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ABSTRACT
This paper describes the winning solutions of all tasks in Amazon
KDD Cup ’23 from the NVIDIA MERLIN team1. The challenge was
to build a multilingual recommendation system. From each user, we
are given a history of item interactions and we need to predict the
next item interaction. Our solution for tasks 1 and 2 is a pipeline
of candidate generation, reranking, and ensemble. For candidate
generation we leveraged statistical models, representation learning
with embedding loss, pre-trained language models, multi-task learn-
ing with transformers, and more. Candidate sets were merged and
ranked using gradient boosting (XGBoost and CatBoost) to maxi-
mize MRR score. Task 3 solution is based on multiple classifiers to
maximize BLEU score.

ACM Reference Format:
Chris Deotte, Kazuki Onodera, Jean-François Puget, Benedikt Schifferer,
and Gilberto Titericz. 2023. Winning Amazon KDD Cup’23. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Modelling customer shopping intentions is crucial for e-commerce
stores, as it directly impacts user experience and engagement. Ac-
curately understanding what a customer is searching for, such as
whether they are looking for electronics or groceries with the search
query “apple”, is essential for providing personalized recommen-
dations. Session-based recommendation, which utilizes customer
session data to predict their next purchase, has become increasingly
popular with the development of data mining and machine learn-
ing techniques. However, few studies have explored session-based
recommendation under real-world multilingual and imbalanced
scenarios.

To address this gap, Amazon has organized the KDD Cup 2023
challenge with 3 different tasks exploring 3 different angles of multi

1All authors have an equal contribution.
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Figure 1: Our pipeline for task 1 and task 2.

lingual product recommendation [JML+23]. This competition setup
and the dataset it uses are described in section 2.

A team from NVIDIA (the authors of this paper) entered the
competition and won all 3 tasks. This paper describe the team
solutions2 to all 3 tasks.

Our solution for the first 2 tasks are very similar and can be
described jointly, except for some transfer learning specific to task
2 (section 7). Our solution is a multi-stage pipeline (see figure 1)
with

(1) Candidate Generation
(2) Ranking Candidates,
(3) Weighted Average Ensemble.
We describe each of these steps in sections 3, 4, and 5.
Our solution to task 3 is based on multiple classifiers to maximize

BLEU score. It is described in details in section 6
We then conclude the paper with a discussion of how we used

transfer learning methods to deal with underrepresented languages,
followed by a summary of our main contributions.

2 AMAZON KDD CUP’23
2.1 Dataset
For the challenge Amazon created the "Multilingual Shopping Ses-
sion Dataset" [JML+23], consisting of millions of user sessions from
six different locales, where the major languages of products are
English, German, Japanese, French, Italian, and Spanish. The dataset
is imbalanced, with fewer French, Italian, and Spanish products
than English, German, and Japanese.

2We provide all the code of the solutions at:
https://gitlab.aicrowd.com/BenediktSchifferer/kdd2023cup_nvidiamerlin . This git
repository also contains description files and readme files that contain details that we
could not include in the paper for the sake of space.

1
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Language (Locale) Sessions Products (ASINs)
German (DE) 1111416 513811
Japanese (JP) 979119 389888
English (UK) 1182181 494409
Spanish (ES) 89047 41341
French (FR) 117561 43033
Italian (IT) 126925 48788

Table 1: Dataset statistics.

The dataset consists of two main components: user sessions and
product attributes. User sessions are a list of products that a user
has engaged with in chronological order, while product attributes
include various details like product title, price in local currency,
brand, colour, and description.

Table 1 summarizes the dataset statistics, including the number
of sessions, interactions, products, and average session length.

In addition, participants were provided with product attribute
data, including textual data for title, description, brand, color, ma-
terial, etc. Price in local currency was also provided. User ratings
(stars) where not provided. See [JML+23] for more details on the
data.

2.2 The Competition Tasks
The challenge had 3 tasks, hosted on AIcrowd:

(1) predicting the next engaged product for sessions from Eng-
lish, German, and Japanese,

(2) predicting the next engaged product for sessions from French,
Italian, and Spanish, where transfer learning techniques are
encouraged,

(3) predicting the title for the next engaged product.
Task 1 aims to predict the next product that a customer is likely

to engage with, given their session data and the attributes of each
product. For each test session, the participants had to predict 100
product IDs (ASINs) that are most likely to be engaged, based on
historical engagements in the session.

The goal of Task 2 was similar to Task 1, while the test set is
constructed from French, Italian, and Spanish. Task 2 focuses on
the performance on these three underrepresented languages.

The evaluation metric for Task 1 and Task 2 wasMean Reciprocal
Rank (MRR). The evaluation metric for task 3 was the BLEU score
between the predicted title and the actual title.

3 CANDIDATE GENERATION
3.1 Representation learning
An effective method to generate candidates is to use latent vectors
(a.k.a. embeddings) for sessions and products by following steps:

• compute product embeddings
• compute session embeddings
• predict next items on test data using a nearest neighbor

search on test session embeddings and product embeddings
An early way to compute these embeddings was collaborative

filtering with matrix factorization. This method is based on past
interactions only. Here we had more information than just past

interactions. In particular we had a set of text data for each product.
We leveraged this to compute embeddings from these texts, then
used a k nearest neighbor (KNN) search, with k ranging from 50
to 200. We use cosine similarity to measure the similarity of two
embeddings P, and S (S and P being two vectors):

𝑠𝑖𝑚(𝑆, 𝑃) = 𝑆.𝑃

| |𝑆 | |.| |𝑃 | |
These candidates and their cosine similarity with the session

embedding are then fed into a reranker (see section 4).
We use various ways to compute embeddings.

3.2 Using Pretrained LLMs
A very effective way to get good embeddings from text is to use
pretrained transformers and use their last layer activation before
the classification head. We used 7 different multi lingual LLMs.
Embeddings were computed on the concatenation of texts for lo-
cale, title, brand, color, price, size, model and material. In order to
add some diversity, texts were truncated (e.g. taking only first 80
tokens for title) for some of the pipelines. For some models we also
added a textual representation for the price. Prices were normalized
across countries, using the fact that the same product (ASIN) can
be present in more than one country. Some of the candidate lists
were merged and top 200 candidates were kept. Before merging
the similarities were weighted in order to take into account the
difference in performance (recall or MRR) of each LLM. As a result
we got several candidate lists per session, with similarity scores.

3.3 Using Contrastive Learning with CNNs
We devised a new method to compute embeddings which is way
more powerful than collaborative filtering on this dataset. It has 3
steps:

• compute initial product embeddings from product titles
• create a model that takes as input prev items embeddings

and outputs a session embedding
• train the product embeddings by maximizing the cosine

similarity between session embeddings and sessions next
items, while minimizing the cosine similarity between ses-
sion embeddings and random products embeddings

• predict next items on test data using a nearest neighbor
search on test session embeddings and product embeddings

We started with a simple model that predicts the next item em-
bedding from the last 3 prev items embeddings a shown in figure 2.
The model is trained to do both:

• maximize the similarity between each predicted embedding
and the embedding of its following item

• minimize the similarity between each predicted embedding
and the embedding of random products

When training, back propagation updates the product embed-
dings in two ways:

• a direct way when the product is used as a positive or a
negative sample in the loss,

• an indirect way through the model when the product ap-
pears as a prev item of the session.

2
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Figure 2: A simple CNN. which takes the embeddings of the
last 3 prev items, then applies a convolution to them to get
a session embedding. The output is then fed into a loss that
maximizes the similarity with the next item embedding, and
minimizes the similarity with random items

A good improvement was obtained by initializing the model
embedding table from the embeddings generated by a pretrained
LLM. Best results were obtained using xlrm-roberta finetuned on
sentence pairs: sentence-transformers/stsb-xlm-r-multilingual This
model creates embeddings of length 768.

We tried adding more embeddings. What worked best was to
also use description embeddings using the same model. We added
0.3 times the description embeddings to the title embedding.

Another refinement was to compute embeddings for the brand of
each product.We use embeddings of length 16 that are concatenated
to the title + description embeddings. The brand embeddings were
initialized randomly.

We then generalized this model to apply the convolution to
the last k prev items, which produces k - 2 embeddings with a
convolution of size 3. Each of these embeddings is then passed
to the loss to maximize its similarity with the item immediately
following it, and at the same time minimizing the similarity with
random items. We used convolutions of size 3 or 4 applied to the
last 16 prev items. When using a convolution of size 4 we get 13
predicted embeddings. When we use a convolution of size 3 we get
14 predicted embeddings.

For the sake if simplicity we show the model with k=4 instead
of k=16 in figure 3 .

We used a cosine embedding loss with margin, similar to Pytorch
torch.nn.CosineEmbeddingLoss.

Given a predicted session embedding S, and a positive product
embedding P, the loss is 1 minus the cosine similarity, i.e:

𝑙𝑜𝑠𝑠+ (𝑆, 𝑃) = 1 − 𝑆.𝑃

| |𝑆 | |.| |𝑃 | |
Given a predicted session embedding S, and a negative product

embedding P, the loss is the cosine similarity if it is above a given
margin, i.e.:

Figure 3: CNN model with k=4. The convolution produces 2
embeddings. The last one is the session embedding. We use
4096 random samples for the negative loss for each positive
loss sample (only one is depicted in the figure.)

𝑙𝑜𝑠𝑠− (𝑆, 𝑃,𝑚𝑎𝑟𝑔𝑖𝑛) =𝑚𝑎𝑥 (0, 𝑆 .𝑃

| |𝑆 | |.| |𝑃 | | −𝑚𝑎𝑟𝑔𝑖𝑛)

We used high margin values of 0.65 or more. Both the very
large number of negative samples and the large margin value were
required to get good results. For a batch size of 256, our model
outputs 14 embeddings per sample, and uses 4096 random samples
as negatives for each predicted embedding, which makes a total of
256 * 4096 * 14 = 14M negative samples per batch.

The CNN model works pretty well except for long sessions as
it ignores most of their prev items. We therefore added a second
model that takes the 8 most frequent prev items and applies a single
convolution of size 8 to their embeddings. The embeddings are
concatenated with the item frequency before the convolution. The
output of this frequency based model is added to the last output
of the previous model to yield the final session embedding. The
frequency based model improves score by about 0.003.

We trained a model for each of: locale DE, locale UK, locale
JP, and all task 2 locales at once. When we sample negatives we
restrict them to have the same locale(s) as the model. The models
are implemented with Pytorch 2.0.

The test predictions could be used directly. They yield a MRR of
0.37804 on task 1 and 0.42959 on task 2. These are good scores but
not competitive with top scores. Reason is that this method does
not learn any per session or per product feature. For instance it
cannot model products popularity. However, the candidate products
and their similarity with sessions are very good features for the
reranker models, see section 4.

3.4 Using MLM with Transformers
Another method is to use transformer layer instead of convolutional
layer to process the input sequence of item ids to generate a session
embedding as visualized in Fig 4.

The input is the sequence of prev items with item id and its
item features, such as brand, color, size, model, material, author
and pre-trained BERT embeddings. The categorical inputs are fed
through an embedding layers. The embeddings are concatenated

3
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Figure 4: The neural network uses a transformer-layer to
process the input sequence of prev items with item id, its
item features and the pre-trained BERT embeddings. One
option is to use Multi-Task Learning to predict the masked
item’s features.

and processed by a 1-layer MLP tower without activation function.
A XLNet architecture is used to process the sequence and generate
an embedding to represent the session (session embedding). An
item-tower, similar to a two-tower architecture, is used to generate
embeddings for each candidate. The item-tower shares the weights
of the embeddings and 1-layer MLP tower with the input processing
of the transformer. Finally, weight-tying is applied to the session
embedding and item embedding as proposed in [SDP+21] to get
a score for the likelihood that this candidate is the target for the
sessions.

The models are inspired by language modelling as analyzed
by Transformers4Rec [dSPMRL+21]. The library provides many
architectures and training strategies. Masked Language Modelling
(MLM) is used for training. Items are masked in the input sequence
with probability 0.35. As the item catalog is upto 500k items per
language, training the models over all items is inefficient. Sampled
Softmax with negative sampling is used to train the model. The
negative candidates are generated by in-batch sampling to generate
hard negatives and uniform negative sampling (4x the batch size of
1024) to avoid popularity items get penalized. During inference all
items are predicted. The models are trained per language.

The prediction should be used in the ranking stage, therefore,
the training and test dataset needs to be predicted. To avoid leakage
from the test data into the training predictions, eachmodel is trained
twice:

• It is trained only with training data to predict session in
the training dataset.

• It is trained with training and test data to predict sessions
in test dataset - using only prev items of the test dataset.

In the 2nd case, the training process is to iterate over training
dataset, first and then over the test dataset for each epoch.

The training dataset contains prev items and next item. One vari-
ation are models trained only on prev items, these do not require
out-of-fold (OOF) predictions. Models, which uses next item data,
concatenates next item with the prev items as MLM Masking sam-
ples from the input sequence. To avoid data leakage for the ranker,

the training dataset was randomly split into 5-folds. Next items are
not weighted differently in the loss, which could be investigated in
future research.

Another option is to train models with a Multi-Task objective
(dotted lines in Fig 4). In addition to predicting the item id, themodel
predicts the item features brand, color, size, model, material, author.
For each item feature, the session embedding is fed through a linear
layer without activation function and the dot-product between the
output and the respective embedding table weights are calculated.
The item id loss was weighted by 5x .

In total, we trained four transformers-based models:
• Single-Task using only prev item
• Multi-Task using only prev item
• Single-Task using only prev item + next item
• Multi-Task using only prev item + next item

3.5 Co-visitation Matrices
We also generated candidates via a quite powerful technique called
co-visitation matrices.

From each session history, we consider every combination of
two items (from their complete list of history items). These are
pairs of items. Each pair implies that when a user interacts with
Item A then they are likely to also interact with Item B. By using
all 3.6 million session’s histories we count up every occurrence of
each pair of items and we keep the most frequent ones.

There are many options to calculate the score. We will describe
some examples.

A simple method is to count the number of pairs.

𝑠𝑖𝑚𝐴𝐵 =
∑︁

𝐴,𝐵∈𝑆,𝐴≠𝐵
1

Another option is to restrict the pairs that 𝐵 appears after 𝐴

𝑠𝑖𝑚𝐴𝐵 =
∑︁

𝐴,𝐵∈𝑆,𝐴≠𝐵,𝑃𝑜𝑠𝐴<𝑃𝑜𝑠𝐵
1

Another restriction could be that the pair 𝐴, 𝐵 has to appear in
a certain window.

𝑠𝑖𝑚𝐴𝐵,𝑘 =
∑︁

𝐴,𝐵∈𝑠,𝐴≠𝐵, |𝑃𝑜𝑠𝐴−𝑃𝑜𝑠𝐵 |<=𝑘
1, 𝑘 ∈ {1, 3, 5}

Another option is to weight the pairs depending on the position
differences in the sequence and the total length of the session
[ZZW22]

𝑠𝑖𝑚𝐴𝐵 =
∑︁

𝐴,𝐵∈𝑠,𝐴≠𝐵

1
𝑙𝑜𝑔( |𝑃𝑜𝑠𝐴 − 𝑃𝑜𝑠𝐵 | + 2

∗ 1
𝑙𝑜𝑔(𝑆𝑒𝑠𝑠𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ + 2)

After executing this step, for each of 1.4 million items, we have a
top 100 list of which additional items are frequently paired with it.

To generate 100 items that a user will be interested in, we iterate
through each item in a users’ history. For each item, we add the
top100 list of corresponding items that are paired with the history
item. After iteration, we have many items that appear multiple
times. We take the 100 most common items, and these are 100 items
that a user will be interested in.

4
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Another variant is to only consider the last visited item instead
of all the visited items. This yields a different set of candidates.
We also used the last two items, which yields yet another set of
candidates.

Another variant is obtained by including the next item in the
co-visitaion matrix computation. Similarly, this yields yet another
set of candidates.

We generated many combination, likely in the 50-100, between
different options to calculate the similarity matrix and applying it
to the user. Each output provides a score for each (user, item) pair,
describing which item is most likely the next item for a user, which
can be used in the ranking stage.

3.6 Swing Similarity
Similar to co-visitation matrices, Swing similarity can be calculated
as described in [ZZW22]. The swing algorithm captures can capture
the inner structure of the user-item behavior graph. The authors
describe it to be more stable than traditional CF approaches.

The Swing similarities are applied in a way similar to CoVisita-
tion Matrices to each session. This yields a new set of candidates.

4 RERANKING
4.1 Reranking with Binary Target
For each of the candidate generator describe above we get 100
candidates per user. We create a data frame with 360 million rows.
For each user, there are 100 rows. The first column has the user id
and the second column has the item id. Depending on the candidate
generator we can have additional rows, for instance the cosine
similarity and the rank in the KNN search, or the frequency in
the co-visitation matrix used. Additional features may be added
depending in the generator, see 4.2. Several such data frames can
be merged on the user. This yields an even larger data frame, with
more than 1000 candidates per user. To speedup computation we
sometimes split these data frame per locale.

Lastlywe create a target column.We set target = 1 if the candidate
item is the next item that the user interacts with and we set target
= 0 if the candidate item is not the next item that the user interacts
with. Using this data frame, we train gradient boosting models
(XGBoost [CG16] and CatBoost [PGV+19]) using features except
of the target. Our models are binary classifiers which predicts the
probability that the candidate item is the next item that the user
interacts with.

The same dataset pipeline is applied to test data, and the classifier
is applied to the end data frame. This yields probabilities for each
session candidates and we retain the top 100 most probable ones as
the final prediction.

We used either binary log loss or pairwise ranking loss to train
these models. Using two different loss adds some diversity which
helps when ensembling.

The training data frame contains 360 million rows and about 150
features (approximately 250GB in memory). In order to train GBT
in a reasonable amount of time we used GPUs. A challenge was to
train a single GBT model using all this data at once. We used dask
[das23] and dask_cudf [cud23] to train with 100% data 3000 trees
of XGBoost using 8x NVIDIA V100 GPUs with each 32GB memory

and were able to train a model in about 1h. Also using 8xV100, we
trained 80% data and 3000 trees using CatBoost.

4.2 Feature Engineering
A number of features were created in addition to what candidate
generators provide out of the box. These include items features,
user features, and user - product interaction features.

For some features we trained additional models, a GRU, to predict
the next item brand from the prev items brands. The predicted
probability of the next brand is added as a feature.

The cosine similarities and rank from KNN generators are also
used as features

Here are few powerful features:
• co-visitation matrix count from main covisit matrix
• ranking from co-visitation matrix generator
• cosine similarity from CNN model embeddings
• co-visitation matrix using prev-2 prev-1 next items only
• gru to predict brand. Then probability of candidate item’s

brand
• co-visitation matrix using brands only to predict brand
• co-visitation matrix count using last user history item only
• price of the last prev item divided price candidate item
• gru to predict model. Then probability of candidate item’s

model
• cosine similarity between candidate item title and last prev

item title using pretrained LLMs.
• target encoding using out-of-fold count of candidate item

appearing in train next items
• count of unique users engaging with each candidate item

We used hundreds of features in the solution. They are listed in the
pdf files and readme files of our code repository.

5 ENSEMBLE
The description above produces submissions for tasks 1 and 2. For
each submission, and from each user we have 100 predictions and
their corresponding probability of being the next item that a user
interacts with.

Given we used two different losses for training rerankers, we
needed to invent a way to ensemble predictions from ranking loss
(which are not probabilities) with predictions from binary logloss
(which are probabilities). We took the probability distribution from
a reranker trained with log loss, and recalibrated other rerankers
scores to match its probability distribution. We simply sorted the
other reranker session outputs by score, then replaced the score by
the sorted probabilities.

We outer merge all the team members predictions together.
When more than one submission predicts the same item for the
same user, we use a weighted average of the probabilities from
each of submission. When a submission predicts an item which
is not predicted by other submissions then we assume the other
submissions predict a probability of 1e-6 and compute a weighted
average.

We discovered that increasing the scores of the items that appear
in test data before taking the top 100 improved the submission
score. We also found that increasing further the scores of items
that only appear in test data improved the submission score further.
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Before applying mutlipliers we converted probabilities to odds. Best
multipliers we used for task 1 were 7 and 10. Best mutipliers we
used for task 2 were 10 and 15.

Afterward, we sorted all the new scores and take the top 100 for
each user. This is how we created our final submissions. We got a
MRR of 0.41188 in task 1 and a MRR of 0.46845 in task 2, securing
1st place in both tasks.

6 TASK 3
Task 3 challenges us to predict a title for each users’ next item
interaction. We discovered that submitting a user’s most recent
history item’s title as the prediction achieves a good submission
score of BLEU = 0.26553. To improve this, we trained a classifier
to choose between using a user’s most recent history item title
versus second most recent history item title. Inputs for this model
includes predictions generated by models trained on tasks 1 and 2,
especially the cosine similarities form the CNN and Transformer
models. Top10 candidates were pick from each model.

Additional features were generated. For each candidate and last
2 titles in history:

• differences: len(candidates title) - len(last tile)
• differences: len(candidates title) - len(second to last tile)
• lenghts of title and candidates
• number of words intersection between each candidate and

last 2 titles
• Average number of words per title for each candidate list:

CNN and Transformer.
• Difference of number of words of last 2 titles and the previ-

ous average of candidates.
• BLEU score between each CNN and Transformer candidates

and last 2 titles in history.
Training dataset was sampled to contain the same distribution of

locales as the test dataset. A RandomForest algorithm was chosen
to avoid any kind of overfit. This improved last title submission
score by +0.0012.

Next, since BLEU score is based on n-gram precision (where less
words are better if we avoid a brevity penalty), we train a second
classifier which predicts whether we should remove the last word
from the output of our first classifier. For about half of predictions,
we remove the last word without incurring a brevity penalty. This
improved submission score by +0.0048. Using all train data titles, we
created targets which equal 1 if removing the last word improves
BLEU and 0 if removing the last word does not improve BLEU. We
then use the title text as input and the new targets to train XLM-
Roberta-base. Using the predictions from this second classifier, we
remove the last word from 50% of the prediction titles. With this
mixed approach we got a BLEU score of 0.27152 and won task 3.

7 TRANSFER LEARNING
Task 2 had way less data than task 1. Competitor hosts encouraged
participants to use transfer learning techniques to mitigate the too
little training data issue. Here is what we did:

• create co-visitation matrices for task 2 languages by using
users’ histories that exist in both tasks languages.

• represent itemswithmultilingual LLM (large languagemod-
els) embeddings.

• init embeddings in CNNmodel with pretrained embedidngs
from a multilingual LLM (large language models)

• use item features from task 1 languages as item features for
task 2 languages in tabular dataframe for reranker

• create user-item interaction features by transferring user-
item patterns learned from task 1 languages to task 2 lan-
guages.

• train task 2 reranker using user-item dataframe rows from
task 1

These also improved our task 3 solution as all languages are used
in that task, including task 2 languages.

8 CONCLUSION
The Amazon KDDCup’23 competition was a unique challenge due
to its multi lingual data and also due to some languages being under-
represented. We have presented how we addressed these challenges
successfully given our solutions achieved the best scores in all 3
tasks of the competition. Our solution for tasks 1 and 2 is a pipeline
of candidate generation, reranking, and ensemble. For candidate
generation we leveraged statistical models, representation learning
with embedding loss, pre-trained language models, multi-task learn-
ing with transformers, and more. Candidate sets were merged and
ranked using gradient boosting (XGBoost and CatBoost) to maxi-
mize MRR score. Task 3 solution is based on multiple classifiers to
maximize BLEU score.
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9 REPRODUCIBILITY
All the code for our solution is available at:
https://gitlab.aicrowd.com/BenediktSchifferer/kdd2023cup_nvidiamerlin .

We describe in detail how to run the code in the readme files in that git
repository. We also describe the execution environment.

The top level directory provides instruction on how to run each which
directory code in which order. We provide detailed instruction on how to
run the code in the readme file for each sub directory.

We used models downloaded from Huggingface Hub at the time of the
competition. These models are:

• bert-base-multilingual-uncased

• xlm-roberta-base
• xlm-roberta-large
• sentence-transformers/allenai-specter
• sentence-transformers/distiluse-base-multilingual-cased-v
• bert-base-multilingual-uncased
• sentence-transformers/stsb-xlm-r-multilingual
• sentence-transformers/clip-ViT-B-32-multilingual-v1

The code was run on DGX V100 workstation or on NVIDIA cluster nodes
with up to 8 V100 GPU (DGX-1 machines). The CNN model in particular
was quite compute intense, with more than 24 hours per language on a
8xV100 node.

7


	Abstract
	1 Introduction
	2  Amazon KDD Cup'23 
	2.1 Dataset
	2.2 The Competition Tasks

	3 Candidate Generation
	3.1 Representation learning
	3.2  Using Pretrained LLMs
	3.3 Using Contrastive Learning with CNNs
	3.4 Using MLM with Transformers
	3.5 Co-visitation Matrices
	3.6 Swing Similarity

	4 Reranking
	4.1 Reranking with Binary Target
	4.2 Feature Engineering

	5 Ensemble
	6 Task 3
	7 Transfer Learning
	8 Conclusion
	References
	9 Reproducibility

