥∥∥2

(b)
= E

∥∥∥∥ 1

K

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]
+ (1− at)ēt−1

∥∥∥∥2

,

where (a) follows from the definition of descent direction given in Step 6 of Algorithm 3; (b) follows
by adding and subtracting (1− at) 1

K

∑K
k=1∇f (k)(x

(k)
t−1) and using the definition of ēt−1. Further

simplifying the above expression, we get

E‖ēt‖2
(c)
= (1− at)2E‖ēt−1‖2 +

1

b2K2
E
∥∥∥∥ K∑
k=1

∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]∥∥∥∥2

27

(d)
= (1− at)2E‖ēt−1‖2 +

1

b2K2

K∑
k=1

E
∥∥∥∥ ∑
ξ
(k)
t ∈B

(k)
t

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]∥∥∥∥2

,

(e)
= (1− at)2E‖ēt−1‖2 +

1

b2K2

K∑
k=1

∑
ξ
(k)
t ∈B

(k)
t

E
∥∥∥(∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)

− (1− at)
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)∥∥∥2

,

(13)

where (c) results from expanding the norm using inner product and noting that the cross terms are
zero in expectation from Lemma C.1; (d) follows from expanding the norm using the inner products
across k ∈ [K] and noting that the cross term is zero in expectation from Lemma C.2; finally,
(e) results from expanding the norm using the inner product across samples used to compute the
minibatch gradients and the inner product is zero since at each node k ∈ [K], the samples in the
minibatch B(k)

t are sampled independently of each other.

Now considering the 2nd term of (13) above, we have

E
∥∥(∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
− (1− at)

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)∥∥2

= E
∥∥(1− at)

[(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)
−
(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)]
+ at

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
)∥∥2

(a)

≤ 2(1− at)2E
∥∥(∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t−1; ξ

(k)
t)
)
−
(
∇f (k)(x

(k)
t)−∇f (k)(x

(k)
t−1)

)∥∥2

+ 2a2
tE
∥∥∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t)
∥∥2

(b)

≤ 2(1− at)2E
∥∥∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t−1; ξ

(k)
t)
∥∥2

+ 2a2
tσ

2

(c)

≤ 2(1− at)2L2E‖x(k)
t − x

(k)
t−1‖2 + 2a2

tσ
2

(d)

≤ 2(1− at)2L2η2
t−1E‖d

(k)
t−1‖2 + 2a2

tσ
2

(e)

≤ 8(1− at)2L2 (I − 1)

I
η2
t−1E‖d

(k)
t−1 − d̄t−1‖2 + 4(1− at)2L2η2

t−1E‖d̄t−1‖2 + 2a2
tσ

2,

(14)

where (a) follows from Lemma B.4; (b) results from use of Assumption 2 and mean variance
inequality: For a random variable Z we have E‖Z − E[Z]‖2 ≤ E‖Z‖2; (c) follows from the
Lipschitz continuity of the gradient given in Assumption 1; (d) results from the iterate update
equation given in Step 10 of Algorithm 3; finally, (e) uses the fact that: (i) for I = 1 we have
d

(k)
t = d̄t for all t ∈ [T] and (ii) for I ≥ 2 we use Lemma B.4 and the fact that (I − 1)/I ≥ 1/2.

Substituting (14) in (13) we get:

E‖ēt‖2 ≤ (1− at)2E‖ēt−1‖2 +
8(1− at)2L2

bK2

(I − 1)

I
η2
t−1

K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2

+
4(1− at)2L2η2

t−1

bK
E‖d̄t−1‖2 +

2a2
tσ

2

bK
.

Finally, the lemma is proved by replacing t by t+ 1.

Lemma C.6 shows that the gradient error contracts in each iteration. Next, we first define a potential
function and then utilize Lemmas C.5 and C.6 to show descent in the potential function.

28

C.2.3 Descent in Potential Function

We define the potential function as a linear combination of the objective function and the gradient
estimation error: ēt := d̄t − 1

K

∑K
k=1∇f (k)(x

(k)
t)

Φt := f(x̄t) +
bK

64L2

‖ēt‖2

ηt−1
. (15)

Next, we characterize the descent in the potential function.
Lemma C.7 (Potential Function Descent). For t̄ ∈ [t̄s−1, t̄s − 1] and for ηt ≤ 1

16LI we have

E[Φt̄+1 − Φt̄s−1
] ≤ −

t̄∑
t=t̄s−1

(
7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

σ2c2

32L2

t̄∑
t=t̄s−1

η3
t

+
33

256K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

where the expectation is w.r.t the stochasticity of the algorithm.

Proof. To get the descent on the the potential function, i.e. E[Φt+1 − Φt], we first consider the term:
E‖ēt+1‖2

ηt
− E‖ēt‖2

ηt−1
.

Using Lemma C.6 we get

E‖ēt+1‖2

ηt
− E‖ēt‖2

ηt−1
≤
[

(1− at+1)2

ηt
− 1

ηt−1

]
E‖ēt‖2 +

8(1− at+1)2L2

bK2

(I − 1)

I
ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

+
4(1− at+1)2L2ηt

bK
E‖d̄t‖2 +

2a2
t+1σ

2

ηtbK

(a)

≤
(
η−1
t − η−1

t−1 − cηt
)
E‖ēt‖2 +

8L2

bK2

(I − 1)

I
ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

+
4L2ηt
bK

E‖d̄t‖2 +
2σ2c2η3

t

bK
, (16)

where inequality (a) utilizes the fact that (1− at)2 ≤ 1− at ≤ 1 for all t ∈ [T].

Let us consider η−1
t − η−1

t−1 in the first term of the inequality in (16) and using the definition of the
stepsize ηt from Theorem 3.1, we have

η−1
t − η−1

t−1 =
(wt + σ2t)1/3

κ̄
− (wt−1 + σ2(t− 1))1/3

κ̄
(a)

≤ (wt + σ2t)1/3

κ̄
− (wt + σ2(t− 1))1/3

κ̄
(b)

≤ σ2

3κ̄(wt + σ2(t− 1))2/3

(c)

≤ 22/3σ2κ̄2

3κ̄3(wt + σ2t)2/3

(d)
=

22/3σ2

3κ̄3
η2
t

(e)

≤ σ2

24κ̄3LI
ηt, (17)

where inequality (a) follows from the fact that we choosewt ≤ wt−1 (see definition ofwt in Theorem
3.1), (b) results from the concavity of x1/3 as:

(x+ y)1/3 − x1/3 ≤ y

3x2/3
.

29

In inequality (c), we have used the fact that wt ≥ 2σ2, finally, (d) and (e) utilize the definition of ηt
and the fact that ηt ≤ 1/16LI for all t ∈ [T], respectively.

Now combining the first term of inequality in (16) with (17) and choosing c =
64L2

bK
+

σ2

24κ̄3LI
we

get:

η−1
t − η−1

t−1 − cηt ≤ −
64L2

bK
ηt.

Therefore, we have from (16):

E‖ēt+1‖2

ηt
− E‖ēt‖2

ηt−1
≤ −64L2ηt

bK
E‖ēt‖2 +

8L2

bK2

(I − 1)

I
ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

+
4L2ηt
bK

E‖d̄t‖2 +
2σ2c2η3

t

bK

bK

64L2

(
E‖ēt+1‖2

ηt
− E‖ēt‖2

ηt−1

)
≤ −ηtE‖ēt‖2 +

1

8K

(I − 1)

I
ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 +

ηt
16

E‖d̄t‖2 +
σ2c2η3

t

32L2
.

Finally, using Lemma C.5 and the definition of potential function given in (15), using the above we
get the descent in the potential function for any t ∈ [t̄s−1, t̄s − 1] with s ∈ [S] as:

E[Φt+1 − Φt] ≤ −
(

7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

ηt
2
E‖∇f(x̄t)‖2 +

ηtL
2(I − 1)

K

t∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2

+
1

8K

(I − 1)

I
ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 +

σ2c2η3
t

32L2
.

Summing the above over t = t̄s−1 to t̄ for t̄ ∈ [t̄s−1, t̄s − 1], we get:

E[Φt̄+1 − Φt̄s−1
] ≤ −

t̄∑
t=t̄s−1

(
7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

σ2c2

32L2

t̄∑
t=t̄s−1

η3
t

+
L2(I − 1)

K

t̄∑
t=t̄s−1

ηt

t∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2 +
1

8K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

≤ −
t̄∑

t=t̄s−1

(
7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

σ2c2

32L2

t̄∑
t=t̄s−1

η3
t

+
L2(I − 1)

K

(t̄∑
t=t̄s−1

ηt

)(t̄∑
`=t̄s−1

η2
`

K∑
k=1

E‖d(k)
` − d̄`‖

2

)

+
1

8K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2.

Finally, using the fact that we have: ηt ≤ 1/16LI for all t ∈ [T], we get:

E[Φt̄+1 − Φt̄s−1
] ≤ −

t̄∑
t=t̄s−1

(
7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

σ2c2

32L2

t̄∑
t=t̄s−1

η3
t

+
L2(I − 1)

K

(
I × 1

16LI
× 1

16LI

) t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

+
1

8K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

30

= −
t̄∑

t=t̄s−1

(
7ηt
16
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

σ2c2

32L2

t̄∑
t=t̄s−1

η3
t

+
33

256K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2.

Therefore, the lemma is proved.

Multiple local updates at each WN on heterogeneous data can cause the local descent directions to
drift away from each other. Next, we bound this error accumulated via gradient drift across WNs.

C.2.4 Accumulated Gradient Consensus Error

We first upper bound the gradient consensus error given by term
∑K
k=1 E‖d

(k)
t − d̄t‖2.

Lemma C.8 (Gradient Consensus Error). For every t ∈ [T] and some β > 0 we have

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

[
(1− at)2(1 + β) + 4L2

(
1 +

1

β

)
η2
t−1

] K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2

+ 4KL2

(
1 +

1

β

)
η2
t−1E‖d̄t−1‖2 +

4Kσ2

b

(
1 +

1

β

)
a2
t + 8Kζ2

(
1 +

1

β

)
a2
t

+32L2

(
1 +

1

β

)
(I − 1)a2

t

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2.

where the expectation is w.r.t. the stochasticity of the algorithm.

Proof. Using the definition of the descent direction d(k)
t from Algorithm 3 we have

K∑
k=1

E‖d(k)
t − d̄t‖2 (18)

=

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t) + (1− at)

(
d

(k)
t−1 −

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)
)

−
(

1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t) + (1− at)

(
d̄t−1 −

1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)
))∥∥∥∥2

=

K∑
k=1

E
∥∥∥∥(1− at)

(
d

(k)
t−1 − d̄t−1

)
+

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t)

− (1− at)
(

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)∥∥∥∥2

(a)

≤ (1 + β)(1− at)2
K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2

+
(

1 +
1

β

) K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t)

− (1− at)
(

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)∥∥∥∥2

(19)

31

where inequality (a) follows from the Young’s inequality for some β > 0. Now considering the
second term in (19), we get

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t)

− (1− at)
(

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)∥∥∥∥2

=

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t)

−
(

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)

+ at

(
1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)∥∥∥∥2

(a)

≤ 2

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t ; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t ; ξ

(j)
t)

−
(

1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

)∥∥∥∥2

+ 2a2
t

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

∥∥∥∥2

(b)

≤ 2

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t−1; ξ

(k)
t)
)∥∥∥∥2

+ 2a2
t

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

∥∥∥∥2

(c)

≤ 2

K∑
k=1

1

b

∑
ξ
(k)
t ∈B

(k)
t

E
∥∥∇f (k)(x

(k)
t ; ξ

(k)
t)−∇f (k)(x

(k)
t−1; ξ

(k)
t)
∥∥2

+ 2a2
t

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

∥∥∥∥2

(d)

≤ 2L2
K∑
k=1

E‖x(k)
t − x

(k)
t−1‖2 + 2a2

t

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

∥∥∥∥2

,

(20)

where inequality (a) above follows from Lemma B.4, (b) follows from Lemma B.2, inequality (c)
again uses Lemma B.4 and (d) follows from the Lipschitz-smoothness of the individual functions
f (k) (Assumption 1).

Now considering the second term in (20) above, we have

32

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

∇f (k)(x
(k)
t−1; ξ

(k)
t)− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

∇f (j)(x
(j)
t−1; ξ

(j)
t)

∥∥∥∥2

(a)
=

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)

− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

(
∇f (j)(x

(j)
t−1; ξ

(j)
t)−∇f (j)(x

(j)
t−1)

)
+∇f (k)(x

(k)
t−1)− 1

K

K∑
j=1

∇f (j)(x
(j)
t−1)

∥∥∥∥2

(b)

≤ 2

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)

− 1

K

K∑
j=1

1

b

∑
ξ
(j)
t ∈B

(j)
t

(
∇f (j)(x

(j)
t−1; ξ

(j)
t)−∇f (j)(x

(j)
t−1)

)∥∥∥∥2

+ 2

K∑
k=1

E
∥∥∥∥∇f (k)(x

(k)
t−1)− 1

K

K∑
j=1

∇f (j)(x
(j)
t−1)

∥∥∥∥2

(c)

≤ 2

K∑
k=1

E
∥∥∥∥1

b

∑
ξ
(k)
t ∈B

(k)
t

(
∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)∥∥∥∥2

+ 2

K∑
k=1

E
∥∥∥∥∇f (k)(x

(k)
t−1)− 1

K

K∑
j=1

∇f (j)(x
(j)
t−1)

∥∥∥∥2

(d)

≤ 2

K∑
k=1

1

b2

∑
ξ
(k)
t ∈B

(k)
t

E
∥∥(∇f (k)(x

(k)
t−1; ξ

(k)
t)−∇f (k)(x

(k)
t−1)

)∥∥2
+ 4

K∑
k=1

E
∥∥∇f (k)(x̄t−1)−∇f(x̄t−1)

∥∥2

+ 8

K∑
k=1

E
∥∥∇f (k)(x

(k)
t−1)−∇f (k)(x̄t−1)

∥∥2
+ 8

K∑
k=1

E
∥∥∥∥∇f(x̄t−1)− 1

K

K∑
j=1

∇f (j)(x
(j)
t−1)

∥∥∥∥2

(e)

≤ 2Kσ2

b
+ 4

K∑
k=1

1

K

K∑
j=1

E‖∇f (k)(x̄t−1)−∇f (j)(x̄t−1)‖2 + 16L2
K∑
k=1

E‖x(k)
t−1 − x̄t−1‖2

(g)

≤ 2Kσ2

b
+ 4Kζ2 + 16L2

K∑
k=1

E‖x(k)
t−1 − x̄t−1‖2, (21)

where equality (a) follows from adding and subtracting ∇f (k)(x
(k)
t−1) and 1

K

∑K
j=1∇f (j)(x

(j)
t−1)

inside the norm; inequality (b) uses Lemma B.4; inequality (c) results from the use of Lemma B.2;
inequality (d) expands the sum of the first term using inner products and utilizes the fact that the cross
product terms are zero in expectation. This follows from the fact that conditioned on Ft we have
E[∇f (k)(x

(k)
t ; ξ

(k)
t)] = ∇f (k)(x

(k)
t) for all k ∈ [K] and t ∈ [T]; inequality (e) utilizes Intra-Node

Variance Bound (Assumption 2), and Lemma B.4; finally, (g) follows from Inter-Node Variance
Bound (Assumption 2).

Finally, substituting (21) and (20) in (19), we get

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤ (1− at)2(1 + β)

K∑
k=1

E
∥∥d(k)

t−1 − d̄t−1

∥∥2
+ 2L2

(
1 +

1

β

) K∑
k=1

E‖x(k)
t − x

(k)
t−1‖2

+
4Kσ2

b

(
1 +

1

β

)
a2
t + 8Kζ2

(
1 +

1

β

)
a2
t + 32L2

(
1 +

1

β

)
a2
t

K∑
k=1

E‖x(k)
t−1 − x̄t−1‖2

33

(a)

≤ (1− at)2(1 + β)

K∑
k=1

E
∥∥d(k)

t−1 − d̄t−1

∥∥2
+ 2L2

(
1 +

1

β

)
η2
t−1

K∑
k=1

E‖d(k)
t−1‖2

+
4Kσ2

b

(
1 +

1

β

)
a2
t + 8Kζ2

(
1 +

1

β

)
a2
t

+ 32L2

(
1 +

1

β

)
(I − 1)a2

t

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

(b)

≤ (1− at)2(1 + β)

K∑
k=1

E
∥∥d(k)

t−1 − d̄t−1

∥∥2
+ 4L2

(
1 +

1

β

)
η2
t−1

K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2

+ 4L2

(
1 +

1

β

)
η2
t−1

K∑
k=1

E‖d̄t−1‖2 +
4Kσ2

b

(
1 +

1

β

)
a2
t + 8Kζ2

(
1 +

1

β

)
a2
t

+ 32L2

(
1 +

1

β

)
(I − 1)a2

t

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

=

[
(1− at)2(1 + β) + 4L2

(
1 +

1

β

)
η2
t−1

] K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2

+ 4KL2

(
1 +

1

β

)
η2
t−1E‖d̄t−1‖2 +

4Kσ2

b

(
1 +

1

β

)
a2
t + 8Kζ2

(
1 +

1

β

)
a2
t

+ 32L2

(
1 +

1

β

)
(I − 1)a2

t

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2,

where inequality (a) follows from the iterate update given in Step 10 of Algorithm 3 and inequality
(b) utilizes Lemma B.4.

Using the above Lemma C.8, we bound the accumulated gradient consensus error in the potential
function’s descent derived in Lemma C.7.

Lemma C.9 (Accumulated Gradient Consensus Error). For t̄ ∈ [t̄s−1, t̄s − 1] with s ∈ [S] we have

33

256K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

t̄∑
t=t̄s−1

ηt
64

E‖d̄t‖2 +
σ2c2

64bL2

t̄∑
t=t̄s−1

η3
t +

ζ2c2

32L2

(I − 1)

I

t̄∑
t=t̄s−1

η3
t .

Proof. First, from the statement of Lemma C.8, considering the coefficient of first term on the right
hand side of the expression, we have:

(1− at)2(1 + β) + 4L2

(
1 +

1

β

)
η2
t−1

(a)

≤ 1 + β + 4L2

(
1 +

1

β

)
η2
t−1

(b)

≤ 1 +
1

I
+ 4L2(I + 1)η2

t−1

(c)

≤ 1 +
1

I
+
I + 1

64I2

(d)

≤ 1 +
33

32I
,

where inequality (a) uses the fact that (1− at)2 ≤ 1; the second inequality (b) follows from taking
β = 1/I , inequality (c) uses the bound ηt ≤ 1/16LI for all t ∈ [T]. Finally, the last inequality (d)
results by using the fact that we have I + 1 ≤ 2I . Substituting in the statement of Lemma C.8 above,
we get

34

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

(
1 +

33

32I

) K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2 + 4KL2

(
1 +

1

β

)
η2
t−1E‖d̄t−1‖2 +

4Kσ2

b

(
1 +

1

β

)
a2
t

+ 8Kζ2

(
1 +

1

β

)
a2
t+32L2

(
1 +

1

β

)
(I − 1)a2

t

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2.

(a)

≤
(

1 +
33

32I

) K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2 + 8KL2Iη2

t−1E‖d̄t−1‖2 +
8KIσ2

b
c2η4

t−1

+ 16KIζ2c2η4
t−1+64L2I2c2η4

t−1

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

(b)

≤
(

1 +
33

32I

) K∑
k=1

E‖d(k)
t−1 − d̄t−1‖2 +

KL

2
ηt−1E‖d̄t−1‖2 +

Kσ2c2

2bL
η3
t−1

+
Kζ2c2

L
η3
t−1+ 64L2I2c2η4

t−1

t−1∑
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

(22)

where (a) follows from using β = 1/I , the fact that I + 1 ≤ 2I and the definition of at from
Algorithm 3.

Note form Algorithm 3 that we have d(k)
t = d̄t for t = t̄s−1 with s ∈ [S]. This implies that for

t = t̄s−1 with s ∈ [S], we have,
∑K
k=1 ‖d

(k)
t − d̄t‖2 = 0. Applying (22) above recursively for

t ∈ [t̄s−1 + 1, t̄s − 1] we get:

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

KL

2

t−1∑
`=t̄s−1

(
1 +

33

32I

)t−1−`

η`E‖d̄`‖2 +
Kσ2c2

2bL

t−1∑
`=t̄s−1

(
1 +

33

32I

)t−1−`

η3
`

+
Kζ2c2

L

t−1∑
`=t̄s−1

(
1 +

3

2I

)t−1−`

η3
` + 64L2I2c2

t−1∑
`=t̄s−1

(
1 +

33

32I

)t−1−`

η4
`

∑̀
¯̀=t̄s−1

η2
¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

(a)

≤ KL

2

(
1 +

33

32I

)I t∑
`=t̄s−1

η`E‖d̄`‖2 +
Kσ2c2

2bL

(
1 +

33

32I

)I t∑
`=t̄s−1

η3
`

+
Kζ2c2

L

(
1 +

33

32I

)I t∑
`=t̄s−1

η3
` + 64L2I3c2

(
1

16LI

)5(
1 +

33

32I

)I t∑
¯̀=t̄s−1

η¯̀

K∑
k=1

E‖d(k)
¯̀ − d̄¯̀‖2

(b)

≤ 3KL

2

t∑
`=t̄s−1

η`E‖d̄`‖2 +
3Kσ2c2

2bL

t∑
`=t̄s−1

η3
` +

3Kζ2c2

L

t∑
`=t̄s−1

η3
`

+ 192L2I3c2
(

1

16LI

)5 t∑
`=t̄s−1

η`

K∑
k=1

E‖d(k)
` − d̄`‖

2, (23)

where inequality (a) follows from the fact that 1+33/32I > 1 and t−1−` ≤ I for t ∈ [t̄s−1, t̄s−1]
and ` ∈ [t̄s−1, t] and inequality (b) follows from the fact that (1 + 33/32I)I ≤ e33/32 < 3 and
ηt ≤ 1/16LI for all t ∈ [T].

Multiplying (23) by ηt and summing over t = t̄s−1 to t̄ for t̄ ∈ [t̄s−1, t̄s − 1] with s ∈ [S]

35

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

3KL

2

t̄∑
t=t̄s−1

ηt

t∑
`=t̄s−1

η`E‖d̄`‖2 +
3Kσ2c2

2bL

t̄∑
t=t̄s−1

ηt

t∑
`=t̄s−1

η3
`

+
3Kζ2c2

L

t̄∑
t=t̄s−1

ηt

t∑
`=t̄s−1

η3
` + 192L2I3c2

(
1

16LI

)5 t̄∑
t=t̄s−1

ηt

t∑
`=t̄s−1

η`

K∑
k=1

E‖d(k)
` − d̄`‖

2

(a)

≤ 3KL

2

(t̄∑
t=t̄s−1

ηt

) t̄∑
`=t̄s−1

η`E‖d̄`‖2 +
3Kσ2c2

2bL

(t̄∑
t=t̄s−1

ηt

) t̄∑
`=t̄s−1

η3
`

+
3Kζ2c2

L

(t̄∑
t=t̄s−1

ηt

) t̄∑
`=t̄s−1

η3
` + 192L2I3c2

(
1

16LI

)5(t̄∑
t=t̄s−1

ηt

) t̄∑
`=t̄s−1

η`

K∑
k=1

E‖d(k)
` − d̄`‖

2

(b)

≤ 3K

32

t̄∑
t=t̄s−1

ηtE‖d̄t‖2 +
3Kσ2c2

32bL2

t̄∑
t=t̄s−1

η3
t +

3Kζ2c2

16L2

t̄∑
t=t̄s−1

η3
t

+ 192L2I4c2
(

1

16LI

)6 t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2

where inequality (a) uses the fact that t ∈ [t̄s−1, t̄] and (b) follows from the fact that we have
ηt ≤ 1/16LI for all t ∈ [T]. Rearranging the terms we get[
1− 192L2I4c2

(
1

16LI

)6] t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

3K

32

t̄∑
t=t̄s−1

ηtE‖d̄t‖2

+
3Kσ2c2

32bL2

t̄∑
t=t̄s−1

η3
t +

3Kζ2c2

16L2

t̄∑
t=t̄s−1

η3
t

using the fact that c ≤ 128L2/bK, b ≥ 1,K ≥ 1 and I ≥ 1, we have
[
1−192L2I4c2

(
1

16LI

)6]
≥ 4

5 ,
therefore, we get

33

256K

(I − 1)

I

t̄∑
t=t̄s−1

ηt

K∑
k=1

E‖d(k)
t − d̄t‖2 ≤

t̄∑
t=t̄s−1

ηt
64

E‖d̄t‖2 +
σ2c2

64bL2

t̄∑
t=t̄s−1

η3
t +

ζ2c2

32L2

(I − 1)

I

t̄∑
t=t̄s−1

η3
t .

Hence, the lemma is proved.

C.2.5 Proof of Theorem 3.1

Next, to prove Theorem 3.1 we first prove an intermediate theorem by utilizing Lemmas C.9 and C.7
derived above.

Theorem C.10. Choosing the parameters as

(i) κ̄ =
(bK)2/3σ2/3

L
,

(ii) c =
64L2

bK
+

σ2

24κ̄3LI

(i)
= L2

(
64

bK
+

1

24(bK)2I

)
≤128L2

bK
,

(iii) We choose {wt}Tt=0 as

wt = max

{
2σ2, 4096L3I3κ̄3 − σ2t,

c3κ̄3

4096L3I3

}
(i)(ii)

≤ σ2 max

{
2, 4096I3(bK)2 − t, 512

bKI3

}
.

36

Moreover, for any number of local updates, I ≥ 1, batch sizes, b ≥ 1, and initial batch size, B ≥ 1,
computed at individual WNs, STEM satisfies:

E‖∇f(x̄a)‖2 ≤
[

32LI

T
+

2L

(bK)2/3T 2/3

]
(f(x̄1)− f∗) +

[
8bI2

BT
+

bI

2(bK)2/3BT 2/3

]
σ2

+

[
2562I

T
+

642

(bK)2/3T 2/3

]
σ2 log(T + 1) +

[
2562I

T
+

642

(bK)2/3T 2/3

]
ζ2 (I − 1)

I
log(T + 1).

Proof. Substituting the gradient consensus error derived in Lemma C.9 into the Potential function
descent derived in Lemma C.7, we can write the descent of potential function for t̄ ∈ [t̄s−1, t̄s − 1]
with s ∈ [S] as:

E[Φt̄+1 − Φt̄s−1
] ≤ −

t̄∑
t=t̄s−1

(
27ηt
64
− η2

tL

2

)
E‖d̄t‖2 −

t̄∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2

+
c2σ2

32L2

t̄∑
t=t̄s−1

η3
t +

c2σ2

64bL2

t̄∑
t=t̄s−1

η3
t +

c2ζ2

32L2

(I − 1)

I

t̄∑
t=t̄s−1

η3
t

(a)

≤ −
t̄∑

t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

3c2σ2

64L2

t̄∑
t=t̄s−1

η3
t +

c2ζ2

32L2

(I − 1)

I

t̄∑
t=t̄s−1

η3
t .

where (a) follows from the fact that ηt ≤ 1/16LI for all t ∈ [T] and b ≥ 1. Taking t̄ = t̄s − 1 = sI ,
the above expression can be written as:

E[Φt̄s − Φt̄s−1
] ≤ −

t̄s−1∑
t=t̄s−1

ηt
2
E‖∇f(x̄t)‖2 +

3c2σ2

64L2

t̄s−1∑
t=t̄s−1

η3
t +

c2ζ2

32L2

(I − 1)

I

t̄s−1∑
t=t̄s−1

η3
t .

Summing over all the restarts, i.e, s ∈ [S], we get:

E[Φt̄S − Φt̄0]≤−
t̄S−1∑
t=t̄0

ηt
2
E‖∇f(x̄t)‖2 +

3c2σ2

64L2

t̄S−1∑
t=t̄0

η3
t +

c2ζ2

32L2

(I − 1)

I

t̄S−1∑
t=t̄0

η3
t .

Assuming that T = SI , then from the definition of t̄s that t̄0 = 1 and t̄S = SI + 1 = T + 1, we get

T∑
t=1

ηt
2
E‖∇f(x̄t)‖2 ≤ E[Φ1 − ΦT+1] +

3c2σ2

64L2

T∑
t=1

η3
t +

c2ζ2

32L2

(I − 1)

I

T∑
t=1

η3
t

(a)

≤ f(x̄1)− f∗ +
bK

64L2

E‖ē1‖2

η0
+

3c2σ2

64L2

T∑
t=1

η3
t +

c2ζ2

32L2

(I − 1)

I

T∑
t=1

η3
t

(b)

≤ f(x̄1)− f∗ +
σ2

64L2

b

Bη0
+

3c2σ2

64L2

T∑
t=1

η3
t +

c2ζ2

32L2

(I − 1)

I

T∑
t=1

η3
t . (24)

where (a) follows from the fact that f∗ ≤ ΦT+1 and (b) results from application of Lemma C.3.

First, let us consider the last term of the (24) above, we have from the definition of the stepsize ηt

T∑
t=1

η3
t =

T∑
t=1

κ̄3

wt + σ2t

(a)

≤
T∑
t=1

κ̄3

σ2 + σ2t

=
κ̄3

σ2

T∑
t=1

1

1 + t

37

(b)

≤ κ̄3

σ2
ln(T + 1). (25)

where inequality (a) above follows from the fact that we have wt ≥ 2σ2 > σ2 and inequality (b)
follows from the application of Lemma B.3.

Substituting (25) in (24), dividing both sides by T and using the fact that ηt is non-increasing in t we
have

1

T

T∑
t=1

E‖∇f(x̄t)‖2 ≤
2(f(x̄1)− f∗)

ηTT
+

1

ηTT

σ2

32L2

b

Bη0
+

1

ηTT

3c2κ̄3

32L2
log(T + 1)

+
1

ηTT

c2κ̄3

16L2

ζ2

σ2

(I − 1)

I
log(T + 1)

(a)

≤ 2(f(x̄1)− f∗)
ηTT

+
1

ηTT

σ2

32L2

b

Bη0
+

1

ηTT

c2κ̄3

4L2
log(T + 1)

+
1

ηTT

c2κ̄3

4L2

ζ2

σ2

(I − 1)

I
log(T + 1). (26)

where (a) above utilizes the fact that 1/16 < 3/32 < 1/4.

Now considering each term of (26) above separately and using the definition of ηt =
κ̄

(wt + σ2t)1/3

we get from the coefficient of the first term:

1

ηTT
=

(wT + σ2T)1/3

κ̄T

(a)

≤
w

1/3
T

κ̄T
+

σ2/3

κ̄T 2/3

(b)

≤ 16LI

T
+

L

(bK)2/3T 2/3
. (27)

where inequality (a) follows from identity (x+ y)1/3 ≤ x1/3 + y1/3 and inequality (b) follows from
the definition of κ̄ and wT

wT = max

{
2σ2, 4096L3I3κ̄3 − σ2T,

c3κ̄3

4096L3I3

}
≤ σ2 max

{
2, 4096I3(bK)2 − T, 512

bKI3

}
,

where we used 4096L3I3κ̄3 > 4096L3I3κ̄3 − σ2T ≥ max

{
2σ2,

c3κ̄3

4096L3I3

}
. Note that this

choice of wT captures the worst case guarantees for STEM.

Now, let us consider the second term of (26), we have from the definition of η0 and ηT

1

ηTT

σ2

32L2

b

Bη0
≤
(

16LI

T
+

L

(bK)2/3T 2/3

)
× σ2

32L2
× bw

1/3
0

Bκ̄

(a)

≤
(

16LI

T
+

L

(bK)2/3T 2/3

)
× σ2

32L2
× 16LIb

B

(b)

≤ 8bI2

BT
σ2 +

bI

(bK)2/3BT 2/3

σ2

2
. (28)

where inequality (a) follows from the identity (x+ y)1/3 ≤ x1/3 + y1/3 and (b) follows from the
definition of κ̄ and using w0 ≤ 4096L3I3κ̄3 and wT ≤ 4096L3I3κ̄3 (Similar to the approach in (27)
this choice of w0 and wT capture the worst case convergence guarantees for STEM.)

Finally, considering the term 1
ηTT

c2κ̄3

4L2 common to the last two terms in (26) above, we have from the
definition of the stepsize, ηt,

1

ηTT

c2κ̄3

4L2
≤
(

16LI

T
+

L

(bK)2/3T 2/3

)
×
(

128L2

bK

)2

× (bK)2σ2

L3
× 1

4L2

(a)

≤ 2562σ2 I

T
+ 642σ2 1

(bK)2/3T 2/3
. (29)

where inequality (a) follows from the identity (x + y)1/3 ≤ x1/3 + y1/3 and (b) again uses
wT ≤ 4096L3I3κ̄3 along with the definition of κ̄ and c.

38

Finally, substituting the bounds obtained in (27), (28) and (29) into (26), we get

E‖∇f(x̄a)‖2 ≤
[

32LI

T
+

2L

(bK)2/3T 2/3

]
(f(x̄1)− f∗) +

[
8bI2

BT
+

bI

2(bK)2/3BT 2/3

]
σ2

+

[
2562I

T
+

642

(bK)2/3T 2/3

]
σ2 log(T + 1) +

[
2562I

T
+

642

(bK)2/3T 2/3

]
ζ2 (I − 1)

I
log(T + 1).

Hence, the theorem is proved.

Next, using Theorem C.10 we prove Theorem 3.1.
Theorem C.11 (Theorem 3.1: Trade-off: Local Updates vs Batch Sizes). With the parameters chosen
according to Theorem C.10 and for any ν ∈ [0, 1] at each WN we set the total number of local updates
as I = O

(
(T/K2)ν/3

)
, batch size, b = O

(
(T/K2)1/2−ν/2), and the initial batch size, B = bI .

Then STEM satisfies:

(i) We have:

E‖∇f(x̄a)‖2 = O
(

f(x̄1)− f∗

K2ν/3T 1−ν/3

)
+ Õ

(
σ2

K2ν/3T 1−ν/3

)
+ Õ

(
(I − 1)

I
× ζ2

K2ν/3T 1−ν/3

)
.

(ii) Sample Complexity: To achieve an ε-stationary point STEM requires at most O(ε−3/2) gradient
computations. This implies that each WN requires at most O(K−1ε−3/2) gradient computations,
thereby achieving linear speedup with the number of WNs present in the network.

(iii) Communication Complexity: To achieve an ε-stationary point STEM requires at most O(ε−1)
communication rounds.

Proof. The proof of statement (i) follows from the statement of Theorem C.10 and substituting
the values of parameters B, I and b in the expression. First, replacing B = bI in the statement of
Theorem C.10 yields

E‖∇f(x̄a)‖2 ≤
[

32LI

T
+

2L

(bK)2/3T 2/3

]
(f(x̄1)− f∗) +

[
8I

T
+

1

2(bK)2/3T 2/3

]
σ2

+

[
2562I

T
+

642

(bK)2/3T 2/3

]
σ2 log(T + 1) +

[
2562I

T
+

642

(bK)2/3T 2/3

]
ζ2 (I − 1)

I
log(T + 1).

Then using the fact that I = O
(
(T/K2)ν/3

)
and b = O

(
(T/K2)1/2−ν/2) yields the expression of

statement (i).

Next, we compute the computation and communication complexity of the algorithm.

• Sample Complexity [Theorem C.11(ii)]: From the statement of Theorem C.11(i), total iterations
required to achieve an ε-stationary point are:

Õ
(

1

K2ν/3T 1−ν/3

)
= ε ⇒ T = Õ

(
1

K2ν/(3−ν)ε3/(3−ν)

)
. (30)

In each iteration, each WN computes 2b stochastic gradients, therefore, the total gradient
computations at each WN are 2bT . Using b = O

(
(T/K2)1/2−ν/2), we get the total gradient

computations required at each WN as:

bT = Õ
(
T 3/2−ν/2

K1−ν

)
(30)
= Õ

(
1

Kε3/2

)
This implies that the sample complexity is Õ(ε−3/2).

• Communication Complexity [Theorem C.11(iii)]: The total rounds of communication to achieve
an ε-stationary point are T/I , with I = O

(
(T/K2)ν/3

)
and T given in (30), therefore, we have

the communication complexity as:

T

I
= Õ

(
T 1−ν/3K2ν/3

) (30)
= Õ

(
1

ε

)
.

39

Hence, the theorem is proved.

Corollary 2 (FedSTEM: Local Updates). With the choice of parameters given in Theorem C.10. At
each WN, setting constant batch size, b ≥ 1, number of local updates, I = (T/b2K2)1/3, and the
initial batch size, B = bI . Then STEM satisfies the following:

(i) We have:

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f∗

(bK)2/3T 2/3

)
+ Õ

(
σ2

(bK)2/3T 2/3

)
+ Õ

(
ζ2

(bK)2/3T 2/3

)
.

(ii) Sample Complexity: To achieve an ε-stationary point FedSTEM requires at most Õ(ε−3/2)
gradient computations while achieving linear speedup with the number of WNs.

(iii) Communication Complexity: To achieve an ε-stationary point FedSTEM requires at most Õ(ε−1)
communication rounds.

Proof. The proof of statement (i) follows from substituting the values of the parameters b, I and B
as defined in the statement of the Corollary in the statement of Theorem C.10.

Next, we compute the sample and communication complexity of the algorithm.

• Sample Complexity: From the statement of Corollary 2(i), total iterations, T , required to achieve
an ε-stationary point are:

Õ
(

1

(bK)2/3T 2/3

)
= ε ⇒ T = Õ

(
1

bKε3/2

)
. (31)

At each iteration the algorithm computes 2b stochastic gradients. Therefore, the total number
of gradient computations required at each WN are of the order of 2bT , which is Õ(K−1ε−3/2).
Therefore, the sample complexity of the algorithm is Õ(ε−3/2).

• Communication Complexity: Total rounds of communication to achieve an ε-stationary point is
T/I , therefore we have from the choice of I that

T

I
= Õ

(
(bK)2/3T 2/3

) (31)
= Õ

(
1

ε

)
.

Hence, the corollary is proved.

An alternate design choice for the algorithm is to design large batch-size gradients and communicate
more often. The next corollary captures this idea.
Corollary 3 (Corollary 1: Minibatch STEM). With the choice of parameters given in Theorem C.10.
At each WN, choosing the number of local updates, I = 1, the batch size, b = T 1/2/K, and the
initial batch size, B = bI . Then STEM satisfies:

(i) We have:

E‖∇f(x̄a)‖2 = O
(
f(x̄1)− f∗

T

)
+ Õ

(
σ2

T

)
.

(ii) Sample Complexity: To achieve an ε-stationary point Minibatch STEM requires at most Õ(ε−3/2)
gradient computations while achieving linear speedup with the number of WNs.

(iii) Communication Complexity: To achieve an ε-stationary point Minibatch STEM requires at most
Õ(ε−1) communication rounds.

Proof. The proof of statement (i) follows from substituting the values of the parameters b, I and B
given in the statement of the Corollary in the statement of Theorem C.10.

Next, we compute the sample and communication complexity of the algorithm.

40

• Sample Complexity: From the statement of Corollary 3(i), total iterations, T , required to achieve
an ε-stationary point are:

Õ
(
I

T

)
= ε ⇒ T = Õ

(
I

ε

)
. (32)

In each iteration, each WN computes 2b stochastic gradients, therefore, the total gradient

computations at each WN are 2bT . Using the fact that b = O
(
T 1/2

I3/2K

)
. The total gradients

computed at each WN to reach an ε-stationary point are:

Õ
(
I

ε
× I1/2

ε1/2I3/2K

)
= Õ

(
1

Kε3/2

)
.

Therefore, the communication complexity if Õ(ε−3/2).

• Communication Complexity: The total rounds of communication required to reach an ε-stationary
point are T/I , therefore we have

T

I

(32)
= Õ

(
1

ε

)
.

Hence, the corollary is proved.

41

	Introduction
	Preliminaries
	The STEM algorithm and the trade-off analysis
	Main results: convergence guarantees for STEM
	Special cases: The FedAvg algorithm

	Numerical results
	Additional experiments
	Proofs of Convergence Guarantees for FedAvg
	Preliminary Lemmas
	Proof of Main Results: FedAvg
	Proof of Theorem 3.2

	Proofs of Convergence Guarantees for STEM
	Preliminary Lemmas
	Proof of Main Results: STEM
	Proof of Descent Lemma
	Proof of Gradient Error Contraction
	Descent in Potential Function
	Accumulated Gradient Consensus Error
	Proof of Theorem 3.1

