
A Proofs

Lemma 1. If δθ is the temporal-difference error associated with the critic network Qθ, then there
exists a transition tuple τt = (st, at, rt, st+1) with δθ(τt) ̸= 0 such that the absolute temporal-
difference error on τt is directly proportional to the absolute estimation error on at least τt or
τt+1:

|δθ(τt)| ∝ |Qθ(si, ai)−Qπ(si, ai)|; i = t ∨ (t+ 1), (1)

where Qπ(si, ai) is the actual Q-value of the state-action pair (si, ai) while following the policy π.

Proof. The proof does not consider the target networks since they aim to ensure stability and fixed
objective over the updates and have no effect on the estimation [6]. First, expand δθ(τt) to the
bootstrapped value estimation form:

δθ(τt) = rt + γQθ(st+1, at+1)−Qθ(st, at), (2)

where at+1 ∼ πϕ(st+1) is the action selected by the policy network πϕ on the observed next state
st+1. We know that the optimal action-value function Qπ under the policy π yields no TD error:

δπ(τt) = rt + γQπ(st+1, at+1)−Qπ(st, at) = 0. (3)

Then, subtracting Equation (3) from Equation (2) yields:

δθ(τt) = (Qπ(st, at)−Qθ(st, at))︸ ︷︷ ︸
:=x

+γ (Qθ(st+1, at+1)−Qπ(st+1, at+1))︸ ︷︷ ︸
:=y

̸= 0. (4)

It is clear that x is the estimation error at time step t and y is the estimation error at the subsequent
time step t + 1. Note that the existence of an estimation error does not depend on the sign. For
simplicity, we express the TD error in terms of x and y:

δθ(τt) = x+ γy ̸= 0. (5)

Clearly, if x = 0, then y ̸= 0, or vice versa, since γ ≥ 0. Thus, there exists an estimation error by
Qθ either on τt or τt+1 if the TD error corresponding to the Q-network is non-zero. Notice that the
absolute value of the TD error in the latter equation can be directly proportional to |x| or |y|. For
instance, suppose that δθ(τt) < 0, x ≥ 0, and y < 0. In such a case, an increasing absolute TD
error increases the absolute estimation error |y|, if x remains constant. Furthermore, one can notice
that an increasing (or decreasing) absolute TD error can increase (or decrease) at least |x| or |y|,
for each combination of the signs of x, y, and δθ(τt). Hence, we infer that there may exist a direct
proportionality between the absolute temporal-difference error |δθ(τt)| at time step t and the absolute
estimation error for τt or τt+1.

Theorem 1. Let τi be a transition such that Lemma 1 is satisfied. Then, if δθ(τi) ̸= 0, the following
relation holds:

|δθ(τi)| ∝ |∇ϕJ(ϕ(τj))−∇ϕJ(ϕtrue(τj))|; j = i ∨ (i+ 1), (6)

where ∇ϕJ(ϕ(τj)) and ∇ϕJ(ϕtrue(τj)) are the resulting policy gradients corresponding to τj if
computed under the Q-network Qθ and optimal Q-function Qπ , respectively.

Proof. The proof follows from Lemma 1 and adaptation of the policy gradient theorem of Sutton et al.
[8] to the deep function approximation. To begin the proof, we first formally express the standard
policy iteration with function approximation in terms of the policy parameters ϕ:

ϕ← ϕ+ η∇ϕJ(ϕ(si, ai)), (7)

where ∇ϕJ(ϕ(st, ai)) is the policy gradient computed for the state-action pair (si, ai) ∈ τi and η is
the learning rate. Sutton et al. [8] provides a general formulation for the policy gradient in policy
iteration with function approximation as:

∇ϕJ(ϕ(si, ai)) :=
∑
s

dπ(si)
∑
a

∂π(si, ai)

∂ϕ
fθ(si, ai), (8)

1

where fθ is the function approximation to Qπ, i.e., fθ := Qθ, and dπ(si) is a discounted weighting
of encountered states starting at s0 and then following π, denoted by:

dπ(si) =

∞∑
t=0

γtp(st = si|s0, π). (9)

Clearly, the gradient of the policy parameters ϕ is proportional to the gradient of π(si, ai) with
respect to ϕ weighted by the estimated Q-value of (si, ai). Here, we can neglect dπ(si) since policy
parameters ϕ has not effect on dπ(si) [8]. Then, Equation (8) reduces to:

∇ϕJ(ϕ(τi)) ∝
∂πϕ(si, ai)

∂ϕ
Qθ(si, ai), (10)

where we remind that ∇ϕJ(ϕ(τi)) is the policy gradient computed with respect to the imperfect
Q-value estimate Qθ(si, ai). Additionally, if the policy is stochastic, the latter equation transforms
into:

∇ϕJ(ϕ(τi)) ∝
∂ log πϕ(ai|si)

∂ϕ
Qθ(si, ai). (11)

Therefore, we generalize that the gradients of deterministic and stochastic policies are proportional to
the Q-value estimates of the Q-network. Since the Q-network approximates the actual Q-function
Qπ, an error exists in the value estimates of Qθ. We express the policy gradient in terms of the true
Q-value and estimation error, which is valid for both deterministic and stochastic policies:

∇ϕJ(ϕ(τi)) ∝ (Qπ(si, ai) + ϵτi), (12)

where we neglect the derivatives as they do not depend on the critic and ϵτi ∈ R is the error induced
by bootstrapping and function approximation in the estimation of Qπ(si, ai), i.e., Qθ(si, ai) =
Qπ(si, ai) + ϵτi . Naturally, the actual Q-value of (si, ai) computed under the true Q-function Qπ

associates with the actual policy gradient∇ϕJ(ϕtrue(τi)):

∇ϕJ(ϕtrue(τi)) ∝ Qπ(si, ai). (13)

From Equation (12) and Equation (13), we observe that an increasing absolute estimation error
increases the divergence from the actual policy gradient since the Q-value estimate Qθ(si, ai) moves
away from the actual Q-value Qπ(si, ai), which alters the weights used in policy gradient computation,
i.e., Equation (10) and Equation (11). We formally express this result as:

|ϵτi | ∝ |∇ϕJ(ϕ(τi))−∇ϕJ(ϕtrue(τi))|. (14)

According to Lemma 1, we know that a large absolute TD error can correspond to a large absolute
estimation error for τi or τi+1. Hence, given Equation (14), the absolute estimation error in the
current or subsequent step is directly proportional to the absolute TD error in the current step:

|δθ(τi)| ∝ |ϵτj |, j = i ∨ (i+ 1). (15)

Combining Equation (14) and Equation (15), we deduce that an increasing absolute TD error in the
current step increases the divergence from the actual policy gradient in the current or subsequent step:

|δθ(τi)| ∝ |∇ϕJ(ϕ(τj))−∇ϕJ(ϕtrue(τj))|; j = i ∨ (i+ 1). (16)

2

B The LA3P Framework

B.1 Pseudocode

Algorithm 1 Actor-Critic with Loss-Adjusted Approximate Actor Prioritized Experience Replay
(LA3P)

1: Input: Mini-batch size N , exponents α and β, uniform sampling fraction λ, target learning rate
ζ, and actor and critic learning rates ηπ and ηQ

2: Initialize actor πϕ and critic Qθ networks, with random parameters ϕ and θ
3: Initialize target networks ϕ′ ← ϕ, θ′ ← θ, if required
4: Initialize pinit = 1 and the experience replay buffer R = ∅
5: for t = 1 to T do
6: Select action at and observe reward rt and new state st+1

7: Store the transition tuple τt = (st, at, rt, st+1) in R with initial priority pt = pinit
8: for each update step do
9: Uniformly sample a mini-batch of transitions: I ∼ p(τi) =

1
|R| ; |I| = λ ·N

10: Optimize the critic network: θ ← θ − ηQ · 1
|I|

∑
i∈I ∇θLPAL(δθ(τi))

11: Compute the policy gradient∇ϕJ(ϕ(τi)) for τi where i ∈ I
12: Optimize the actor network: ϕ← ϕ+ ηπ · 1

|I|
∑

i∈I ∇ϕJ(ϕ(τi))

13: Update the priorities of the uniformly sampled transitions: p(τi)← max(|δθ(τi)|α, 1) for
i ∈ I

14: Update target networks if required: θ′ ← ζθ + (1− ζ)θ′, ϕ′ ← ζϕ+ (1− ζ)ϕ′

15: Sample a mini-batch of transitions through prioritized sampling:
I ∼ p(τi) =

max(|δθ(τi)|α,1)∑
j∈R max(|δθ(τj)|α,1) ; |I| = (1− λ) ·N

16: Optimize the critic network: θ ← θ − ηQ · 1
|I|

∑
i∈I ∇θLHuber(δθ(τi))

17: Update the priorities of the prioritized transitions: p(τi)← max(|δθ(τi)|α, 1) for i ∈ I
18: Sample a mini-batch of transitions through inverse prioritized sampling:

I ∼ p̃(τi) =
pmax
p(τi)

= maxi

(
max(|δθ(τi)|α,1)∑

j∈R max(|δθ(τj)|α,1)

)
·
∑

j∈R max(|δθ(τj)|α,1)

max(|δθ(τi)|α,1)

19: Compute the policy gradient∇ϕJ(ϕ(τi)) for τi where i ∈ I
20: Optimize the actor network: ϕ← ϕ+ ηπ · 1

|I|
∑

i∈I ∇ϕJ(ϕ(τi))

21: Update target networks if required: θ′ ← ζθ + (1− ζ)θ′, ϕ′ ← ζϕ+ (1− ζ)ϕ′

22: end for
23: end for

B.2 Summary of the LA3P Framework

uniform sampling
critic training with PAL
priority update
actor training
prioritized sampling
critic training with LAP
priority update
inverse prioritized sampling
actor training

Figure 1: A simplified depiction of the cascaded LA3P framework. Operations run consecutively.

C Theoretical Complexity Analysis

The LA3P framework introduces an additional sum tree, the LAP, and PAL functions on top of
vanilla PER, which operates in O(log|R|) [7]. As LAP and PAL operate on the sampled batches
of transitions, the computational complexity introduced by these modifications is dominated by the

3

additive sum tree, which operates on the entire replay buffer. Moreover, the additive sum tree requires
a priority update. Setting the priorities of the nodes has the same complexity as in PER, which
takes O(log|R|). Additionally, LA3P takes the inverse of the priorities by multiplication, which
takes an additional O(|R|) run time. Therefore, LA3P introduces an additional O(log|R|) +O(|R|)
complexity on top of vanilla PER. As O(|R|) dominates O(log|R|), we conclude that LA3P has a
run time of O(|R|) in the worst case scenario.

Although the array division in the additive sum tree, i.e., taking the inverse of the priorities by
multiplication, dramatically increases the computational complexity of vanilla PER and may question
the feasibility of our approach, it can be overcome by Single Instruction, Multiple Data (SIMD)
structure supported by CPUs introduced recently. Exceptionally, SIMD instructions perform the
same operation, such as the simple array division in our case, on all cores in parallel. Fortunately,
this is not the user’s concern and can be executed implicitly by the CPU. Therefore, we believe that
the computational burden of the LA3P framework will be significantly reduced by the additional
computational efficiency offered by SIMD instructions.

D Experimental Details

D.1 Architecture and Hyper-Parameter Setting

D.1.1 Architecture

The actor-critic methods, TD3 and SAC, employ two Q-networks and a single actor network. All
networks feature two hidden layers having 256 hidden units, with ReLU activation functions after
each. Following a final linear layer, the critic networks take state-action pairs (s, a) as input and
output a scalar value Q. The actor network takes state s as input and produces a multi-dimensional
action a by applying a linear layer with a tanh activation function multiplied by the action space scale.

D.1.2 Network Hyper-Parameters

The Adam optimizer [5] is used to train the networks, with a learning rate of 3× 10−4 and a mini-
batch size of 256. After each update step, the target networks in both TD3 and SAC are updated using
polyak averaging with ζ = 0.005, resulting in θ′ ← 0.995 · θ′ + 0.005 · θ.

D.1.3 Terminal Transitions

In setting the target Q-value, we utilize a discount factor of γ = 0.99 for non-terminal transitions
and zero for terminal transitions. A transition is deemed terminal only if it stops due to a termination
condition, i.e., failure or exceeding the time limit.

D.1.4 Actor-Critic Algorithms

We use the default policy noise ofN (0, σN) for the TD3 algorithm, as suggested by the author, where
it is clipped to [0.5, 0.5] with σN = 0.2. The range of the action space is used to scale both values.
With SAC, we utilize the learned entropy variant [3], in which entropy is optimized to an objective of
−action dimensions using an Adam optimizer with a learning rate of 3 × 10−4, similar to the
actor and critic networks. To avoid numerical instability in the logarithm operation, we cut the log
standard deviation to (20, 2), and a small constant of 10−6 is added, as designated by the Haarnoja
et al. [3].

D.1.5 Prioritized Sampling Algorithms

As described by Schaul et al. [7], we use α = 0.6 and β = 0.4 for PER. As LAP and PAL functions are
employed in our algorithm, we directly use α = 0.4 and β = 0.4. No hyper-parameter optimization
was performed on the α and β parameters since the used values produce the best results, as reported
by Fujimoto et al. [2].

Since SAC and TD3 maintain two Q-networks, there are two TD errors defined by δ1 = y −Qθ1 and
δ2 = y −Qθ2 . Each priority considers the maximum of |δ1| and |δ2|, as described by Fujimoto et al.
[2] to produce the strongest performance. New samples are assigned a priority equal to the highest
priority pinit = 1 recorded at any time during learning, as done by PER.

4

Applications of LA3P to SAC and TD3 do not differ in terms of implementation and algorithmic
setup. The main differences between the actor-critic algorithms of SAC and TD3 are the computation
of the policy gradient, entropy tuning, and the presence of the target actor network. As discussed
previously, Theorem 1 is valid for deterministic and stochastic policies. Therefore, algorithmic
differences between SAC and TD3 do not regard the implementation and operation of LA3P.

D.1.6 Exploration

To fill the buffer, the agent is not trained for the first 25000 time steps, and actions are chosen
randomly with uniform probability. After that, TD3 explores the action space by introducing a
Gaussian noise of N (0, σ2

E · max action size), where σE = 0.1 is scaled by the action space
range. As SAC employs a stochastic policy, no exploration noise is added.

D.1.7 Hyper-Parameter Optimization

No hyper-parameter optimization was performed on any algorithm except for SAC. Having the
remaining parameters fixed, we optimized the reward scale for the BipedalWalker, LunarLander-
Continuous, and Swimmer tasks, as they were not reported in the paper. We tested the values
of {5, 10, 20}, and it turned out that scaling the rewards by 5 produced the best results for these
environments.

All algorithms follow what is reported in the original papers or the most recent code in the respective
GitHub repositories. SAC follows the precise hyper-parameter setting outlined in the original paper
except for increased exploration time steps to 25000 and entropy tuning. For TD3, as we employed
the code from the author’s repository1, the parameter setting has a minor difference. Different from
the original paper, the code in the repository increases the number of start steps to 25000 and batch
size to 256 for all environments, as reported to produce better results.

For LA3P, we tested λ = {0.1, 0.3, 0.5, 0.7, 0.9} on the Ant, Hopper, Humanoid, and Walker2d tasks,
and found that λ = 0.5 exhibited the best results. We provided the results under different λ values in
our ablation studies in Section 6.2. For clarity, all hyper-parameters are presented in Table 1.

Table 1: Hyper-parameters used in the experiments.

Hyper-Parameter Value
Optimizer Adam
Learning rate 3× 10−4

Mini-batch size 256
Discount factor γ 0.99
Target update rate 0.005
Initial exploration steps 25000

TD3 exploration policy σE 0.1
TD3 policy noise σN 0.2
TD3 policy noise clipping (−0.5, 0.5)
SAC entropy target -action dimensions
SAC log-standard deviation clipping (−20, 2)
SAC log constant 10−6

SAC reward scale (except Humanoid) 5
SAC reward scale (Humanoid) 20

PER priority exponent α 0.6
PER importance sampling exponent β 0.4
PER added priority constant 10−4

LAP & PAL exponent α 0.4
LA3P uniform fraction λ 0.5

1https://github.com/sfujim/TD3

5

https://github.com/sfujim/TD3

D.2 Implementation

Our implementation of the state-of-the-art algorithms closely follows the hyper-parameter setting
and architecture outlined in the original papers. Particularly, we implement TD3 using the code from
the author’s GitHub repository1, which contains the fine-tuned version of the algorithm. Our manual
implementation of SAC is precisely based on the original paper. Unlike the paper, we include entropy
tuning, as shown by Haarnoja et al. [3] to improve the algorithm’s overall performance. Moreover,
we added 25000 exploration time steps before the training to increase the data efficiency, as indicated
by Fujimoto et al. [1]. Lastly, We directly utilize the MaPER code from the paper’s submission files
from the OpenReview website2. No changes were made to the MaPER code.

We use the LAP and PAL code in the author’s GitHub repository3 to implement the algorithm and
our framework, which requires a few lines on top of the standard PER implementation. Moreover, we
use the same repository for the PER implementation, which is based on proportional prioritization
through sum trees. Specifically, LA3P is implemented by cascading uniform sampling combined
with PAL and PER combined with LAP. The implementation of LA3P consists of the cascaded
uniform, prioritized, and inverse prioritized sampling, which precisely follows the pseudocode in
Appendix B.1. We do not update the priorities after the actor update with inverse prioritized sampling
since the PER implementation with standard actor-critic algorithms only considers the priority update
after each critic update.

D.3 Experimental Setup

D.3.1 Simulation Environments

All agents are evaluated in continuous control benchmarks of MuJoCo4 and Box2D5 physics engines
interfaced by OpenAI Gym6, using v2 environments. The environment, state-action spaces, and
reward function are not altered or pre-processed for practical reproducibility and fair comparison
with empirical findings. Each environment has a multi-dimensional action space with values ranging
between [1, 1], excluding Humanoid, which has a range of [0.4, 0.4].

D.3.2 Evaluation

Each method is trained for a million steps over ten random seeds of network initialization, simulators,
and dependencies. Every 1000 time steps, an evaluation is performed, each being the average
reward over ten episodes, using the deterministic policy from TD3 without exploration noise or the
deterministic mean action from SAC. We employ a new environment with a fixed seed (the training
seed + a constant) for each evaluation to decrease the variation caused by varying seeds [4], so each
evaluation utilizes the same set of initial start states.

D.3.3 Visualization of the Learning Curves

Learning curves indicate performance and are depicted as an average of ten trials with a shaded
region denoting a 95% confidence interval over the trials. The curves are flattened equally throughout
a sliding window of five evaluations for visual clarity.

2https://openreview.net/forum?id=WuEiafqdy9H
3https://github.com/sfujim/LAP-PAL
4https://mujoco.org/
5https://box2d.org/
6https://www.gymlibrary.ml/

6

https://openreview.net/forum?id=WuEiafqdy9H
https://github.com/sfujim/LAP-PAL
https://mujoco.org/
https://box2d.org/
https://www.gymlibrary.ml/

E Missing Evaluation Results

E.1 Learning Curves for Additional Environments

LA3P (λ = 0.5) PER LAP
MaPER Uniform

(a) SAC

(b) TD3

Figure 2: Learning curves for the additional set of MuJoCo and Box2D continuous control tasks
under the SAC and TD3 algorithms. Curves are averaged over 10 trials, where the shaded region
represents a 95% confidence interval over the trials.

E.2 Numerical Evaluation Results

Table 2: Average return of last 10 evaluations over 10 trials of 1 million time steps under the SAC
algorithm. ± captures a 95% confidence interval over the trials. Bold values represent the maximum
under each environment.

Environment LA3P LAP MaPER PER Uniform
Ant 4539.1 ± 810.2 2934.1 ± 907.9 3675.6 ± 376.3 3605.7 ± 333.1 3519.8 ± 634.1
BipedalWalk. 318.9 ± 27.9 320.0 ± 15.7 308.0 ± 20.1 306.4 ± 10.5 290.4 ± 51.8
HalfCheetah 11485.5 ± 339.9 10223.2 ± 1016.3 8270.9 ± 326.5 6444.6 ± 897.2 6845.8 ± 686.8
Hopper 3917.8 ± 727.5 2324.3 ± 532.3 2840.9 ± 289.3 2420.2 ± 335.3 3026.0 ± 480.9
Humanoid 5094.8 ± 518.2 4726.1 ± 632.8 4821.0 ± 272.1 4652.8 ± 279.7 4567.0 ± 477.8
LunarLand. 269.1 ± 16.1 272.7 ± 11.2 265.2 ± 18.0 254.9 ± 28.5 281.6 ± 4.6
Swimmer 115.8 ± 14.6 72.0 ± 18.5 71.0 ± 6.9 59.2 ± 6.5 48.8 ± 2.2
Walker2d 5449.1 ± 370.6 4403.1 ± 742.6 4243.8 ± 283.9 3830.5 ± 295.5 3609.3 ± 516.2

7

Table 3: Average return of last 10 evaluations over 10 trials of 1 million time steps under the TD3
algorithm. ± captures a 95% confidence interval over the trials. Bold values represent the maximum
under each environment.

Environment LA3P LAP MaPER PER Uniform
Ant 5197.5 ± 377.3 4653.2 ± 701.2 4161.2 ± 237.3 4103.9 ± 287.9 4029.2 ± 576.3
BipedalWalk. 321.2 ± 7.0 293.7 ± 45.5 306.4 ± 27.9 275.5 ± 40.9 277.1 ± 74.8
HalfCheetah 11225.1 ± 811.6 10053.0 ± 1056.1 8975.3 ± 605.0 7035.2 ± 984.2 7824.6 ± 1091.8
Hopper 3563.0 ± 279.3 3145.9 ± 597.2 3027.4 ± 278.3 2802.3 ± 278.0 2857.0 ± 584.4
Humanoid 5131.1 ± 250.8 4998.5 ± 279.7 4938.5 ± 140.2 4916.4 ± 112.8 4802.1 ± 310.1
LunarLand. 276.6 ± 15.1 274.2 ± 10.4 267.6 ± 9.5 259.8 ± 13.9 275.0 ± 5.7
Swimmer 99.3 ± 25.0 71.3 ± 20.8 61.8 ± 7.5 56.6 ± 4.5 48.5 ± 1.3
Walker2d 4776.7 ± 424.5 3700.4 ± 766.2 3410.7 ± 341.8 3221.1 ± 420.9 3312.5 ± 832.2

F Empirical Complexity Analysis

Upon completing our evaluation simulations, we compare the run time of baseline uniform sampling,
PER, and our algorithm. Each sampling method combines the off-policy actor-critic algorithms,
SAC and TD3. We record the total run time of each method throughout our comparative evaluation
experiments. All experiments are run on a single GeForce RTX 2070 SUPER GPU and an AMD
Ryzen 7 3700X 8-Core Processor. Our results are presented in Table 4.

Table 4: Average run time of uniform sampling, PER, and LA3P, and their percentage increase
over the off-policy actor-critic algorithms, SAC and TD3. Values are recorded over 1 million time
steps and averaged over 10 random seeds and benchmark environments selected for our comparative
evaluations. ± captures a 95% confidence interval over the run time.

Result Uniform PER LA3P
Run Time (mins) 225.18 ± 1.48 307.01 ± 1.52 445.42 ± 1.52

SA
C

Time Increase (%) +0.00% +136.34% +197.81%

Run Time (mins) 131.51 ± 1.98 145.83 ± 2.09 238.29 ± 2.13

T
D

3

Time Increase (%) +0.00% +110.89% +181.19%

First, we find that the run time of SAC is greater than that of TD3. This is due to the additional
entropy tuning that requires backpropagation, and maintaining a stochastic actor. Moreover, the high
dimensional environments such as Ant and Humanoid significantly increase the mean run time of
the algorithms. While PER has a slightly increased run time, our method considerably increases the
required time for each experiment. Although this result may question the feasibility of our approach,
the empirical run time is vastly lower than what is indicated by our theoretical analysis. We know
that O(|R|) is much larger than O(log|R|), mainly when the replay buffer is large. Nonetheless, this
can be overcome by the discussed parallelable array division operation embedded through SIMD
operations in the recently introduced CPUs.

8

G Learning Curves for Ablation Studies

G.1 Ablation Study of LA3P

LA3P (complete) LA3P w/ low TD error shared transitions LA3P w/o LAP
LA3P w/o PAL LA3P w/o shared transitions

Figure 3: Learning curves for the selected MuJoCo continuous control tasks, comparing ablation of
LA3P under low TD error shared transitions, LA3P without the LAP function, LA3P without the
PAL function, and LA3P without the shared set of transitions. Note that the TD3 algorithm is used as
the baseline off-policy actor-critic algorithm. Curves are averaged over 10 trials, where the shaded
region represents a 95% confidence interval over the trials.

G.2 Sensitivity Analysis for λ

λ = 0.1 λ = 0.3 λ = 0.5

λ = 0.7 λ = 0.9

Figure 4: Learning curves for the selected MuJoCo continuous control tasks, analyzing the sensitivity
of LA3P with respect to λ = {0.1, 0.3, 0.5, 0.7, 0.9}. Note that the TD3 algorithm is used as the
baseline off-policy actor-critic algorithm. Curves are averaged over 10 trials, where the shaded region
represents a 95% confidence interval over the trials.

9

References
[1] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error

in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596, Stockholmsmässan, Stockholm SWEDEN, 10–15 Jul 2018. PMLR.
URL https://proceedings.mlr.press/v80/fujimoto18a.html.

[2] Scott Fujimoto, David Meger, and Doina Precup. An equivalence between loss functions and
non-uniform sampling in experience replay. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 14219–14230. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/a3bf6e4db673b6449c2f7d13ee6ec9c0-Paper.pdf.

[3] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic
algorithms and applications, 2018. URL https://arxiv.org/abs/1812.05905.

[4] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18, New Orleans, Louisiana, USA, 2018. AAAI Press. ISBN 978-1-
57735-800-8.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR
(Poster), 2015. URL http://arxiv.org/abs/1412.6980.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, Feb 2015. ISSN 1476-4687. doi: 10.1038/nature14236.
URL https://doi.org/10.1038/nature14236.

[7] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience re-
play, 2015. URL http://arxiv.org/abs/1511.05952. cite arxiv:1511.05952Comment:
Published at ICLR 2016.

[8] Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Adv. Neural Inf. Process. Syst, 12, 02
2000.

10

https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.neurips.cc/paper/2020/file/a3bf6e4db673b6449c2f7d13ee6ec9c0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/a3bf6e4db673b6449c2f7d13ee6ec9c0-Paper.pdf
https://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1511.05952

	Proofs
	The LA3P Framework
	Pseudocode
	Summary of the LA3P Framework

	Theoretical Complexity Analysis
	Experimental Details
	Architecture and Hyper-Parameter Setting
	Architecture
	Network Hyper-Parameters
	Terminal Transitions
	Actor-Critic Algorithms
	Prioritized Sampling Algorithms
	Exploration
	Hyper-Parameter Optimization

	Implementation
	Experimental Setup
	Simulation Environments
	Evaluation
	Visualization of the Learning Curves

	Missing Evaluation Results
	Learning Curves for Additional Environments
	Numerical Evaluation Results

	Empirical Complexity Analysis
	Learning Curves for Ablation Studies
	Ablation Study of LA3P
	Sensitivity Analysis for

