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A Notations

In this section we gather the notations that will be used throughout the appendix.

For any vectors u = [u;]]; € R" and v = [w;]}; € R”, let u o v = [u;v;])]; denote the
Hadamard product of u and v. We slightly abuse notations to use /- and | - | to define entry-wise
operation, i.e. for any vector v = [v;]7_; denote \/v := [\/v;];~; and |v| = [|v;]];_,. Furthermore,
the binary notations < and > are both defined in entry-wise manner, i.e. u < v (resp. u > v) means
u; < v, (resp. u; > v;) forall 1 < ¢ < n. For a collection of vectors vy, ---, v,, € R" with
v, = [Ui,j]?:l € R”, we define the max operator to be maxi<;<m, v; = [MaXi<i<m vi,j]?zl.

For any matrix M € R™>™ || M|, is defined as the largest row-wise ¢; norm of M, i.e. | M||; ==
max; ), |M; ;. In addition, we define 1 to be a vector with all the entries being 1, and I be
the identity matrix. To express the probability transition function P in matrix form, we define
the matrix P € RISIIMIXIS| to be a matrix whose (s, a)-th row P, , corresponds to P(-|s,a). In
addition, we define P™ to be the probability transition matrix induced by policy T, i.e. P(Z,a)y(s,#,) =
P, (") 1 (s1y=q for all state-action pairs (s, a) and (s’, a’). We define 7; to be the policy induced
by Q4, i.e. Q¢(s,m(s)) = max, Q+(s,a) for all s € S. Furthermore, we denote the reward function
7 by vector € RISIMI i the (s,a)-th element of 7 equals (s, a). In the same manner, we define
V™ e RISI, v* e RISI WV, e RIS, Q" € RISHAL Q€ RISIAl and Q; € RISIAl 1o represent V7,
V*, Vi, Q™, Q* and @, respectively. By using these notations, we can rewrite the Bellman equation
as

Q’T:r—‘,—fyPVﬂ:'r‘—‘r’yPﬂQﬂ. (11)
Further, for any vector V' € RIS|, let Varp(V) € RISIIAI be
Varp (V) == P(V o V) — (PV)o (PV), (12)

and define Varp, , (V') € R to be
Varp,, (V) =P, ,(VoV)— (P, V), (13)
where P , is the (s, a)-th row of P.

Next, we reconsider Assumption 1. For any state-action pair (s, a), we define vector A(s, a) € R¥
(resp. ¢(s,a) € RE) with A(s,a) = [Ni(s,a)]E, (resp. ¢(s,a) = [¢pi(s,a)],) and matrix
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A € RISIAIXE (resp. @ € RISIAIXKY whose (s, a)-th row corresponds to A(s,a) " (resp. ¢(s,a) ).
Define vector (s, a) € R¥ with 1(s,a) = [1;(s, )]/, and matrix ¥ € R¥*ISI whose (s, a)-th
column corresponds to (s, a)T. Further, let P € R<*IS| (resp. ®xc € REXK) to be a submatrix
of P (resp. ®) formed by concatenating the rows {Ps 4, (s,a) € K} (resp. {®s.,q,(s,a) € K}).
By using the previous notations, we can express the relations in Definition 1 and Assumption 1 as
P =P, P =&Y and & = A®Pi. Note that Assumption 1 suggests P is invertible. Taking
these equations collectively yields

P =3V =83, 'Pc = AP ' Pc = APk, (14)

which is reminiscent of the anchor word condition in topic modelling [2]. In addition, for each iteration

t, we denote the collected samples as {s;(s, a)}(s,q)cx and define a matrix 13’(5&) € {0,1}5%IS to
be

1, ifs =s:(s,a)

1
0, otherwise (15

P (5., = {

for any (s,a) € K and s’ € S. Further, we define P = A13,(Ct). Then it is obvious to see that P, has
nonnegative entries and unit ¢; norm for each row due to Assumption 1, i.e. | P||; = 1.

B Analysis of model-based RL (Proof of Theorem 1)

In this section, we will provide complete proof for Theorem 1. As a matter of fact, our proof strategy
here justifies a more general version of Theorem 1 that accounts for model misspecification, as stated
below.

Theorem 3. Suppose that § > 0 and € € (0, (1 — ~)~/2]. Assume that there exists a probability
transition model P obeying Definition I and Assumption 1 with feature vectors {$(s, a)}(sﬂ)eng -
RE and anchor state-action pairs K such that

[P — Pl <¢
for some & > 0. Let T be the policy returned by Algorithm 1. Assume that

N > Clog (K/((1-7)9))

> (16)
(1—7)°e?
for some sufficiently large constant C > 0. Then with probability exceeding 1 — 6,
R 4e, 22
Q" (5,0) = Q7 (s,0) < e —2 : (17

l—y  (1-7)%

for every state-action pair (s,a) € S x A.

Theorem 3 subsumes Theorem 1 as a special case with £ = 0. The remainder of this section is
devoted to proving Theorem 3.

B.1 Proof of Theorem 3
The error Q7 — Q* can be decomposed as
Qﬁ_Q*:Q%_Q?_’_Q\%_Q*_i_Q*_Q*
>Q -QT+Q"-Q + Q" —-
R I
oo [oe]

OO) 1. (18)

For policy 7 satisfying the condition in Theorem 1, we have H@ﬁ -Q* lloo < €opt. It boils down to
control |Q™ — Q7||oo and | Q™ — Q*|| .



To begin with, we can use (11) to further decompose || QT — Q7 |o as

o= e (o) |
) (1) - (e ]
| (1-~P7) " (P P) V" i
) o)) (o) (7
<y (I—fyP%)_l ’(Pfﬁ) v+ ﬂ;ﬁ 21%55‘ (19)

Here the last inequality is due to
~\ —1 ~ ~ ~
baar) (po2) (777

N@=P)(v*-7)

(121 +[[2]) [ - 7
1

N\ —1
< VH(I—VP”)

.
<7 H(I —WP%)_I

< 2'750pt7
ST, 5

o0

where we use the fact that ||(I — yP7)~!(|; < 1/(1 —~) and | P||; = || P, = 1.

Similarly, for the term ||Q™" — Q*||» in (18), we have

@-a

A\ 1 ~\ A~
:Hy(I—fyP”) (P—P)V”
o0

o0

< | (1-2p7) (P B) 77 20

oo

As can be seen from (19) and (20), it boils down to bound |(P — P)V*| and |(P — P)V™"|. We
have the following lemma.

Lemma 1. With probability exceeding 1 — 6, one has

10¢ [2log (4K/5)  4log (BK/((1—7)4))
< EJFZL N + T

4log (8K/((1-)9))
[

(p-p) ¥

Varp, . (f/) 1)

~ PN 10¢ [2log (4K /§) = 4log (8K/((1—7)4))
’(P_P>s,av §1—7+4 N + (1-9)N
4log (8K/ ((1 —~)9)) oo
_|_\/ ~ Varp,_, (V ) (22)
Proof. See Appendix B.2. O




Applying (21) to (19) reveals that

Alog 8K/ (1 =) )
S

HQ% — @% ¥ (I — 'yP%)_1 Varp, , (‘7*)

oo
o0

+

v P 2log (4K/0) | 4log 8K/ ((1—7) 6))]
1—7 N (1—-~)N

10v¢ 27Eopt
(=P "1y

(23)

For the first term, one has

m <y/Varp,, (V7) + \/Varpw (V% — ‘Af%> + \/Varps,a (‘Af% — ‘Af*)

</Varp, , (VT) + HV% -V 4+ Eopt
< \/Varp,, (VF) + HQ* -Q7|| +eops

where the first inequality comes from the fact that y/Var(X +Y) < /Var(X) + /Var(Y)) for any
random variables X and Y. It follows that

y (I — fyP%>71 Varp, , (ﬁ*)
<[ (1 -ap7) " e )

i (ler-e

+ 50pt)
o0

s e

where the second inequality utilizes [3, Lemma 7].

Plugging (24) into (23) yields
4log (8K/ (1 =) 9)) 2 g F_GF
OOS\/ N lV\/(l_y)?”Llfy(HQ -Q

Y |y, 2log (4K/S) | 4log (8K/((1 —v)d)) 107 27€om
11—~ N (1-7N (1=7)2 1-7v

Then we can rearrange terms to obtain

_teom) 24)

o

+ Eopt)

+

5 log BK/((1—=7)d)) 117§ 37een
T—-QT|| <10 + 25
HQ .. 7\/ N(1—~) (1=7)2 1-7 @
as long as N > C'log(8K/((1 —~)8))/(1 — ~)? for some sufficiently large constant C' > 0.
In a similar vein, we can use (20) and (22) to obtain that
At log 8K/ ((1—v)6)) 117§
Q" —-Q*|| <10y + . (26)
H o N(1—7)3 (1—7)?

Finally, we can substitute (25) and (26) into (18) to achieve

0> - (M \/log (BE/(1-7)8) | _22¢  3rcon +> 5

N(1-7) (I=7)2 1-9v
This result implies that

~ N 22¢ 4eop
@ <€+(17)2+17>1’

Clog (8K/ ((1 —7)4))
(1-7)°e2

as long as

N >

)

for some sufficiently large constant C' > 0.



B.2 Proof of Lemma 1

To prove this theorem, we invoke the idea of s-absorbing MDP proposed by [1]. For a state s € S
and a scalar u, we define a new MDP M, , to be identical to M on all the other states except s; on
state s, M, is absorbing such that Pys,  (s|s,a) = 1 and ry, , (s,a) = (1 —y)uforalla € A.
More formally, we define Pyy, , and rpy, , as

Py, (sls,a) =1, ru,, (s,0) = (1= v)u, foralla € A,
Py, (s a") = P(:|s',d"), ra,, (s,a) =7 (s,a),  foralls’# sanda’ € A.
To streamline notations, we will use V", € RIS! and V>, € RIS! to denote the value function of
Ms  under policy 7 and the optimal Value function of M s respectlvely Furthermore, we denote by
MS « the MDP whose probability transition kernel is identical to P at all states except that state s is

absorbing. Similar as before, we use V* € RIS! to denote the optimal value function under M, s
The construction of this collectlon of aux111ary MDPs will facilitate our analysis by decoupling the

statistical dependency between P and 7*

To begin with, we can decompose the quantity of interest as

(P-P), v

)

=|(P-P) (V-7

t|(pop) (7o)

+’>\ s,a (P,C—P,C)V*

IN

s,a

),

+}>\ (s,a (P,C—P,C>V*

+ (IPecall, + || e

) “‘7* - ‘7sfu

oo

Sj

Gl (P - Be) Vi

A
£
|
\E

+wmwwM&—&ﬁ@

+2|ve -V,

< — 4+ max (P—ﬁ) ‘A/;*u
1—7v  (s,0)ek s,a
where (i) makes use of Ps,a = )\(S,G)ﬁ]@ and 135@ = )\(s,a)ﬁ;g; (ii) depends on | P — 15||1 <&,
[A(s,a)|ls = 1and ||V}, ]l < (1 —7)~". For each state s, the value of v will be selected from a
set Us. The choice of U, will be specified later. Then for some fixed u in U, and fixed state-action

pair (s, a) € K, due to the independence between P, , and V*

S,u’

(cf. [5, Theorem 2.8.4]) conditional on ‘7:“ to reveal that with probability greater than 1 — §/2,
2log (4/9) 21log (4/9)
2o o)y, (9,) + 2B/,

—\/ N P (Ve ) TRTTOVN

Invoking the union bound over all the K state-action pairs of K and all the possible values of u in U,
demonstrate that with probability greater than 1 — 6/2,

2log (4K |Us] /9) % 2log (4K |Us] /9)
varp,,, (V2. ,

—\/ N P Vs ) T TR N
holds for all state-action pair (s, a) € K and all v € U,. Here, Varp,_, (-) is defined in (13). Then we

observe that
\/Varpm (‘A/s*u) < \/Varpw (‘7* _ f/s*u) + \/Varps_ﬁ (‘7*)
. +4/Varp, , (V*)
< "7* (s) — u‘ +4/Varp,, (‘7*), (30)

+2 Hff* -V,

; 27)

we can apply Bernstein’s inequality

(28)

S,u

(P - 13) v

S,a

(29)

S,u

(P —13)( A

< |7 - v




where (i) is due to \/Varp, , (Vi + V2) < /Varp, (V1) + /Varp, ,(V2) and (ii) holds since

(AR 2 IR | AP AN I A OE (D)
whose proof can be found in [1, Lemma 8 and 9].
By substituting (29), (30) and (31) into (27), we arrive at
N o~ 26 ~ 2log (4K [Us| /9)
) el oo
’(P P)MV S R LA O R <2+ ¥
2log (4K |Us| /9) S0\, 2log (4K |Us| /9)

+\/ 3 Varp,, (V) + TR )

Then it boils down to determining {/;. The coarse bounds of Q”* and Q* in the following lemma
provide a guidance on the choice of Us.

Lemma 2. For 6 € (0, 1), with probability exceeding 1 — /2 one has

~ log 4K/5
*_ s 33
e e e e (33)
~ log 4K/6
*_ * < 34
HQ € oo_l_’Y\/ZN 1—7)? 1— G
Proof. See Appendix B.3. O

This inspires us to choose U to be the set consisting of equidistant points in [V*(s) — R(d), V*(s) +
R(8)] with |U| = [1/(1 — ~)?] and

7y log (4K/0) n 27¢

=TSN a7 T a

Since |[V* = V*|oe < |Q* — Q* |0, Lemma 2 implies that V*(s) € [V*(s) — R(6), V*(s)+R(5)]
with probability over 1 — §/2. Hence, we have

~

2R (0) <9y 2log (4K /9)
|Us| +1 N
Consequently, with probability exceeding 1 — §, one has

P (s) - u’ (H\/mog(u;vws/&)

2108 (4K U] /9) N 2log (4K U] /5)
V *
+\/ N APsa (V >+ 3(1—-9)N

v, (M Qk’ggv‘“/%mg) <2+ e BRI (=) 6)))

N \/410g 8K/ ((1 =~)9)) 2log 8K/ (1 — ) 9))
N 3(1—7)N
10¢ 2log (4K/5) = 4log (8K/((1—7)9))
T N G O
4log (8K/ (1 =) 9))
e

where (i) follows from (32) and (ii) utilizes (35). This finishes the proof for the first inequality. The
second inequality can be proved in a similar way and is omitted here for brevity.

min

min + 4~€. (35)

ORTIE

W 2
< —— 4+ min
1—7v  uels

(p-P), ¥

)

Varp, , (‘7*) +

IN

Varpswa (‘7*),



B.3 Proof of Lemma 2
To begin with, one has

I(7-r)v ;

L

RN

(- p)v

o0 o0

<Al (P - Pe) v

AL | (B - Be) v

+—€ (36)
-7’

PPl

() v

where the first line uses p= A13;< and P = AP; the last inequality comes from the facts that
|P— Py <& JJAl1 =1and [|[V*|s < (1 — )t Then we turn to bound ||(Pc — Pc)V*|| -
In view of (4), Hoeffding’s inequality (cf. [5, Theorem 2.2.6]) implies that for (s,a) € IC,

R 2
P(‘(PP) V* 2t>§2€xp S
s, Vs /N

Hence by the standard union bound argument we have

H (P,C . P,C V*

\/ Vit 456) _ [Tog G/ .

2N (1-7)*
with probability over 1 — §/2.

1. Now we are ready to bound Q' — Q’T*. One has
Q’T* — Q’T* = (I — vPﬂ*)_l — (I —713”*>_1 T
~(roP)  (1-0F7) - (10"
(1) (e
— (I - 713”*)_1 (P - 13) v,
where the first equality makes use of (11). Then we take (36) and (37) collectively to achieve
() (Pop) v
<y Z o4 (13”* )
i=0

v log (4K/9) 27§
< 5+ 2
L=vy2N{1-7)" (1-9)

(r=op) (pop)v

(o9} o0

Iir-7)v

1 oo

)

where the last line comes from the fact that for all ¢ > 1, (13“* )¥ is a probability transition matrix
so that ||(P™)?||, = 1. This justifies the first inequality (33).

2. In terms of the second one, [1, Section A.4] implies that
| -@| = [(p-P)v:
Substitution of (36) and (37) into the above inequality yields

v log (4K/9) 27¢
o T 1=\ 2N(1-9)?  (1-9*

o0

@




C Analysis of Q-learning (Proof of Theorem 2)

In this section, we will provide complete proof for Theorem 2. We actually prove a more general
version of Theorem 2 that takes model misspecification into consideration, as stated below.

Theorem 4. Consider any § € (0,1) and e € (0, 1]. Suppose that there exists a probability transition
model P obeying Definition 1 and Assumption | with feature vectors {¢(s,a)}(s,a)esx.a C RE and
anchor state-action pairs K such that

1P =Pl <¢
for some & > 0. Assume that the initialization obeys 0 < Qo(s,a) < 1 for any (s,a) € S x A
and for any 0 < t < T, the learning rates satisfy

1
_— _ 38)
(T == ea(1—7)t ’ (
L+ 110g2”} L+ 2log 7

for some sufficiently small universal constants c; > co > 0. Suppose that the total number of
iterations T' exceeds

_ Cslog (KT/5) log* T
ST oyt
for some sufficiently large universal constant Cs > 0. If there exists a linear probability transition

model P satisfying Assumption | with feature vectors {¢(s, a)}(s,a)eSx.A Such that |P - P, <&
then with probability exceeding 1 — 0, the output Q1 of Algorithm 2 satisfies

« 6~
_ < s
o pax Q7 (s,a) — Q" (s,a)| < e+ 1—)°

(39

; (40)

for some constant Cy > 0. In addition, let = (resp. V) to be the policy (resp. value function)
induced by Q, then one has

mr oy 2y 6v¢
rgeaglV (8) =V*(s) < —— T~ <€+(1_7)2> : (41)

Theorem 4 subsumes Theorem 2 as a special case with £ = 0. The remainder of this section is
devoted to proving Theorem 4.

C.1 Proof of Theorem 4

First we show that (41) can be easily obtained from (40). Since [49] gives rise to

HV7TT _V*H < 27||VT_V*||OO
oo = 1_’7 b
we have .
VT — V|| < 2)|Qr ~ @l
oo = 1 7,}/ b)

due to ||Vr — V*|leo < ||Q1 — Q*||co- Then (41) follows directly from (40).

Therefore, we are left to justify (40). To start with, we consider the update rule

Qt = (1 - Ut) Qt—l + Mt (’T‘ + 'Yﬁt‘/z-f—1> .
By defining the error term A, := Q; — Q*, we can decompose A; into

Ar=1-m)Qt1+m (7“ + “YIStVi—l) -Q"
= (1 =n)(Qi—1— Q") +m: ("“ + 713tW—1 - Q*)
=1 =n) (Qe—1 — Q") +ymy (ﬁtth - PV*)
= (1 =) Ap—1 +ymA (13,(3) - PIC) Viei + AP (Vier — V7)
+ym (APc — P)V*. (42)



Here in the penultimate equality, we make use of @Q* = r 4+ yPV*; and the last equality comes from
P, = AP,(Ct) which is defined in (15). It is straightforward to check that A P is also a probability

transition matrix. We denote by P = A Py hereafter. The third term in the decomposition above can
be upper and lower bounded by

Ht—1 H7t—1 PH7t—1

PV, - V)=P" Q1 -P Q<P 'Q,1-P 'Q =P A,

and
—STE—1

PV, -V)=P"'Q1—-P Q>P Q_-P Q=P A,,.
Plugging these bounds into (42) yields

Ay < (1—m) A +ymA (13;(3) — P}C) Vioi +ymP" T Ay + v (APc — P)V*,
Ap > (1 —m) Apy +ymA (13,?) - PIC> Vi1 +ymP" Ay + (APc - P) V™.

Repeatedly invoking these two recursive relations leads to

t
A< 80+ 3 0"y (F”“AH +A (P}g) - P;g) Vi1 + (APc — P) V*) . 43)
=1

t
Azl 80+ 00y (PT A+ A (BY - Po) Vi + (APc—P)VY), @)
i=1
where .
. [Timy (=), ifi =0,
N, = 771-1_[].:2._‘_1(]_—77j)7 if0 < <t,
Nt ifi =¢.

Here we adopt the same notations as [4].

To begin with, we consider the upper bound (43). It can be further decomposed as
1—a)t

(1-a)
Ac<nAc+ Y 0y (P A+ A (BY - Po) Vi)
i=1

=:0;
t
COY (B R
i=(1—a)t+1

t t
+3 v APc—P)V + > P AL, 45)
=1 i=(l—a)t+1

=wy

where we define « := C4(1 — 7)/log T for some constant Cy > 0. Next, we turn to bound 6, and
v, respectively for any ¢ satisfying ﬁ < t < T with stepsize choice (8).
1—v

Bounding w;. It is straightforward to bound

@

lwell oo = 17 (AP — P) V*||
(i) ~
< (1Al | (Pe - Pe) v*

(i

2 ne

=1
where the first equality comes from the fact that 22:1 7]1@ = 1 [4, Equation (40)]; the second
inequality utilizes P = A P; the last line uses the facts that [|Alj; = 1, [[V*||oo < (1 —~)~! and
[Pc — Pl <[P - Py <¢.

ey

)




Bounding ;. By similar derivation as Step 1 in [4, Appendix A.2], we have

[0 < 8ol o, _max  n s ([P A+ [AROVIL]|+IARVL)

1<i<(l—o)t ' 1<i<(l—a)t

()

®) ®)
< A t ; AV 2V;_
<y 1Al + LA Kggfa)t(ﬂ 1o + 21 Vicalloo)

@1 113
— 27?2 1—~ 272 1—7
2
< (46)
(L=—mT

Ht—1

where (i) is due to the fact that || P
Equation (39a)].

I = ||A13,(Ct)|\1 = ||[APx|ly = 1 and (ii) comes from [4,

Bounding v;. To control the second term, we apply the following Freedman’s inequality.

Lemma 3 (Freedman’s Inequality). Consider a real-valued martingale {Y}, : k = 0,1,2,---}
with difference sequence { Xy, : k =1,2,3,-- - }. Assume that the difference sequence is uniformly
bounded:

Xk <R and  E[Xi{X;}iZ]] =0 forallk>1.
Let

Sni=>_Xi,  Ty=) Var{Xp[{X;}i}
k=1 k=1
Then for any given o® > 0, one has

P (|Sy| > 7and T, < 0®) < 2exp T2
= " - o2+ R7/3)"

In addition, suppose that W,, < o2 holds deterministically. For any positive integer K > 1, with
probability at least 1 — § one has

2 2K 4 2K
|Sn] < \/8max {Tn, QJK} logT + gRlog 5

Proof. See [4, Theorem 4]. O

To apply this inequality, we can express vy as

t

vi= x;,

i=(1—a)t+1
with
i = nyA (P,Q) - P,C) Viii, and E[zi|Vi_i,-- Vo] =0. (47)

1. In order to calculate bound R in Lemma 3, one has

B = A< H () A (13“) .y )Vi, H
(1—Ian)?}<(t§t I2illoe = (1—10?)?}2:59 i K Kk oo
" (] ar)
< ® (|IAP AP, V,_
< max x|, T IAPkl ) 1Vieallo

(t) 2 < 4 10g4 T

< max R
T T ayrT

T (1—a)t<t<t ’

where the last inequality comes from [4, Eqn (39b)] and the fact that || V;_1 || < ﬁ

10



2. Then regarding the variance term, we claim for the moment that
t
W, = Z diag (Var (x;|Vi—1,--- , Vo))
i=(1—a)t+1
¢ 2
< Y (0") Varp (Vi) (48)
i=(1—a)t+1
Then we have

t

W, < max n(t) Z 771(1‘) max Varg (V)

(1—a)t<i<t e (1—a)t<i<t

2log? T
—_— Varg (V; 4
! —’V)T(lfIcIyl)etDS(i<t arp (Vi) “49)

where the second line comes from [4, Eqns (39b), (40)]. A trivial upper bound for W is
2log* T 1 2log* T
W, < =28 Sl=—2 — q
1=NT (1-~) (1—~)>°*T
which uses the fact that Varp(V;) < ||[Vi]|2, < 1/(1 —7)2

Then, we invoke Lemma 3 with K = [2 log, ﬁ—‘ and apply the union bound argument over K to

arrive at

2 8KTlog —- 8KTlog -
|vy] < \/8 (Wt + QUKI) logﬁ + %Blogﬁl

0 3 o

2log! T 8KT 4 8KTlog 1=
<\ /8(W,+-""°"1)log—— + -Blog—— 171
\/< t+(1—7)T>Og 5 T30 %TS

32log? T = 8KT 12log* T SKT
= 1 v Vi) +1 1 1. (50

Hence if we define

log™ T log %
$Yr = 64W tl’il?i(t Varp (‘/1) +1 s
then (46) and (50) implies that

€

00 + ] + len| < Vi + T 2 51)

with probability over 1 — ¢ forall 2t/3 < k < ¢, aslongas T > log T log T /(1 — ~)®. Therefore,
plugging (51) into (45), we arrive at the recursive relationship

k
At<\ﬁ+—vl+ S P AL = e+ 1+ Z AP AL
i=(1—a)k+1 i=(1—a)k

This recursion is expressed in a similar way as [4, Eqn. (46)] so we can invoke similar derivation in
[4, Appendix A.2] to obtain that

log* T'log £ 2
Ay <30, | 2200 (14 max A 1+L£21. (52)
(1-9"T t<i<t (I—-7)

Then we turn to (44). Applying a similar argument, we can deduce that

log* T'log % (

A, > —30

Q-y'T

3

2
1+ max [|A;]. |1- %1. (53)
L<ict (1-7)

11



T
cs log ﬁ

For any ¢ satisfying <t < T, taking (52) and (53) collectively gives rise to

log? T'log % 2v€

A <30, ————9 |1+ max ||A; + - 54)
A Q- ( ggi<t” ||°°> (1—7)*

Let

T
up = max ¢ || A : 2]“71 <t<T,.
Ca logﬁ

By taking supremum over ¢ € {[2¥7/(cz log ﬁﬂ, ..., T} on both sides of (54), we have

log? T'log KL 2 1
ukg3o\/g§‘5(1+uk_1)+7€2 V1<k<log <02log ) (55)
(1-y)'T (1-7) 1—n
It is straightforward to bound ug < ﬁ For k > 1, it is straightforward to obtain from (55) that
log? T'log KL log? T'log KL 2
Ug §3max{30\/ & g4 o 30 & g; O g1, il 5 (> (56)
(1-9)"T (1-7"T (1-1)

for 1 < k < log(cs log ﬁ) We analyze (56) under two different cases:

1. If there exists some integer ko with 1 < ko < [log(cs log ﬁﬂ , such that

Uk, < max{l,(mg},
(1=7)

then it is straightforward to check from (56) that

(57)

log* T'log £ 9
uko+1§3max{30 08 © 0875 i3

1='T (1-9)?
as long as T > C3(1 — )% log* T'log(KT/§) for some sufficiently large constant C > 0.

2. Otherwise we have uj, > max{1, %} forall 1 < k < [log(cs log ﬁ)] This together with
(56) suggests that

6 log* T'log L log* T'log L 2
max{L,y5 2} <3max{30\/0g og; 030 o8 Ogjl 0 up1, 2% 3 (>
=7 (1-y'T (1-y'T (1-9)

and therefore

log? T'log £Z log? T'log £L 2 log? T'log £L
max 30\/ o8 0g4 5 ,30 o8 0g4 0 Uk—1, ¢ 5 ¢ =30 WWCA
(1-y"T (1-y)"T (1—=7) (1-=y)"T

forall 1 < k < log(cqlog ﬁ) Let

Then we know from (55) that

1
up < U Vlgkglog(cﬂoglv).

12



By applying the above two inequalities recursively, we know that

4 KT\ /2 4 KT\ /2
o < o (810010g Tlog5> B (81001og Tlog5> 2

(L='T T aeytr
1/241/4 1/241/4
_ (8100 log* T'log £ Gt 1/a _ (8100 log* T'log £ Gt 1/4
"\ e e AT

1-1/2" :

< < 810010g4T10g¥ / 12k 810010g4T10g¥ < 1 )1/2k

e u B
-\ a-9y'r oo (1-y'T  \l-v

where the last inequality holds as long as T > C log® T'log(KT/6)(1 — ~)~* for some suffi-
ciently large constant C5 > 0. Let kg = cloglog ﬁ for some properly chosen constant ¢ > 0

such that kg is an integer between 1 and log(c; log ﬁ) we have

k
" < 8100 log* T log KT ( 1 >1/2 " of [los" Tlog KLY
R L A G (1—)'T
When T' > Cslog* Tlog(KT/5)(1 — )~* for some sufficiently large constant Ci3 > 0, this
6~¢

implies that ug, < 1, which contradicts with the preassumption that vy, > max{1, W} for all
1<k<clog ﬁ

Consequently, (57) must hold true and then the definition of u; immediately leads to
log* T'log £ 6¢
t-n'T  (1-9)°

[Ar],, <90

Then for any ¢ € (0, 1], one has
6~¢

Ao <64+ ———,
(1-7)

as long as
4 KT
log™ T'log =5~
(1-y'T
Hence, if the total number of iterations 7 satisfies
4 KT
log™ T'log =5~
(1—m)'e?
for some sufficiently large constant C's > 0, (10) would hold for Algorithm 1 with probability over
1-46.

Finally, we are left to justify (48). Recall the definition of x; (cf. (47)), one has
2 ~
diag (Var (x| Vi1, -, Vp)) = ~2 (771@) diag (Var (A (P,(Ct) — P;c) Vi_1|Vi_1)>
2 .
=2 (m@) diag (AVar ((P,(g) - P,C> V;,l\vg,l) AT)

=~ (mm)Q {)\ (s, a)* Varp, (Vi,l)} :

s,a

90 <e.

T>Cs

where the notation Var p (V;_1) is defined in (12). Plugging this into the definition of W} leads to

W=y 3 (5) " { A s, )* Varp, (Vion)}
i=(1-a)t+1

s,a

¢ 2
=2 Y () (A0 (Pe(Viere Vi) = (PeVin) o (PeVica) |- (58)
i=(1—a)t+1

)

Then we introduce a useful claim as follows. The proof is deferred to Appendix C.2.

13



Claim 1. For any state-action pair (s,a) € S x A and vector V' € RI|, one has

A(s,0)’ (Pc(VoV)— (PcV)o (PcV))
<A(s,a) Pc(VoV)—(A(s,a) PcV)o (A(s,a) PcV). (59)

By invoking this claim with V' = V=1 and taking collectively with (58), one has

t

2
W<y > (m‘”) {X(s,a) Pc (Vi1 0 Vie1) — (A(s,a) PcViey) o (A (s,a) PcVien) b, ,
i=(1-8)t+1
t

2
=9 > (") AP (Vieio Viet) = (APcViot) o (APcVioa))
i=(1—8)t+1
t

2
=2 3 (") varp (i),
i=(1—B)t+1

which is the desired result.

C.2 Proof of Claim 1

Py and V respectively. Then one has

A(s,a) Pc(VoV)—(A(s,a) PcV)o(A(s,a) PcV)
—A(s,0)* (Pc(VoV)—(PcV)o (PcV))

K 15| K S| 2 ks S| 2
=D D NPGVE = | D0 NPGY ZZVP”WJFZ/@ S PV

i=17=1 i=1j=1 i=1 j=1 =

K 18] [ S|

i=1j=1 i i#i =1

K S| WL S|
:ZZ)”PZJ‘/J Z Z)‘ilpi’-,j’ Y ‘/] *ZZ )‘i’Pi’,j’ij’

=1 j=1 | \¢'=1j'=1 i =1

K S| S|

=333 NPV Py (Vi = Vi)

i=1 j=1i'#ij'=1
where in the penultimate equality, we use the fact that

K S|

ZZAP/I— (s,a) Pcl=1.

i'=1j/=1
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It follows that

A(s,a) Pc(VoV)—(A(s,a) PcV)o(A(s,a) PcV)
—A(s,0)* (Pc (Vo V) = (PcV) o (PcV))
K IS |S|
=D S NPV Py (Vi = Vi) + X P jVihi Py (Vi = V)]

i=11<i’'<i j=1j'=1

K BERE S

=30 AN DD PViPay (Vi = Vi) + > Y P ViR (V= Vi)
i=11<i'<i |7=14'=1 j=1j'=1

o & BERE IS| 18]

=22 AN DD PiViPuy (Vi = Vi 3 3 Py VP (Vie = Vi)
i=11<i'<i | 7=14'=1 j=1j'=1
K BEE

=S8N e DD PPy (Vi = V)
i=11<i'<i |i=14'=1

=0,

where in (i), we exchange the indices j and j'.

D Feature dimension and the number of anchor state-action pairs

The assumption that the feature dimension (denoted by K4) and the number of anchor state-action
pairs (denoted by K,,) are equal is actually non-essential. In what follows, we will show that if
K4 # K,, then we can modify the current feature mapping ¢ : S x A — R%¢ to achieve a new
feature mapping ¢’ : S x A — R that does not change the transition model P. By doing so, the
new feature dimension K, equals to the number of anchor state-action pairs.

To begin with, we recall from Definition 1 that there exists K4 unknown functions 1, - - -, ¥k, :
S — R, such that

Ky
P (S,|57 a’) = Z (rbk (57(1) 1/% (5/) )
k=1

for every (s,a) € S x Aand s’ € S. In addition, we also recall from Assumption | that there exists
K C 8§ x Awith || = K, such that for any (s,a) € S x A,

K,
o (s,a) = Z \i (s,a) ¢ (s5,a;) € RE¢ for Z Ai(s,a)=1 and A (s,a)>0.
i:(s;,a,)EKX =1

Case 1: Ky > K,,. In this case, the vectors in {¢(s, a) : (s,a) € K} are linearly independent. For
ease of presentation and without loss of generality, we assume that Ky = K, + 1. This indicates
that the matrix & € R¥«*(SII4]) whose columns are composed of the feature vectors of all state-
action pairs has rank K, and is hence not full row rank. This suggests that there exists K, linearly
independent rows (without loss of generality, we assume they are the first K, rows). We can remove
the last row from & to obtain &’ := &g, . € RE<USIAD guch that &' is full row rank. Then we
show that we can actually use the columns of ®’ as new feature mappings. To see why this is true,
note that the last row ® k1 . can be represented as a linear combination of the first K, rows, namely

there must exist constants {cy, }+, such that for any (s,a) € S x A,
Ky
brcoi1(s,0) =Y cxg(s, a).
k=1
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Define ¢}, = ¥y, + cptP,+1 fork =1,..., K,, we have

Ky K,
P(s's,a) =Y on (s,0) Yr (5") = dicpi1 (5,0) Yy () + D i (5,0) g ()
k=1

k=1
K, K,
=D o (s,0) [V () + extor,1 ()] = D b (5,0) ¥, (),
k=1 k=1

which is linear with respect to the new K, dimensional feature vectors. It is also straightforward to
check that the new feature mapping satisfies Assumption 1 with the original anchor state-action pairs

K.

Case 2: K4 < K,. For ease of presentation and without loss of generality, we assume that
K, = K4+ 1 and that the subspace spanned by the feature vectors of anchor state-action pairs is
non-degenerate, i.e., has rank K4 (otherwise we can use similar method as in Case 1 to further reduce
the feature dimension Kj). In this case, the matrix ®x € R¥¢*%» whose columns are composed
of the feature vectors of anchor state-action pairs has rank Ky. We can add K, — K4 = 1 new
row to ®x to obtain ®}. € RE*Kn guch that ®}- has full rank K,. Then we let the columns of
P = [¢'(s,a)](s,a)ck to be the new feature vectors of the anchor state-action pairs, and define the
new feature vectors for all other state-action pairs (s, a) ¢ K by

¢ (s,a) = Z i (s,a) ¢ (s4,a5) .

i:(s4,a,)ERX

We can check that the transition model P is not changed if we let ¢x, (s’) = 0 for every s’ € S. Itis
also straightforward to check that Assumption 1 is satisfied.

To conclude, when Ky # K, we can always construct a new set of feature mappings with dimension
K, such that: (i) the feature dimension equals to the number of anchor state-action pairs (they are both
K,); (ii) the transition model can still be linearly parameterized by this new set of feature mappings;
and (iii) the anchor state-action pair assumption (Assumption 1) is satisfied with the original anchor
state-action pairs.
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