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A Notations

In this section we gather the notations that will be used throughout the appendix.

For any vectors u = [ui]
n
i=1 ∈ Rn and v = [ui]

n
i=1 ∈ Rn, let u ◦ v = [uivi]

n
i=1 denote the

Hadamard product of u and v. We slightly abuse notations to use
√
· and | · | to define entry-wise

operation, i.e. for any vector v = [vi]
n
i=1 denote

√
v := [

√
vi]

n
i=1 and |v| := [|vi|]ni=1. Furthermore,

the binary notations ≤ and ≥ are both defined in entry-wise manner, i.e. u ≤ v (resp. u ≥ v) means
ui ≤ vi (resp. ui ≥ vi) for all 1 ≤ i ≤ n. For a collection of vectors v1, · · · , vm ∈ Rn with
vi = [vi,j ]

n
j=1 ∈ Rn, we define the max operator to be max1≤i≤m vi := [max1≤i≤m vi,j ]

n
j=1.

For any matrixM ∈ Rm×n, ‖M‖1 is defined as the largest row-wise `1 norm ofM , i.e. ‖M‖1 :=
maxi

∑
j |Mi,j |. In addition, we define 1 to be a vector with all the entries being 1, and I be

the identity matrix. To express the probability transition function P in matrix form, we define
the matrix P ∈ R|S||A|×|S| to be a matrix whose (s, a)-th row Ps,a corresponds to P (·|s, a). In
addition, we define P π to be the probability transition matrix induced by policy π, i.e. P π

(s,a),(s′,a′) =

Ps,a(s′)1π(s′)=a′ for all state-action pairs (s, a) and (s′, a′). We define πt to be the policy induced
by Qt, i.e. Qt(s, πt(s)) = maxaQt(s, a) for all s ∈ S . Furthermore, we denote the reward function
r by vector r ∈ R|S||A|, i.e. the (s, a)-th element of r equals r(s, a). In the same manner, we define
V π ∈ R|S|, V ? ∈ R|S|, Vt ∈ R|S|,Qπ ∈ R|S||A|,Q? ∈ R|S||A| andQt ∈ R|S||A| to represent V π ,
V ?, Vt, Qπ , Q? and Qt respectively. By using these notations, we can rewrite the Bellman equation
as

Qπ = r + γPV π = r + γP πQπ. (11)

Further, for any vector V ∈ R|S|, let VarP (V ) ∈ R|S||A| be

VarP (V ) := P (V ◦ V )− (PV ) ◦ (PV ) , (12)

and define VarPs,a(V ) ∈ R to be

VarPs,a (V ) := Ps,a (V ◦ V )− (Ps,aV )
2
, (13)

where Ps,a is the (s, a)-th row of P .

Next, we reconsider Assumption 1. For any state-action pair (s, a), we define vector λ(s, a) ∈ RK
(resp. φ(s, a) ∈ RK) with λ(s, a) = [λi(s, a)]Ki=1 (resp. φ(s, a) = [φi(s, a)]Ki=1) and matrix
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Λ ∈ R|S||A|×K (resp. Φ ∈ R|S||A|×K ) whose (s, a)-th row corresponds to λ(s, a)> (resp.φ(s, a)>).
Define vector ψ(s, a) ∈ RK with ψ(s, a) = [ψi(s, a)]Ki=1 and matrix Ψ ∈ RK×|S| whose (s, a)-th
column corresponds to ψ(s, a)>. Further, let PK ∈ RK×|S| (resp. ΦK ∈ RK×K) to be a submatrix
of P (resp. Φ) formed by concatenating the rows {Ps,a, (s, a) ∈ K} (resp. {Φs,a, (s, a) ∈ K}).
By using the previous notations, we can express the relations in Definition 1 and Assumption 1 as
PK = ΦKΨ, P = ΦΨ and Φ = ΛΦK. Note that Assumption 1 suggests ΦK is invertible. Taking
these equations collectively yields

P = ΦΨ = ΦΦ−1K PK = ΛΦKΦ−1K PK = ΛPK, (14)

which is reminiscent of the anchor word condition in topic modelling [2]. In addition, for each iteration
t, we denote the collected samples as {st(s, a)}(s,a)∈K and define a matrix P̂ (t)

K ∈ {0, 1}K×|S| to
be

P̂
(t)
K ((s, a) , s′) :=

{
1, if s′ = st (s, a)

0, otherwise
(15)

for any (s, a) ∈ K and s′ ∈ S . Further, we define P̂t = ΛP̂
(t)
K . Then it is obvious to see that P̂t has

nonnegative entries and unit `1 norm for each row due to Assumption 1, i.e. ‖P̂t‖1 = 1.

B Analysis of model-based RL (Proof of Theorem 1)

In this section, we will provide complete proof for Theorem 1. As a matter of fact, our proof strategy
here justifies a more general version of Theorem 1 that accounts for model misspecification, as stated
below.

Theorem 3. Suppose that δ > 0 and ε ∈ (0, (1 − γ)−1/2]. Assume that there exists a probability
transition model P̃ obeying Definition 1 and Assumption 1 with feature vectors {φ(s, a)}(s,a)∈S×A ⊂
RK and anchor state-action pairs K such that

‖P̃ − P ‖1 ≤ ξ

for some ξ ≥ 0. Let π̂ be the policy returned by Algorithm 1. Assume that

N ≥ C log (K/ ((1− γ) δ))

(1− γ)
3
ε2

(16)

for some sufficiently large constant C > 0. Then with probability exceeding 1− δ,

Q? (s, a)−Qπ̂ (s, a) ≤ ε+
4εopt
1− γ

+
22ξ

(1− γ)2
, (17)

for every state-action pair (s, a) ∈ S ×A.

Theorem 3 subsumes Theorem 1 as a special case with ξ = 0. The remainder of this section is
devoted to proving Theorem 3.

B.1 Proof of Theorem 3

The errorQπ̂ −Q? can be decomposed as

Qπ̂ −Q? = Qπ̂ − Q̂π̂ + Q̂π̂ − Q̂? + Q̂? −Q?

≥ Qπ̂ − Q̂π̂ + Q̂π̂ − Q̂? + Q̂π? −Q?

≥ −
(∥∥∥Qπ̂ − Q̂π̂

∥∥∥
∞

+
∥∥∥Q̂π̂ − Q̂?

∥∥∥
∞

+
∥∥∥Q̂π? −Q?

∥∥∥
∞

)
1. (18)

For policy π̂ satisfying the condition in Theorem 1, we have ‖Q̂π̂ − Q̂?‖∞ ≤ εopt. It boils down to
control ‖Qπ̂ − Q̂π̂‖∞ and ‖Q̂π? −Q?‖∞.
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To begin with, we can use (11) to further decompose ‖Qπ̂ − Q̂π̂‖∞ as

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

=

∥∥∥∥(I − γP π̂
)−1

r −
(
I − γP̂ π̂

)−1
r

∥∥∥∥
∞

=

∥∥∥∥(I − γP π̂
)−1 [(

I − γP̂ π̂
)
−
(
I − γP π̂

)]
Q̂π̂

∥∥∥∥
∞

=

∥∥∥∥γ (I − γP π̂
)−1 (

P − P̂
)
V̂ π̂

∥∥∥∥
∞

≤
∥∥∥∥γ (I − γP π̂

)−1 (
P − P̂

)
V̂ ?

∥∥∥∥
∞

+

∥∥∥∥γ (I − γP π̂
)−1 (

P − P̂
)(
V̂ π̂ − V̂ ?

)∥∥∥∥
∞

≤
∥∥∥∥γ (I − γP π̂

)−1 ∣∣∣(P − P̂) V̂ ?
∣∣∣∥∥∥∥
∞

+
2γεopt

1− γ
. (19)

Here the last inequality is due to∥∥∥∥γ (I − γP π̂
)−1 (

P − P̂
)(
V̂ π̂ − V̂ ?

)∥∥∥∥
∞

≤ γ
∥∥∥∥(I − γP π̂

)−1∥∥∥∥
1

∥∥∥(P − P̂)(V̂ π̂ − V̂ ?
)∥∥∥
∞

≤ γ
∥∥∥∥(I − γP π̂

)−1∥∥∥∥
1

(
‖P ‖1 +

∥∥∥P̂∥∥∥
1

)∥∥∥V̂ π̂ − V̂ ?
∥∥∥
∞

≤
2γεopt

1− γ
,

where we use the fact that ‖(I − γP π̂)−1‖1 ≤ 1/(1− γ) and ‖P ‖1 = ‖P̂ ‖1 = 1.

Similarly, for the term ‖Q̂π? −Q?‖∞ in (18), we have

∥∥∥Q̂π? −Q?
∥∥∥
∞

=

∥∥∥∥γ (I − γP π?
)−1 (

P − P̂
)
V̂ π?

∥∥∥∥
∞

≤
∥∥∥∥γ (I − γP π?

)−1 ∣∣∣(P − P̂) V̂ π?
∣∣∣∥∥∥∥
∞
. (20)

As can be seen from (19) and (20), it boils down to bound |(P − P̂ )V̂ ?| and |(P − P̂ )V̂ π? |. We
have the following lemma.

Lemma 1. With probability exceeding 1− δ, one has

∣∣∣∣(P − P̂)
s,a
V̂ ?

∣∣∣∣ ≤ 10ξ

1− γ
+ 4

√
2 log (4K/δ)

N
+

4 log (8K/ ((1− γ) δ))

(1− γ)N

+

√
4 log (8K/ ((1− γ) δ))

N

√
VarPs,a

(
V̂ ?
)
, (21)∣∣∣∣(P − P̂)

s,a
V̂ π?

∣∣∣∣ ≤ 10ξ

1− γ
+ 4

√
2 log (4K/δ)

N
+

4 log (8K/ ((1− γ) δ))

(1− γ)N

+

√
4 log (8K/ ((1− γ) δ))

N

√
VarPs,a

(
V̂ π?

)
. (22)

Proof. See Appendix B.2.
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Applying (21) to (19) reveals that∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞
≤
√

4 log (8K/ ((1− γ) δ))

N

∥∥∥∥∥γ (I − γP π̂
)−1√

VarPs,a

(
V̂ ?
)∥∥∥∥∥
∞

+
γ

1− γ

[
4

√
2 log (4K/δ)

N
+

4 log (8K/ ((1− γ) δ))

(1− γ)N

]

+
10γξ

(1− γ)2
+

2γεopt

1− γ
. (23)

For the first term, one has√
VarPs,a

(
V̂ ?
)
≤
√

VarPs,a (V π̂) +

√
VarPs,a

(
V π̂ − V̂ π̂

)
+

√
VarPs,a

(
V̂ π̂ − V̂ ?

)
≤
√

VarPs,a (V π̂) +
∥∥∥V π̂ − V̂ π̂

∥∥∥
∞

+ εopt

≤
√
VarPs,a (V π̂) +

∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

+ εopt,

where the first inequality comes from the fact that
√
Var(X + Y ) ≤

√
Var(X) +

√
Var(Y ) for any

random variables X and Y . It follows that∥∥∥∥∥γ (I − γP π̂
)−1√

VarPs,a

(
V̂ ?
)∥∥∥∥∥
∞

≤
∥∥∥∥γ (I − γP π̂

)−1√
VarPs,a (V π̂)

∥∥∥∥
∞

+
γ

1− γ

(∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

+ εopt

)
≤ γ

√
2

(1− γ)
3 +

γ

1− γ

(∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

+ εopt

)
, (24)

where the second inequality utilizes [3, Lemma 7].

Plugging (24) into (23) yields∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞
≤
√

4 log (8K/ ((1− γ) δ))

N

[
γ

√
2

(1− γ)
3 +

γ

1− γ

(∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞

+ εopt

)]

+
γ

1− γ

[
4

√
2 log (4K/δ)

N
+

4 log (8K/ ((1− γ) δ))

(1− γ)N

]
+

10γξ

(1− γ)2
+

2γεopt

1− γ
.

Then we can rearrange terms to obtain∥∥∥Qπ̂ − Q̂π̂
∥∥∥
∞
≤ 10γ

√
log (8K/ ((1− γ) δ))

N (1− γ)
3 +

11γξ

(1− γ)2
+

3γεopt

1− γ
(25)

as long as N ≥ C̃ log(8K/((1− γ)δ))/(1− γ)2 for some sufficiently large constant C̃ > 0.

In a similar vein, we can use (20) and (22) to obtain that∥∥∥Q̂π? −Q?
∥∥∥
∞
≤ 10γ

√
log (8K/ ((1− γ) δ))

N (1− γ)
3 +

11γξ

(1− γ)2
. (26)

Finally, we can substitute (25) and (26) into (18) to achieve

Qπ̂ −Q? ≥ −

(
20γ

√
log (8K/ ((1− γ) δ))

N (1− γ)
3 +

22γξ

(1− γ)2
+

3γεopt

1− γ
+ εopt

)
1.

This result implies that

Qπ̂ ≥ Q? −
(
ε+

22ξ

(1− γ)2
+

4εopt

1− γ

)
1,

as long as

N ≥ C log (8K/ ((1− γ) δ))

(1− γ)
3
ε2

,

for some sufficiently large constant C > 0.
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B.2 Proof of Lemma 1

To prove this theorem, we invoke the idea of s-absorbing MDP proposed by [1]. For a state s ∈ S
and a scalar u, we define a new MDP Ms,u to be identical to M on all the other states except s; on
state s, Ms,u is absorbing such that PMs,u

(s|s, a) = 1 and rMs,u
(s, a) = (1 − γ)u for all a ∈ A.

More formally, we define PMu,s
and rMu,s

as

PMs,u(s|s, a) = 1, rMs,u (s, a) = (1− γ)u, for all a ∈ A,
PMs,u

(·|s′, a′) = P (·|s′, a′), rMs,u
(s, a) = r (s, a) , for all s′ 6= s and a′ ∈ A.

To streamline notations, we will use V π
s,u ∈ R|S| and V ?

s,u ∈ R|S| to denote the value function of
Ms,u under policy π and the optimal value function of Ms,u respectively. Furthermore, we denote by
M̂s,u the MDP whose probability transition kernel is identical to P̂ at all states except that state s is
absorbing. Similar as before, we use V̂ ?

s,u ∈ R|S| to denote the optimal value function under M̂s,u.
The construction of this collection of auxiliary MDPs will facilitate our analysis by decoupling the
statistical dependency between P̂ and π̂?.

To begin with, we can decompose the quantity of interest as∣∣∣∣(P − P̂)
s,a
V̂ ?

∣∣∣∣ =

∣∣∣∣(P − P̂)
s,a

(
V̂ ? − V̂ ?

s,u + V̂ ?
s,u

)∣∣∣∣
≤
∣∣∣∣(P − P̂)

s,a
V̂ ?
s,u

∣∣∣∣+

∣∣∣∣(P − P̂)
s,a

(
V̂ ? − V̂ ?

s,u

)∣∣∣∣
(i)
≤
∣∣∣∣(P − P̃)

s,a
V̂ ?
s,u

∣∣∣∣+
∣∣∣λ (s, a)

(
P̃K − PK

)
V̂ ?
s,u

∣∣∣
+
∣∣∣λ (s, a)

(
PK − P̂K

)
V̂ ?
s,u

∣∣∣+
(
‖Ps,a‖1 +

∥∥∥P̂s,a∥∥∥
1

)∥∥∥V̂ ? − V̂ ?
s,u

∥∥∥
∞

≤
∥∥∥∥(P − P̃)

s,a

∥∥∥∥
1

∥∥∥V̂ ?
s,u

∥∥∥
∞

+ ‖λ (s, a)‖1 ·
∥∥∥(P̃K − PK) V̂ ?

s,u

∥∥∥
∞

+ ‖λ (s, a)‖1 ·
∥∥∥(PK − P̂K) V̂ ?

s,u

∥∥∥
∞

+ 2
∥∥∥V̂ ? − V̂ ?

s,u

∥∥∥
∞

(ii)
≤ 2ξ

1− γ
+ max

(s,a)∈K

∣∣∣∣(P − P̂)
s,a
V̂ ?
s,u

∣∣∣∣+ 2
∥∥∥V̂ ? − V̂ ?

s,u

∥∥∥
∞
, (27)

where (i) makes use of P̃s,a = λ(s, a)P̃K and P̂s,a = λ(s, a)P̂K; (ii) depends on ‖P − P̃ ‖1 ≤ ξ,
‖λ(s, a)‖1 = 1 and ‖V̂ ?

s,u‖∞ ≤ (1− γ)−1. For each state s, the value of u will be selected from a
set Us. The choice of Us will be specified later. Then for some fixed u in Us and fixed state-action
pair (s, a) ∈ K, due to the independence between P̂s,a and V̂ ?

s,u, we can apply Bernstein’s inequality
(cf. [5, Theorem 2.8.4]) conditional on V̂ ?

s,u to reveal that with probability greater than 1− δ/2,∣∣∣∣(P − P̂)
s,a
V̂ ?
s,u

∣∣∣∣ ≤
√

2 log (4/δ)

N
VarPs,a

(
V̂ ?
s,u

)
+

2 log (4/δ)

3 (1− γ)N
. (28)

Invoking the union bound over all the K state-action pairs of K and all the possible values of u in Us
demonstrate that with probability greater than 1− δ/2,∣∣∣∣(P − P̂)

s,a
V̂ ?
s,u

∣∣∣∣ ≤
√

2 log (4K |Us| /δ)
N

VarPs,a

(
V̂ ?
s,u

)
+

2 log (4K |Us| /δ)
3 (1− γ)N

, (29)

holds for all state-action pair (s, a) ∈ K and all u ∈ Us. Here, VarPs,a(·) is defined in (13). Then we
observe that √

VarPs,a

(
V̂ ?
s,u

)
≤
√

VarPs,a

(
V̂ ? − V̂ ?

s,u

)
+

√
VarPs,a

(
V̂ ?
)

≤
∥∥∥V̂ ? − V̂ ?

s,u

∥∥∥
∞

+

√
VarPs,a

(
V̂ ?
)

≤
∣∣∣V̂ ? (s)− u

∣∣∣+

√
VarPs,a

(
V̂ ?
)
, (30)
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where (i) is due to
√

VarPs,a(V1 + V2) ≤
√

VarPs,a(V1) +
√
VarPs,a(V2) and (ii) holds since∥∥∥V̂ ? − V̂ ?

s,u

∥∥∥
∞

=
∥∥∥V̂ ?

s,V̂ ?(s)
− V̂ ?

s,u

∥∥∥
∞
≤
∣∣∣V̂ ? (s)− u

∣∣∣ , (31)

whose proof can be found in [1, Lemma 8 and 9].

By substituting (29), (30) and (31) into (27), we arrive at∣∣∣∣(P − P̂)
s,a
V̂ ?

∣∣∣∣ ≤ 2ξ

1− γ
+
∣∣∣V̂ ? (s)− u

∣∣∣(2 +

√
2 log (4K |Us| /δ)

N

)

+

√
2 log (4K |Us| /δ)

N

√
VarPs,a

(
V̂ ?
)

+
2 log (4K |Us| /δ)

3 (1− γ)N
. (32)

Then it boils down to determining Us. The coarse bounds of Q̂π? and Q̂? in the following lemma
provide a guidance on the choice of Us.
Lemma 2. For δ ∈ (0, 1), with probability exceeding 1− δ/2 one has∥∥∥Q? − Q̂π?

∥∥∥
∞
≤ γ

1− γ

√
log (4K/δ)

2N (1− γ)
2 +

2γξ

(1− γ)
2 , (33)

∥∥∥Q? − Q̂?
∥∥∥
∞
≤ γ

1− γ

√
log (4K/δ)

2N (1− γ)
2 +

2γξ

(1− γ)
2 . (34)

Proof. See Appendix B.3.

This inspires us to choose Us to be the set consisting of equidistant points in [V ?(s)−R(δ),V ?(s) +
R(δ)] with |Us| =

⌈
1/(1− γ)2

⌉
and

R (δ) :=
γ

1− γ

√
log (4K/δ)

2N (1− γ)
2 +

2γξ

(1− γ)
2 .

Since ‖V ?−V̂ ?‖∞ ≤ ‖Q?−Q̂?‖∞, Lemma 2 implies that V̂ ?(s) ∈ [V ?(s)−R(δ),V ?(s)+R(δ)]
with probability over 1− δ/2. Hence, we have

min
u∈Us

∣∣∣V̂ ? (s)− u
∣∣∣ ≤ 2R (δ)

|Us|+ 1
≤ 2γ

√
2 log (4K/δ)

N
+ 4γξ. (35)

Consequently, with probability exceeding 1− δ, one has∣∣∣∣(P − P̂)
s,a
V̂ ?

∣∣∣∣ (i)
≤ 2ξ

1− γ
+ min
u∈Us

∣∣∣V̂ ? (s)− u
∣∣∣(2 +

√
2 log (4K |Us| /δ)

N

)

+

√
2 log (4K |Us| /δ)

N

√
VarPs,a

(
V̂ ?
)

+
2 log (4K |Us| /δ)

3 (1− γ)N

(ii)
≤ 2ξ

1− γ
+

(
2γ

√
2 log (4K/δ)

N
+ 4γξ

)(
2 +

√
4 log (8K/ ((1− γ) δ))

N

)

+

√
4 log (8K/ ((1− γ) δ))

N

√
VarPs,a

(
V̂ ?
)

+
2 log (8K/ ((1− γ) δ))

3 (1− γ)N

≤ 10ξ

1− γ
+ 4

√
2 log (4K/δ)

N
+

4 log (8K/ ((1− γ) δ))

(1− γ)N

+

√
4 log (8K/ ((1− γ) δ))

N

√
VarPs,a

(
V̂ ?
)
,

where (i) follows from (32) and (ii) utilizes (35). This finishes the proof for the first inequality. The
second inequality can be proved in a similar way and is omitted here for brevity.
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B.3 Proof of Lemma 2

To begin with, one has∥∥∥(P̂ − P)V ?
∥∥∥
∞
≤
∥∥∥Λ(P̂K − PK)V ?

∥∥∥
∞

+
∥∥∥Λ(PK − P̃K)V ?

∥∥∥
∞

+
∥∥∥(P̃ − P)V ?

∥∥∥
∞

≤ ‖Λ‖1
∥∥∥(P̂K − PK)V ?

∥∥∥
∞

+ ‖Λ‖1
∥∥∥(PK − P̃K)V ?

∥∥∥
∞

+
∥∥∥P̃ − P∥∥∥

1
‖V ?‖∞

≤
∥∥∥(P̂K − PK)V ?

∥∥∥
∞

+
2ξ

1− γ
, (36)

where the first line uses P̂ = ΛP̂K and P̃ = ΛP̃K; the last inequality comes from the facts that
‖P̃ − P ‖1 ≤ ξ, ‖Λ‖1 = 1 and ‖V ?‖∞ ≤ (1− γ)−1. Then we turn to bound ‖(P̂K − PK)V ?‖∞.
In view of (4), Hoeffding’s inequality (cf. [5, Theorem 2.2.6]) implies that for (s, a) ∈ K,

P
(∣∣∣∣(P̂ − P)

s,a
V ?

∣∣∣∣ ≥ t) ≤ 2 exp

(
− 2t2

‖V ?‖2∞ /N

)
.

Hence by the standard union bound argument we have

∥∥∥(P̂K − PK)V ?
∥∥∥
∞
≤

√
‖V ?‖2∞ log (4K/δ)

2N
≤

√
log (4K/δ)

2N (1− γ)
2 , (37)

with probability over 1− δ/2.

1. Now we are ready to boundQπ? − Q̂π? . One has

Qπ? − Q̂π? =
(
I − γP π?

)−1
r −

(
I − γP̂ π?

)−1
r

=
(
I − γP̂ π?

)−1 ((
I − γP̂ π?

)
−
(
I − γP π?

))
Qπ?

= γ
(
I − γP̂ π?

)−1 (
P π? − P̂ π?

)
Qπ?

= γ
(
I − γP̂ π?

)−1 (
P − P̂

)
V π? ,

where the first equality makes use of (11). Then we take (36) and (37) collectively to achieve∥∥∥∥γ (I − γP̂ π?
)−1 (

P − P̂
)
V ?

∥∥∥∥
∞
≤ γ

∞∑
i=0

∥∥∥∥γi (P̂ π?
)i (

P − P̂
)
V ?

∥∥∥∥
∞

≤ γ
∞∑
i=0

γi
∥∥∥∥(P̂ π?

)i∥∥∥∥
1

∥∥∥(P − P̂)V ?
∥∥∥
∞

≤ γ

1− γ

√
log (4K/δ)

2N (1− γ)
2 +

2γξ

(1− γ)
2 ,

where the last line comes from the fact that for all i ≥ 1, (P̂ π?)i is a probability transition matrix
so that ‖(P̂ π?)i‖1 = 1. This justifies the first inequality (33).

2. In terms of the second one, [1, Section A.4] implies that∥∥∥Q? − Q̂?
∥∥∥
∞
≤ γ

1− γ

∥∥∥(P − P̂)V ?
∥∥∥
∞
.

Substitution of (36) and (37) into the above inequality yields∥∥∥Q? − Q̂?
∥∥∥
∞
≤ γ

1− γ

√
log (4K/δ)

2N (1− γ)
2 +

2γξ

(1− γ)
2 .
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C Analysis of Q-learning (Proof of Theorem 2)

In this section, we will provide complete proof for Theorem 2. We actually prove a more general
version of Theorem 2 that takes model misspecification into consideration, as stated below.
Theorem 4. Consider any δ ∈ (0, 1) and ε ∈ (0, 1]. Suppose that there exists a probability transition
model P̃ obeying Definition 1 and Assumption 1 with feature vectors {φ(s, a)}(s,a)∈S×A ⊂ RK and
anchor state-action pairs K such that

‖P̃ − P ‖1 ≤ ξ
for some ξ ≥ 0. Assume that the initialization obeys 0 ≤ Q0(s, a) ≤ 1

1−γ for any (s, a) ∈ S × A
and for any 0 ≤ t ≤ T , the learning rates satisfy

1

1 + c1(1−γ)T
log2 T

≤ ηt ≤
1

1 + c2(1−γ)t
log2 T

, (38)

for some sufficiently small universal constants c1 ≥ c2 > 0. Suppose that the total number of
iterations T exceeds

T ≥ C3 log (KT/δ) log4 T

(1− γ)
4
ε2

, (39)

for some sufficiently large universal constant C3 > 0. If there exists a linear probability transition
model P̃ satisfying Assumption 1 with feature vectors {φ(s, a)}(s,a)∈S×A such that ‖P̃ − P ‖1 ≤ ξ,
then with probability exceeding 1− δ, the output QT of Algorithm 2 satisfies

max
(s,a)∈S×A

|QT (s, a)−Q? (s, a)| ≤ ε+
6γξ

(1− γ)
2 , (40)

for some constant C4 > 0. In addition, let πT (resp. VT ) to be the policy (resp. value function)
induced by QT , then one has

max
s∈S
|V πT (s)− V ? (s)| ≤ 2γ

1− γ

(
ε+

6γξ

(1− γ)
2

)
. (41)

Theorem 4 subsumes Theorem 2 as a special case with ξ = 0. The remainder of this section is
devoted to proving Theorem 4.

C.1 Proof of Theorem 4

First we show that (41) can be easily obtained from (40). Since [49] gives rise to

‖V πT − V ?‖∞ ≤
2γ‖VT − V ?‖∞

1− γ
,

we have

‖V πT − V ?‖∞ ≤
2γ‖QT −Q?‖∞

1− γ
,

due to ‖VT − V ?‖∞ ≤ ‖QT −Q?‖∞. Then (41) follows directly from (40).

Therefore, we are left to justify (40). To start with, we consider the update rule

Qt = (1− ηt)Qt−1 + ηt

(
r + γP̂tVt−1

)
.

By defining the error term ∆t := Qt −Q?, we can decompose ∆t into

∆t = (1− ηt)Qt−1 + ηt

(
r + γP̂tVt−1

)
−Q?

= (1− ηt) (Qt−1 −Q?) + ηt

(
r + γP̂tVt−1 −Q?

)
= (1− ηt) (Qt−1 −Q?) + γηt

(
P̂tVt−1 − PV ?

)
= (1− ηt) ∆t−1 + γηtΛ

(
P̂

(t)
K − PK

)
Vt−1 + γηtΛPK (Vt−1 − V ?)

+ γηt (ΛPK − P )V ?. (42)
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Here in the penultimate equality, we make use ofQ? = r+ γPV ?; and the last equality comes from
P̂t = ΛP̂

(t)
K which is defined in (15). It is straightforward to check that ΛPK is also a probability

transition matrix. We denote by P = ΛPK hereafter. The third term in the decomposition above can
be upper and lower bounded by

P (Vt−1 − V ?) = P
πt−1

Qt−1 − P
π?

Q? ≤ P πt−1
Qt−1 − P

πt−1
Q? = P

πt−1
∆t−1,

and
P (Vt−1 − V ?) = P

πt−1
Qt−1 − P

π?

Q? ≥ P π?

Qt−1 − P
π?

Q? = P
π?

∆t−1.

Plugging these bounds into (42) yields

∆t ≤ (1− ηt) ∆t−1 + γηtΛ
(
P̂

(t)
K − PK

)
Vt−1 + γηtP

πt−1
∆t−1 + γηt (ΛPK − P )V ?,

∆t ≥ (1− ηt) ∆t−1 + γηtΛ
(
P̂

(t)
K − PK

)
Vt−1 + γηtP

π?

∆t−1 + γηt (ΛPK − P )V ?.

Repeatedly invoking these two recursive relations leads to

∆t ≤ η(t)0 ∆0 +

t∑
i=1

η
(t)
i γ

(
P
πt−1

∆t−1 + Λ
(
P̂

(t)
K − PK

)
Vt−1 + (ΛPK − P )V ?

)
, (43)

∆t ≥ η(t)0 ∆0 +

t∑
i=1

η
(t)
i γ

(
P
π?

∆t−1 + Λ
(
P̂

(t)
K − PK

)
Vt−1 + (ΛPK − P )V ?

)
, (44)

where

η
(t)
i :=


∏t
j=1 (1− ηj) , if i = 0,

ηi
∏t
j=i+1 (1− ηj) , if 0 < i < t,

ηt, if i = t.

Here we adopt the same notations as [4].

To begin with, we consider the upper bound (43). It can be further decomposed as

∆t ≤ η(t)0 ∆0 +

(1−α)t∑
i=1

η
(t)
i γ

(
P
πt−1

∆t−1 + Λ
(
P̂

(t)
K − PK

)
Vt−1

)
︸ ︷︷ ︸

=:θt

+

t∑
i=(1−α)t+1

η
(t)
i γΛ

(
P̂

(t)
K − PK

)
Vi−1︸ ︷︷ ︸

=:νt

+

t∑
i=1

η
(t)
i γ (ΛPK − P )V ?

︸ ︷︷ ︸
=:ωt

+

t∑
i=(1−α)t+1

η
(t)
i γP

πt−1
∆i−1, (45)

where we define α := C4(1− γ)/ log T for some constant C4 > 0. Next, we turn to bound θt and
νt respectively for any t satisfying T

c2 log 1
1−γ
≤ t ≤ T with stepsize choice (8).

Bounding ωt. It is straightforward to bound

‖ωt‖∞
(i)
= ‖γ (ΛPK − P )V ?‖∞
(ii)
≤ γ

(
‖Λ‖1

∥∥∥(PK − P̃K)V ?
∥∥∥
∞

+
∥∥∥(P̃ − P)V ?

∥∥∥
∞

)
(iii)
≤ 2γξ

1− γ
,

where the first equality comes from the fact that
∑t
i=1 η

(t)
i = 1 [4, Equation (40)]; the second

inequality utilizes P̃ = ΛP̃K; the last line uses the facts that ‖Λ‖1 = 1, ‖V ?‖∞ ≤ (1− γ)−1 and
‖P̃K − PK‖1 ≤ ‖P̃ − P ‖1 ≤ ξ.
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Bounding θt. By similar derivation as Step 1 in [4, Appendix A.2], we have

‖θt‖∞ ≤ η
(t)
0 ‖∆0‖∞ + t max

1≤i≤(1−α)t
η
(t)
i max

1≤i≤(1−α)t

(∥∥∥P πt−1
∆i−1

∥∥∥
∞

+
∥∥∥ΛP̂ (t)

K Vi−1

∥∥∥
∞

+ ‖ΛPKVi−1‖∞
)

(i)
≤ η(t)0 ‖∆0‖∞ + t max

1≤i≤(1−α)t
η
(t)
i max

1≤i≤(1−α)t
(‖∆i−1‖∞ + 2 ‖Vi−1‖∞)

(ii)
≤ 1

2T 2
· 1

1− γ
+

1

2T 2
· t · 3

1− γ

≤ 2

(1− γ)T
, (46)

where (i) is due to the fact that ‖P πt−1‖1 = ‖ΛP̂ (t)
K ‖1 = ‖ΛPK‖1 = 1 and (ii) comes from [4,

Equation (39a)].

Bounding νt. To control the second term, we apply the following Freedman’s inequality.

Lemma 3 (Freedman’s Inequality). Consider a real-valued martingale {Yk : k = 0, 1, 2, · · · }
with difference sequence {Xk : k = 1, 2, 3, · · · }. Assume that the difference sequence is uniformly
bounded:

|Xk| ≤ R and E
[
Xk|{Xj}k−1j=1

]
= 0 for all k ≥ 1.

Let

Sn :=

n∑
k=1

Xi, Tn :=

n∑
k=1

Var
{
Xk|{Xj}k−1j=1

}
.

Then for any given σ2 ≥ 0, one has

P
(
|Sn| ≥ τ and Tn ≤ σ2

)
≤ 2 exp

(
− τ2/2

σ2 +Rτ/3

)
.

In addition, suppose that Wn ≤ σ2 holds deterministically. For any positive integer K ≥ 1, with
probability at least 1− δ one has

|Sn| ≤

√
8 max

{
Tn,

σ2

2K

}
log

2K

δ
+

4

3
R log

2K

δ
.

Proof. See [4, Theorem 4].

To apply this inequality, we can express νt as

νt :=

t∑
i=(1−α)t+1

xi,

with
xi := η

(t)
i γΛ

(
P̂

(t)
K − PK

)
Vi−1, and E [xi|Vi−1, · · · ,V0] = 0. (47)

1. In order to calculate bound R in Lemma 3, one has

B := max
(1−α)t<t≤t

‖xi‖∞ ≤ max
(1−α)t<t≤t

∥∥∥η(t)i Λ
(
P̂

(t)
K − PK

)
Vi−1

∥∥∥
∞

≤ max
(1−α)t<t≤t

η
(t)
i

(∥∥∥ΛP̂ (t)
K

∥∥∥
1

+ ‖ΛPK‖1
)
‖Vi−1‖∞

≤ max
(1−α)t<t≤t

η
(t)
i ·

2

1− γ
≤ 4 log4 T

(1− γ)
2
T
,

where the last inequality comes from [4, Eqn (39b)] and the fact that ‖Vi−1‖∞ ≤ 1
1−γ .
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2. Then regarding the variance term, we claim for the moment that

Wt :=

t∑
i=(1−α)t+1

diag (Var (xi|Vi−1, · · · ,V0))

≤ γ2
t∑

i=(1−α)t+1

(
η
(t)
i

)2
VarP (Vi−1) . (48)

Then we have

Wt ≤ max
(1−α)t≤i≤t

η
(t)
i

 t∑
i=(1−α)t+1

η
(t)
i

 max
(1−α)t≤i<t

VarP (Vi)

≤ 2 log4 T

(1− γ)T
max

(1−α)t≤i<t
VarP (Vi) , (49)

where the second line comes from [4, Eqns (39b), (40)]. A trivial upper bound forWt is

|Wt| ≤
2 log4 T

(1− γ)T
· 1

(1− γ)
2 1 =

2 log4 T

(1− γ)
3
T

1,

which uses the fact that VarP (Vi) ≤ ‖Vi‖2∞ ≤ 1/(1− γ)2.

Then, we invoke Lemma 3 with K =
⌈
2 log2

1
1−γ

⌉
and apply the union bound argument over K to

arrive at

|νt| ≤

√
8

(
Wt +

σ2

2K
1

)
log

8KT log 1
1−γ

δ
+

4

3
B log

8KT log 1
1−γ

δ
1

≤

√
8

(
Wt +

2 log4 T

(1− γ)T
1

)
log

8KT

δ
+

4

3
B log

8KT log 1
1−γ

δ
1

≤

√
32 log4 T

(1− γ)T
log

8KT

δ

(
max

(1−α)t≤i<t
VarΛPK (Vi) + 1

)
+

12 log4 T

(1− γ)
2
T

log
8KT

δ
1. (50)

Hence if we define

ϕt := 64
log4 T log KT

δ

(1− γ)T

(
max
t
2≤i≤t

VarP (Vi) + 1

)
,

then (46) and (50) implies that

|θt|+ |νt|+ |ωt| ≤
√
ϕt +

2γξ

1− γ
1, (51)

with probability over 1−δ for all 2t/3 ≤ k ≤ t, as long as T � log4 T log KT
δ / (1− γ)

3. Therefore,
plugging (51) into (45), we arrive at the recursive relationship

∆t ≤
√
ϕt +

2γξ

1− γ
1 +

k∑
i=(1−α)k+1

η
(k)
i γP

πi−1
∆i−1 =

√
ϕt +

2γξ

1− γ
1 +

k−1∑
i=(1−α)k

η
(k)
i γP

πi−1
∆i.

This recursion is expressed in a similar way as [4, Eqn. (46)] so we can invoke similar derivation in
[4, Appendix A.2] to obtain that

∆t ≤ 30

√√√√ log4 T log KT
δ

(1− γ)
4
T

(
1 + max

t
2≤i<t

‖∆i‖∞

)
1 +

2γξ

(1− γ)
2 1. (52)

Then we turn to (44). Applying a similar argument, we can deduce that

∆t ≥ −30

√√√√ log4 T log KT
δ

(1− γ)
4
T

(
1 + max

t
2≤i<t

‖∆i‖∞

)
1− 2γξ

(1− γ)
2 1. (53)
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For any t satisfying T
c2 log 1

1−γ
≤ t ≤ T , taking (52) and (53) collectively gives rise to

‖∆t‖∞ ≤ 30

√√√√ log4 T log KT
δ

(1− γ)
4
T

(
1 + max

t
2≤i<t

‖∆i‖∞

)
+

2γξ

(1− γ)
2 . (54)

Let

uk := max

{
‖∆t‖∞ : 2k

T

c2 log 1
1−γ

≤ t ≤ T

}
.

By taking supremum over t ∈ {d2kT/(c2 log 1
1−γ )e, . . . , T} on both sides of (54), we have

uk ≤ 30

√
log4 T log KT

δ

(1− γ)
4
T

(1 + uk−1) +
2γξ

(1− γ)
2 ∀ 1 ≤ k ≤ log

(
c2 log

1

1− γ

)
. (55)

It is straightforward to bound u0 ≤ 1
1−γ . For k ≥ 1, it is straightforward to obtain from (55) that

uk ≤ 3 max

{
30

√
log4 T log KT

δ

(1− γ)
4
T

, 30

√
log4 T log KT

δ

(1− γ)
4
T

uk−1,
2γξ

(1− γ)
2

}
, (56)

for 1 ≤ k ≤ log(c2 log 1
1−γ ). We analyze (56) under two different cases:

1. If there exists some integer k0 with 1 ≤ k0 < dlog(c2 log 1
1−γ )e, such that

uk0 ≤ max

{
1,

6γξ

(1− γ)
2

}
,

then it is straightforward to check from (56) that

uk0+1 ≤ 3 max

{
30

√
log4 T log KT

δ

(1− γ)
4
T

,
2γξ

(1− γ)
2

}
(57)

as long as T ≥ C3(1− γ)−4 log4 T log(KT/δ) for some sufficiently large constant C3 > 0.

2. Otherwise we have uk > max{1, 6γξ
(1−γ)2 } for all 1 ≤ k < dlog(c2 log 1

1−γ )e. This together with
(56) suggests that

max

{
1,

6γξ

(1− γ)2

}
< 3 max

{
30

√
log4 T log KT

δ

(1− γ)
4
T

, 30

√
log4 T log KT

δ

(1− γ)
4
T

uk−1,
2γξ

(1− γ)
2

}
,

and therefore

max

{
30

√
log4 T log KT

δ

(1− γ)
4
T

, 30

√
log4 T log KT

δ

(1− γ)
4
T

uk−1,
2γξ

(1− γ)
2

}
= 30

√
log4 T log KT

δ

(1− γ)
4
T

uk−1

for all 1 ≤ k ≤ log(c2 log 1
1−γ ). Let

vk := 90

√
log4 T log KT

δ

(1− γ)
4
T

uk−1.

Then we know from (55) that

uk ≤ vk ∀ 1 ≤ k ≤ log

(
c2 log

1

1− γ

)
.
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By applying the above two inequalities recursively, we know that

uk ≤ vk =

(
8100 log4 T log KT

δ

(1− γ)
4
T

)1/2

u
1/2
k−1 ≤

(
8100 log4 T log KT

δ

(1− γ)
4
T

)1/2

v
1/2
k−1

≤

(
8100 log4 T log KT

δ

(1− γ)
4
T

)1/2+1/4

u
1/4
k−2 ≤

(
8100 log4 T log KT

δ

(1− γ)
4
T

)1/2+1/4

v
1/4
k−2

≤ · · · ≤

(
8100 log4 T log KT

δ

(1− γ)
4
T

)1−1/2k

u
1/2k

0 ≤

√
8100 log4 T log KT

δ

(1− γ)
4
T

(
1

1− γ

)1/2k

,

where the last inequality holds as long as T ≥ C3 log4 T log(KT/δ)(1 − γ)−4 for some suffi-
ciently large constant C3 > 0. Let k0 = c̃ log log 1

1−γ for some properly chosen constant c̃ > 0

such that k0 is an integer between 1 and log(c2 log 1
1−γ ), we have

uk0 ≤

√
8100 log4 T log KT

δ

(1− γ)
4
T

(
1

1− γ

)1/2k0

= O

(√
log4 T log KT

δ

(1− γ)
4
T

)
.

When T ≥ C3 log4 T log(KT/δ)(1 − γ)−4 for some sufficiently large constant C3 > 0, this
implies that uk0 < 1, which contradicts with the preassumption that uk > max{1, 6γξ

(1−γ)2 } for all
1 ≤ k ≤ c2 log 1

1−γ .

Consequently, (57) must hold true and then the definition of uk immediately leads to

‖∆T ‖∞ ≤ 90

√
log4 T log KT

δ

(1− γ)
4
T

+
6γξ

(1− γ)
2 .

Then for any ε ∈ (0, 1], one has

‖∆T ‖∞ ≤ ε+
6γξ

(1− γ)
2 ,

as long as

90

√
log4 T log KT

δ

(1− γ)
4
T
≤ ε.

Hence, if the total number of iterations T satisfies

T ≥ C3

log4 T log KT
δ

(1− γ)
4
ε2

for some sufficiently large constant C3 > 0, (10) would hold for Algorithm 1 with probability over
1− δ.

Finally, we are left to justify (48). Recall the definition of xi (cf. (47)), one has

diag (Var (xi|Vi−1, · · · ,V0)) = γ2
(
η
(t)
i

)2
diag

(
Var

(
Λ
(
P̂

(t)
K − PK

)
Vi−1|Vi−1

))
= γ2

(
η
(t)
i

)2
diag

(
ΛVar

((
P̂

(i)
K − PK

)
Vi−1|Vi−1

)
Λ>
)

= γ2
(
η
(t)
i

)2 {
λ (s, a)

2 VarPK (Vi−1)
}
s,a
,

where the notation VarPK(Vi−1) is defined in (12). Plugging this into the definition ofWt leads to

Wt = γ2
t∑

i=(1−α)t+1

(
η
(t)
i

)2 {
λ (s, a)

2 VarPK (Vi−1)
}
s,a

= γ2
t∑

i=(1−α)t+1

(
η
(t)
i

)2 {
λ (s, a)

2
(PK (Vi−1 ◦ Vi−1)− (PKVi−1) ◦ (PKVi−1))

}
s,a
. (58)

Then we introduce a useful claim as follows. The proof is deferred to Appendix C.2.
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Claim 1. For any state-action pair (s, a) ∈ S ×A and vector V ∈ R|S|, one has

λ (s, a)
2

(PK (V ◦ V )− (PKV ) ◦ (PKV ))

≤ λ (s, a)PK (V ◦ V )− (λ (s, a)PKV ) ◦ (λ (s, a)PKV ) . (59)

By invoking this claim with V = V i−1 and taking collectively with (58), one has

Wt ≤ γ2
t∑

i=(1−β)t+1

(
η
(t)
i

)2
{λ (s, a)PK (Vi−1 ◦ Vi−1)− (λ (s, a)PKVi−1) ◦ (λ (s, a)PKVi−1)}s,a

= γ2
t∑

i=(1−β)t+1

(
η
(t)
i

)2
[ΛPK (Vi−1 ◦ Vi−1)− (ΛPKVi−1) ◦ (ΛPKVi−1)]

= γ2
t∑

i=(1−β)t+1

(
η
(t)
i

)2
VarP (Vi−1) ,

which is the desired result.

C.2 Proof of Claim 1

To simplify notations in this proof, we use [λi]
K
i=1, [Pi,j ]1≤i≤K,1≤j≤|S| and [Vi]

|S|
i=1 to denote λ(s, a),

PK and V respectively. Then one has

λ (s, a)PK (V ◦ V )− (λ (s, a)PKV ) ◦ (λ (s, a)PKV )

− λ (s, a)
2

(PK (V ◦ V )− (PKV ) ◦ (PKV ))

=

K∑
i=1

|S|∑
j=1

λiPi,jV
2
j −

 K∑
i=1

|S|∑
j=1

λiPi,jVj

2

−
K∑
i=1

|S|∑
j=1

λ2iPi,jV
2
j +

K∑
i=1

λ2i

 |S|∑
j=1

Pi,jVj

2

=

K∑
i=1

|S|∑
j=1

λiPi,jVj

(1− λi)Vj −
∑
i′ 6=i

|S|∑
j′=1

λi′Pi′,j′Vj′

 .
=

K∑
i=1

|S|∑
j=1

λiPi,jVj

 K∑
i′=1

|S|∑
j′=1

λi′Pi′,j′ − λi

Vj −
∑
i′ 6=i

|S|∑
j′=1

λi′Pi′,j′Vj′


=

K∑
i=1

|S|∑
j=1

∑
i′ 6=i

|S|∑
j′=1

λiPi,jVjλi′Pi′,j′ (Vj − Vj′)

where in the penultimate equality, we use the fact that

K∑
i′=1

|S|∑
j′=1

λi′Pi′,j′ = λ (s, a)PK1 = 1.
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It follows that

λ (s, a)PK (V ◦ V )− (λ (s, a)PKV ) ◦ (λ (s, a)PKV )

− λ (s, a)
2

(PK (V ◦ V )− (PKV ) ◦ (PKV ))

=

K∑
i=1

∑
1≤i′<i

|S|∑
j=1

|S|∑
j′=1

[λiPi,jVjλi′Pi′,j′ (Vj − Vj′) + λi′Pi′,jVjλiPi,j′ (Vj − Vj′)]

=

K∑
i=1

∑
1≤i′<i

λiλi′

 |S|∑
j=1

|S|∑
j′=1

Pi,jVjPi′,j′ (Vj − Vj′) +

|S|∑
j=1

|S|∑
j′=1

Pi′,jVjPi,j′ (Vj − Vj′)


(i)
=

K∑
i=1

∑
1≤i′<i

λiλi′

 |S|∑
j=1

|S|∑
j′=1

Pi,jVjPi′,j′ (Vj − Vj′) +

|S|∑
j=1

|S|∑
j′=1

Pi′,j′Vj′Pi,j (Vj′ − Vj)


=

K∑
i=1

∑
1≤i′<i

λiλi′

 |S|∑
j=1

|S|∑
j′=1

Pi,jPi′,j′ (Vj − Vj′)2


≥ 0,

where in (i), we exchange the indices j and j′.

D Feature dimension and the number of anchor state-action pairs

The assumption that the feature dimension (denoted by Kd) and the number of anchor state-action
pairs (denoted by Kn) are equal is actually non-essential. In what follows, we will show that if
Kd 6= Kn, then we can modify the current feature mapping φ : S × A → RKd to achieve a new
feature mapping φ′ : S ×A → RKn that does not change the transition model P . By doing so, the
new feature dimension Kn equals to the number of anchor state-action pairs.

To begin with, we recall from Definition 1 that there exists Kd unknown functions ψ1, · · · , ψKd
:

S → R, such that

P (s′|s, a) =

Kd∑
k=1

φk (s, a)ψk (s′) ,

for every (s, a) ∈ S ×A and s′ ∈ S . In addition, we also recall from Assumption 1 that there exists
K ⊆ S ×A with |K| = Kn such that for any (s, a) ∈ S ×A,

φ (s, a) =
∑

i:(si,ai)∈K

λi (s, a)φ (si, ai) ∈ RKd for
Kn∑
i=1

λi (s, a) = 1 and λi (s, a) ≥ 0.

Case 1: Kd > Kn. In this case, the vectors in {φ(s, a) : (s, a) ∈ K} are linearly independent. For
ease of presentation and without loss of generality, we assume that Kd = Kn + 1. This indicates
that the matrix Φ ∈ RKd×(|S||A|) whose columns are composed of the feature vectors of all state-
action pairs has rank Kn and is hence not full row rank. This suggests that there exists Kn linearly
independent rows (without loss of generality, we assume they are the first Kn rows). We can remove
the last row from Φ to obtain Φ′ := Φ1:Kn,: ∈ RKn×(|S||A|) such that Φ′ is full row rank. Then we
show that we can actually use the columns of Φ′ as new feature mappings. To see why this is true,
note that the last row ΦKn+1,: can be represented as a linear combination of the first Kn rows, namely
there must exist constants {ck}Kn

k=1 such that for any (s, a) ∈ S ×A,

φKn+1(s, a) =

Kn∑
k=1

ckφk(s, a).
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Define ψ′k = ψk + ckψKn+1 for k = 1, . . . ,Kn, we have

P (s′|s, a) =

Kd∑
k=1

φk (s, a)ψk (s′) = φKn+1 (s, a)ψKn+1 (s′) +

Kn∑
k=1

φk (s, a)ψk (s′)

=

Kn∑
k=1

φk (s, a) [ψk (s′) + ckψKn+1 (s′)] =

Kn∑
k=1

φk (s, a)ψ′k (s′) ,

which is linear with respect to the new Kn dimensional feature vectors. It is also straightforward to
check that the new feature mapping satisfies Assumption 1 with the original anchor state-action pairs
K.

Case 2: Kd < Kn. For ease of presentation and without loss of generality, we assume that
Kn = Kd + 1 and that the subspace spanned by the feature vectors of anchor state-action pairs is
non-degenerate, i.e., has rank Kd (otherwise we can use similar method as in Case 1 to further reduce
the feature dimension Kd). In this case, the matrix ΦK ∈ RKd×Kn whose columns are composed
of the feature vectors of anchor state-action pairs has rank Kd. We can add Kn − Kd = 1 new
row to ΦK to obtain Φ′K ∈ RKn×Kn such that Φ′K has full rank Kn. Then we let the columns of
Φ′K = [φ′(s, a)](s,a)∈K to be the new feature vectors of the anchor state-action pairs, and define the
new feature vectors for all other state-action pairs (s, a) /∈ K by

φ′ (s, a) =
∑

i:(si,ai)∈K

λi (s, a)φ′ (si, ai) .

We can check that the transition model P is not changed if we let ψKn(s
′) = 0 for every s′ ∈ S . It is

also straightforward to check that Assumption 1 is satisfied.

To conclude, when Kd 6= Kn, we can always construct a new set of feature mappings with dimension
Kn such that: (i) the feature dimension equals to the number of anchor state-action pairs (they are both
Kn); (ii) the transition model can still be linearly parameterized by this new set of feature mappings;
and (iii) the anchor state-action pair assumption (Assumption 1) is satisfied with the original anchor
state-action pairs.
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