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A PROOFS

A.1 PROOEFS FOR GSV

Proposition A.1 (Proposition 2.1). The GSV have the following property

®(f,F.B) = E [f(x)] - E [f(z)]. (11)

:z:~]-' x~B

IIM&

Proof. As areminder, we have defined the vector

o(f,F7.B) = E [¢(f @ 2)], (12)
z~B
whose components sum up to
d d
2 ®ilf. F.B) = 3 E [6i(f,2,2)] (13)
i=1 i=12~B
d
= E [ 2 0ilf=, z)] (14)
g liz
- Bl f(e) = (2] (s)
- E[f(@)]- E[f(2)] (16)
- E [f(@)]- E[f@)], an
where at the last step we have simply renamed a dummy variable. [

Proposition A.2 (Proposition ??). Let S|, be fixed, and let L, represent convergence in probability
as the size M of the set S} ~ B'™ increases, we have

. (f, S), 1) B ij (f, S5, 29). (18)

Proof.

<i><f,sa,51>= 5 O Y e(f.a 20

ac( JeS) z(1)esS]

MZ( > ootz )) (19)

z(esy z(DeS]

LS B, 85,20).

z(j)GSi

Il

Since S/, is assumed to be fixed, then the only random variable in ®(f, S}, z(9)) is () which

represents an instance sampled from the B’. Therefore, we can define ¢(z) := P, (f,Sp, z) and we
get

1 - ,
.(f,50,5) = 37 21 ®a(f:50,2)
z(j)ES’ (20)
Z Y(zW)  with S ~ B,

z(J)ES’
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By the weak law of large number, the following holds as M goes to infinity (Wasserman, 2004,
Theorem 5.6)

= 2 W) B E ) @n
z(J')ES’1

Now, as a reminder, the manipulated background distribution is B’ := C(D;,w) with w # 1/Nj.
Therefore

. (f,50,51) © E_[(=)]

’

= ZNC(I%W) ¥(z)]

Ny
3 wt(z0) (22)

j=

=

=N wd,(f, 85, 29)

Jj=1

concluding the proof. O

A.2 PROOFS FOR OPTIMIZATION PROBLEM
A.2.1 TECHNICAL LEMMAS

We provide some technical lemmas that will be essential when proving Theorem[A.T] These lemmas
and proofs are provided here for completeness and are not meant as contributions by the authors.

Let us first write the formal definition of the minimum of a function.
Definition A.1 (Minimum). Given some function f : D — R, the minimum of f over D (denoted
f*) is defined as follows:

fr= rrélgf(x) < Jz*e D st f*= f(z*) < f(x) Yz eD.

Basically, the notion of minimum coincides with the notion of infimum (highest lower bound) of
f(D) when this lower bound is attained for some =* € D. For the rest of this appendix, we shall

only study constrained optimization problems where points from the feasible set D = {(z,y) : « €
X,y € YV, < Y} can be selected by the following procedure

1. Choose some x € X

2. Given the selected x, choose some y € ), — ) where the set ), is non-empty and depends
on the value of x.

When optimizing objective functions over these types of domains, one can optimize in two steps as
highlighted in the following lemma.

Lemma A.1. Given a feasible set D of the form described above and an objective function f :
X x Y — R, the following holds

min x,y) = min min f(x,y).
<x,y>epf( Y) min min (z,9)

Proof. Let f(z) := minyey, f(z,y), which is a well defined function on X’ since Y, is non-empty
for any x € X'. By the definition of the minimum, we have

Voe X, Iy () e Vo st f(z) = f(z,y"(2)) < flz,y) Vye V. (23)

Now, we can optimize f with respect to x i.e. f* = min,cx f(x). By applying once again the
definition of the minimum, we get

~ ~

Jz* e X st ff = f(z*) < f(z) VoeX. (24)
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By virtue of Equation 23| we have that f(z*) = f(z*,y*(z*)) = f(z*,y*), where we labeled
y* := y*(z*) for convenience. We get

3z, y") e D st f(a"y") < f(z,y"(2)) VeelX (cf. Equation24)

< f(z,y) Vye V. (cf. Equation[23)

Hence we have proven that 3(z*,y*) € D s.t. f(z*,y*) < f(z,y) VY(x,y) € D, which concludes
the proof. O

Lemma A.2. Given a feasible set D of the form described above and two functions h : X — R and
g:Y — R, then

min <h(x) + g(y)) = Ig;((lgl)l(l (h(m) + min g(y))

(z,y)eD YEYVx

Proof. Applying LemmalA.1|with the function f(z,y) := h(z)+g(y) leads to the desired result. [J
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Figure 6: Graph G on which we solve the MCF. Note that the total amount of flow is d = N; and
there are Ny left and right nodes ¢;, ;.

A.2.2 MINIMUM CoOST FLOWS

Let G = (V, &) be a graph with vertices v € V with directed edgese € E <V x V,c: £ —> RT be a
capacity and a : £ — R be a cost. Moreover, let s, ¢ € £ be two special vertices called the source and
the sink respectivelly, and d € R™ be a total flow. The Minimum-Cost Flow (MCF) problem of G
consists of finding the flow function f : £ — R™ that minimizes the total cost

m}n Z a(e)f(e)

ee&

st. 0< f(e) <c(e) Vee &

25
0 wueV\{st} (23)
2= 3 fle)={d u=s
ecut ecu~ —d u=t
where u™ := {(u,v) € £} and u™ := {(v,u) € £} are the outgoing and incoming edges from u. The

terminology of flow arises from the constraint that, for vertices that are not the source nor the sink,
the outgoing flow must equal the incoming one, which is reminiscent of conservation laws in fluidic.
We shall refer to f((u,v)) as the flow from u to v.

Now that we have introduced minimum cost flows, let us specify the graph that will be employed to
manipulate GSV, see Figure[6] We label the flow going from the sink s to one of the left vertices as
@W; = w; x N1, and the flow going from ¢, to r; as 7; ; = m; ; x Ni. The required flow is fixed at
d= N;.
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Theorem A.1. Solving the MCF of Figure[6]leads to a solution of the linear program in Algorithm|I]

Proof. We begin by showing that the flow conservation constraints in the MCF imply that 7 is
a coupling measure (i.e. m € A(B,B’)), and w is constrained to the probability simplex A(Ny).
Applying the conservation law on the left-side of the graph leads to the conclusion that the flows
entering vertices £; must sum up to Ny

Ny
> -
j=1

This implies that w is must be part of the probability simplex. By conservation, the amount of flow
that leaves a specific vertex £; must also be &;, hence

Z’]Tij = OJ]'.
%

For any edge outgoing from 7; to the sink ¢, the flow must be exactly 1. This is because we have N;
edges with capacity c(e) = 1 going into the sink and the sink must receive an incoming flow of V;.
As a consequence of the conservation law on a specific vertex r;, the amount of flow that goes into

each r; is also 1
Mwi =1
J

Putting everything together, from the conservation laws on G, we have that w € A(N;), and

e A(B,B).

Now, to make the parallel between the MCF and Algorithm|[I] we must use LemmalA.2} As a reminder,
the Lemma states that for specific types of domains, one can solve the constrained optimization
problem in two optimization steps. Note that w is restricted to the probability simplex, while 7 is
restricted to be a coupling measure. Importantly, the set of all possible coupling measures A(B, B’)
is different for each w (and non-empty) because B’ depends on w. Hence, we study a feasible set
with the same structure as the ones tackled in the LemmalA.2](where € X’ becomes w € A(Ny))
and y € Y, becomes 7 € A(B, B’)) and we can apply the Lemmato the objective function of the
MCFE

N1
min ), f(e)a(e) = min D A2 0.(f, 5, 2) + A D Tyl f (1) = £(z1)
ec€ i1 ij
WM (Y @) ")
—g};M(ﬁ;% (S 2 +A§m|f 9 - 1))
Ni ~
=Nupip(5 L5,(5,50,20) +A2 F) - 1))
w,T J:l

8 2 wJ (.55, 20 + )‘ZW F(z9) - f(z(j))|)

weA(Nl) weA(B B’) ( g

=N i h
U eai0 s s ( (w) + 9<ﬂ>>

- i, (04 _pi, 500) etbemmaitd

=N, min (52% (f,50.2”) +A__min Zﬂi,ﬂf(z(”)—f(z(j))l)

weA(Ny) TeA(B,B’ ij

= N; min < Z w] f, SO? )+ )\W(B B’ ))

weA(N

which (up to a multiplicative constant N 1) is a solution of the linear program of Algorithm [
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B SHAPLEY VALUES

B.1 LOCAL SHAPLEY VALUES

We introduce Local Shapley Values (LSV) more formally. First of, as explained earlier, Shapley
values are based on coalitional game theory where the different features work together toward a
common outcome f(x). In a game, the features can either be present or absent, which is simulated
by replacing some features by a baseline value z.

Definition B.1 (Replace Function). Given an input of interest x, a subset of features S <
{1,2,...,d} that are considered active, and a baseline input z, the replace-function rg : R? x R4 —
R? is defined as

X lf’L es

26
z; otherwise. (26)

rs(z,®); = {
We note that this function is meant to “activate” the features in S.

Now, if we let 7 be a random permutation of d features, and 7; denote all features that appear before
i in m, the LSV are computed via

¢i(f7$az) = W@Q[f(rwiu{i}(zam))7f(r7n(zam))]a i=1,2,...,d, (27)

where € is the uniform distribution over 2¢ permutations. Observe that the computation of LSV is
exponential w.r.t the number of features d hence model-agnostic computations are only possible with
datasets with few features such as COMPAS and Adult-Income. For datasets with larger amounts of
features the TreeExplainer algorithm (Lundberg et al.,|2020) can be used to compute the LSV
(cf. Equation in polynomial time given that one is explaining a tree-based model.

B.2 CONVERGENCE

As a reminder, we are interested in estimating the GSV ® = ®( f, 7, B) which requires estimating
expectations w.r.t the foreground and background distributions. Said estimations can be conducted
with Monte-Carlo where we sample M instances

So~FM 5 ~BM, (28)
and compute the plug-in estimates

®(f,S0,51) := <I>(f, C(So,1/M), (51,1/M>>
—E XX ea.0), )

ZB(1>€S() z(J)GSI

We now show that, ®(f, So, S1) is a consistent and asymptotically normal estimate of ®(f, F, B)

Proposition B.1. Let f : X — [0,1] be a black box, F and B be distributions on X, and o=
®(f,S0,S1) be the plug-in estimate of ® = ®(f, F, B), the following holds for any § € 10, 1[ and

k=1,2...,d
Folo (1—6/2)
. = N(0,1) 2 2
1 Pl |®) —Pp| > —22 "4/ =,
Mbo (' b= Bl /M 01°+001)
where F is the inverse Cumulative Distribution Function (CDF) of the standard normal

N0
distribution, 03y = Ve [ Expl¢i(f, z,2))]] and 03; = Vo p[Ex~r[di(f, z, 2))] |-

Proof. The proof consists simply in noting that LSV ¢y, (f, ("), zU)) are a function of two indepen-

dent samples (¢ ]-" and 2 B The model f is assumed fixed and hence for any feature k& we
can define h(x( ) 20 = ¢y ( frx® 20 ) Now, the estimates of GSV can be rewritten
, S0, S h(z®, 29), (30)
(f 0 1) ‘SO| ‘Sl Z Z

2t )ESO z(7)651

17



Under review as a conference paper at ICLR 2023

which we recognize as a well-known class of statistics called two-samples U-statistics. Such statistics
are unbiased and asymptotically normal estimates of

On(f, 7. B) = E [h(z,2)]. G
The asymptotic normality of two-samples U-statistics is characterized by the following Theorem
(Leel 2019, Section 3.7.1).

Theorem B.1. Let &) = @k(f, So,S1) be a two-samples U-statistic with |Sy| = N,|S1| = M,
moreover let h(x, z) have finite first and second moments, then the following holds for any § € 10,1[

. Fol (1-6/2) [, 2
lim p(@k — By > “Nopr T %0 . %01 ) — 5,
N+M—w VM + N

s.t. N/(N+M)—pe(0,1)

p 1-p
where 03y = Vo 7[Ezvp[h(z, 2)] | and 03, = Vo 5[ Ex~7[h(z, 2)]].

Proposition [B.1] follows from this Theorem by choosing N = M, p = 0.5 and noticing that having
a model with bounded outputs (f : X — [0, 1]) implies that |h(x, z)| < 1 V&, z € X which means
that h(a, z) has bounded first and second moments. O

B.3 COMPUTE THE LSV

Running Algorithmrequires computing the coefficients &%( f,8h,29)) forj =1,2,...,N;. To
compute them, first note that they can be written in terms of LSV for all instances in S},

(15520 = 1 D) ulfa®, 0, (32)

z(DeS)

The LSV ¢, (f, 2@, 2(9)) are computed deeply in the SHAP code and are not directly accessible
using the current API. Hence, we had to access them using Monkey-Patching i.e. we modified
the ExactExplainer class so that it stores the LSV as one of its attributes. The attribute can
then be accessed as seen in Figure[7] The code is provided as a fork the SHAP repository. For the
TreeExplainer, because its source code is in C++ and wrapped in Python, we found it simpler to
simply rewrite our own version of the algorithm in C++ so that it directly returns the LSV, instead of
Monkey-Patching the TreeExplainer.

# Mask features using the whole background distribution

mask = Independent(D 1, max samples=len(D 1))

explainer = shap.explainers.Exact(model.predict proba, mask)

# Explain all instances sampled from the foreground

explainer(S_8)

# The LSV are extracted with Monkey-Patching

LSV = explainer.LSV # LSV.shape = (n_features, |5.0], |D_1}])
Phi 5 @ zj = LSV.mean(1).T # Phi S 0 zj.shape = (|D 1|, n features)

Figure 7: How we extract the LSV from the ExactExplainer via Monkey-Patching.
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C STATISTICAL TESTS

C.1 KS TEST

A first test that can be conducted is a two-samples Kolmogorov-Smirnov (KS) test (Massey Jr, [1951).
If we let

Fs(z)=— » 1(z < x) (33)

be the empirical CDF of observations in the set S. Given two sets S and .S’, the KS statistic is

KS(S,S") = sup |Fs(z) — Fe (2)]. (34)

zeR
Under the null-hypothesis Hy : S ~ DISI| 8" ~ DIS'l for some univariate distribution D, this
statistic is expected to not be too large with high probability. Hence, when the company provides the

subsets .S, 57, the audit can sample their own two subsets f(.Sy), f(S1) uniformly at random from
f(Do), f(D1) and compute the statistics KS(f(S1), f(S7)) and KS(f(So), f(S)) to detect a fraud.

C.2  WALD TEST

An alternative is the Wald test, which is based on the central limit theorem. If S; ~ B™, then the
empirical average of the model output over S is asymptotically normally distributed as M increases
ie.

1

1 2 —

M Dzef(sy) ? M o N

o/NM

where i := E,_¢(p)[2] and 02 := V. _)[2] are the expected value and variance of the model
output across the whole background. The same reasoning holds for Sy and the foreground F.
Applying the Wald test with significance o would detect a fraud when

| Wald(f(S1), f(B)) | > Fy(o1(1 = @/2), (36)

Wald(f(51), f(B)) :=

(0,1), (35)

where F/\jéo 1 is the inverse of the CDF of a standard normal variable.
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D METHODOLOGICAL DETAILS

D.1 Toy EXAMPLE

The toy dataset was constructed to closely match the results of the following empirical study com-
paring skeletal mass distributions between men and women (Janssen et al.,2000). First of, the sex
feature was sampled from a Bernoulli

S ~ Bernoulli(0.5). 37

According to the Table 1 of Janssen et al.|(2000), the average height of women participants was 163
cm while it was 177cm for men. Both height distributions had the same standard deviation of 7cm.
Hence we sampled height via

H|S=man ~ N(177,49)

H|S=woman ~ N (163, 49) (38)

It was noted inJanssen et al.|(2000) that there was approximately a linear relationship between height
and skeletal muscle mass for both sexes. Therefore, we computed the muscle mass M as

M|{H=h,S=man} = 0.186h + 5e¢
MI|{H =h,S=woman} = 0.128h + 4e (39)
with € ~ MV (0,1)

The values of coefficients 0.186, 0.128 and noise levels 5 and 4 were chosen so the distributions
of M|S would approximately match that of Table 1 in|Janssen et al.|(2000). Finally the target was
chosen following

Y|{H=h, M =m} ~ Bernoulli( P(H, M) )

40
with P(H, M) = 1+ exp{100 x 1(H < 160) — 0.3(M — 28)}]_1. 0

Simply put, the chances of being hired in the past (Y') were impossible for individuals with a smaller
height than 160cm. Moreover, individuals with a higher mass skeletal mass were given more chances
to be admitted. Yet, individuals with less muscle mass could still be given the job if they displayed
sufficient determination. In the end we generated 6000 samples leading to the following disparity in
Y

P(Y = 1|S=man) = 0.733 P(Y = 1|S =woman) = 0.110. (41)
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Table 2: Models Test Accuracy % (mean =+ stddev).

mlp rf xgb
COMPAS 68.2+09 67.7+0.8 68.6+0.8
Adult 85.6+03 86.3+0.2 87.1+£0.1
Marketing 91.1+0.1 91.4+0.3
Communities 83 £ 2 82+ 2

Table 3: Models Demographic Parity (mean + stddev).

mlp rf xgb
COMPAS —0.12+0.01 -0.11+0.01 —0.11 £ 0.02
Adult —0.20+£0.01 -0.19+0.01 —0.192 + 0.004
Marketing —0.104 £ 0.005 —0.11 +0.01
Communities —0.50 £ 0.01 —0.54 £ 0.02

D.2 REAL DATA

The datasets were first divided into train/test subsets with ratio % : % The models were trained
on the training set and evaluated on the test set. All categorical features for COMPAS, Adult, and
Marketing were one-hot-encoded which resulted in a total of 11, 40, and 61 columns for each dataset
respectively. A simple 50 steps random search was conducted to fine-tune the hyper-parameters with
cross-validation on the training set. The resulting test set performance and demographic parities
for all models and datasets, aggregated over 5 random data splits, are reported in Tables [2| and
respectively.
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E ADDITIONAL RESULTS

E.1 MULTIPLE SENSITIVE ATTRIBUTES

We present preliminary results for settings where one wishes to manipulate the Shapley values
of multiple sensitive features s each part of a set s € S. For example, in our experiments we
considered gender as a sensitive attribute for the Adult-Income dataset and we showed that one
can diminish the attribution of this feature. Nonetheless, there are two other features in Adult-
Income that share information with this gender: relationship and marital-status. In-
deed, relationship can take the value widowed and marital-status can take the value
wife, which are both proxies of gender=female. For this reason, these two other features
may be considered sensitive and decision-making that relies strongly on them may not be accept-
able. Henceforth, we must derive a method that reduces the total attributions of the features in
S = {gender,relationship,marital-status}.

We first let 8, := sign[ ®4(f, S}, D1)] for any s € S. In our experiments, all these signs will
typically be negative. The proposed approach is to minimize the #; norm

[(@4(f. 85 81))seslt = D)1 ®a(f, S5, S, (42)
seS

which we interpret as the total amount of disparity we can attribute to the sensitive attributes. Re-
member that ®4(f, S, S1) converges in probability to };_y.p, wj Ps(f, Sps 2(7)) (cf. Proposition
??). Therefore minimizing the El norm will require minimizing

Zﬁé Z w] fvSOaz(]) Z Wy ZB@ f,SO,Z(J ) (43)
seS z(eDy z(eD, seS

which is again a linear function of the weights. We present Algorithm[4]as an overload of Algorithm
[T] that now supports taking multiple sensitive attributes as inputs.

Algorithm 4 Compute non-uniform weights for multiple sensitive attributes s € S

1: procedure COMPUTE_WEIGHTS(D, {®,(f, S}, zWh} oy

2 By =sign[Y.wep, Ps(f, S5, 29)] VseS;

3: B :=C(D1,1/Ny) = Unmanipulated background
4: B, :=C(Dy,w) = Manipulated background as a function of w
S w = argminw Zz(j)eDl Wi ZseS 65 CI)S(f, 567 z(j)) + )‘W(Bv Bcl.u)

6: return w;

The only difference in the resulting MCF is that we must use the cost a(e) = > ¢ B, ® o(f, S5, 209))
for edges (s, ¢;) in the graph G of Flgure@ This new algorithm is guaranteed to diminish the ¢;
norm of the attrlbutlons of all sensitive features. However, that this does not imply that all sensitive
attributes will diminish in amplitude. Indeed, minimizing the sum of multiple quantities does not
guarantee that each quantity will diminish. For example, 4 + 7 is smaller than 6 + 6 although 4
is smaller than 6 and 7 is higher than 6. Still, we see reducing the ¢; norm as a natural way to
hide the total amount of disparity that is attributable to the sensitive features. Another important
methodological change is the way we select the optlmal hyper parameter X in Algorithm 3] Now at

line 13, we use the £1 norm X, s | >, hep, wj Ps(f, S, z\9))| as a selection criterion.

Figures [§] and [9] present preliminary results of attacks on three RFs/XGBs fitted on Adults with
different train/test splits. We note that in all cases, before the attack, the three sensitive features had
large negative attributions. By applying our method, we can considerably reduce the amplitude of
the two sensitive attributes. The attribution of the remaining sensitive feature remains approximately
constant or slightly becomes more negative. We leave it as future work to run large scale experiments
with multiple sensitive features for various datasets.
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Figure 8: Example of log-space search over values of A using RFs classifier fitted on Adults and three
sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as a function
of the parameter A of the attack. (Right) For each value of A, the vertical slice of the 11 curves is the
GSV obtained with the resulting B/,. The goal here is to reduce the amplitude all sensitive features
(red curves) in order to hide their contribution to the disparity in model outcomes.
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Figure 9: Example of log-space search over values of A using XGBs classifier fitted on Adults and
three sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as
a function of the parameter \ of the attack. (Right) For each value of )\, the vertical slice of the
11 curves is the GSV obtained with the resulting B,,. The goal here is to reduce the amplitude all
sensitive features (red curves) in order to hide their contribution to the disparity in model outcomes.
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E.2 EXAMPLES OF ATTACKS

In this section, we present 8 specific examples of the attacks that were conducted on COMPAS, Adult,
Marketing, and Communities.

juv_other_count 4 = Original 101 fou
Juv - I Manipulated
3 f(Do)
sex o -
0.84 ===
juv_fel_count
c_charge_degree 4 . 0.6
8
juv_misd_count 4
0.44
age q
race - 0.24
priors_count 4
0.0

0.00

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01
Shap value

0.1 0.2 0.3 0.4 0.5

Output

0.6 0.7 0.8

Figure 10: Attack of RF fitted on COMPAS. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading
subsets f(S}), f(S7) and the CDF over the whole data. f(Dy), f(D1).

c_charge_degree 1 Original 101
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T u T T T 0.0 7 T T T T T =
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Figure 11: Attack of XGB fitted on COMPAS. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading
subsets f(S(), f(S1) and the CDF over the whole data. f(Dy), f(D1).
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Figure 12: Attack of XGB fitted on Adults. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading
subsets f(S(), f(S1) and the CDF over the whole data. f(Dy), f(D1).
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. Attack of RF fitted on Adults. Left: GSV before and after the attack with M = 200. As a

reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading subsets
£(S0), f(S1) and the CDF over the whole data. f(Dy), f(D1).
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Figure 14: Attack of RF fitted on Marketing. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the misleading
subsets f(S(), f(S1) and the CDF over the whole data. f(Dy), f(D1).
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Figure 15: Attack of XGB fitted on Marketing. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the mislead-
ing subsets f(S}), f(S1) and the CDF over the whole data. f(Dy), f(D;). Since we used the
TreeExplainer for this model, we had to explain its raw output which is a logit and not a
probability. Hence the output is not constrained to the interval [0, 1].
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Figure 16: Attack of XGB fitted on Communities. Left: GSV before and after the attack with
M = 200. As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF
of the misleading subsets f(.S(), f(S7) and the CDF over the whole data. f(Dy), f(D1). Since we
used the TreeExplainer for this model, we had to explain its raw output which is a logit and not
a probability. Hence the output is not constrained to the interval [0, 1].

27



Under review as a conference paper at ICLR 2023

HousVacant q
PctHousNoPhone -
PctPersOwnOccup
Numimmig -
pctWPuUbAsst o
PctLess9thGrade
PctLargHouseFam -
MalePctDivorce -
PctTeen2Par-
racePctHisp q
NumUnderPov -
PctPopUnderPov q
TotalPctDiv
PctYoungKids2Par-
FemalePctDiv q

B Original
B Manipulated

1.0

0.8

0.6

CDF

0.4

pctWinvinc 4
PctPersDenseHous
PctFam2Parq
PctWhite>90 1
Pctllleg §

Numllileg -
PctKids2Par 0.0

-0.07 —-0.06 -0.05 —0.04 -0.03 —-0.02 -0.01 0.00 0.0 0.2 0.4 0.6 0.8 1.0
Shap value Output

0.2

Figure 17: Attack of RF fitted on Communities. Left: GSV before and after the attack with M = 200.
As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF of the
misleading subsets f(S)), f(S7) and the CDF over the whole data. f(Dy), f(D1).

E.3 GENETIC ALGORITHM

This section motivates the use of stealthily biased sampling to perturb Shapley values in place of the
method of Baniecki et al.[(2021), which fools SHAP by perturbing the background dataset S} via a

genetic algorithm. In said genetic algorithm, a population of P fake background datasets {Si(k) }kP:1
evolves iteratively following three biological mechanisms

* Cross-Over: Two parents produce two children by switching some of their feature values.

* Mutation: Some individuals are perturbed with small Uniform noise.

* Selection: The individuals Si(k) with the smallest amplitudes |®,(f, S, Si(k))| are selected for
the next generation.

Although the use of a genetic algorithm makes the method of [Baniecki et al.| (2021)) very versatile, its
main drawback is that there is no constraint on the similarity between the perturbed background and
the original one. Moreover, the mutation and cross-over operations ignore the correlations between
features and hence the perturbed dataset can contain unrealistic instances. Our methods solves both
of these issues. Indeed, our objective is tuned to make sure that the Wasserstein distance between the
original and perturbed background is kept in check. Moreover, since we do not generate new samples
but rather apply non-uniform weights to pre-existing ones, we do not run into the risk of generating
unrealistic data.

To illustrate these points, we have conducted an experiment on Adult-Income. For 5 different train/test
splits, we have fitted a XGB model and run the genetic algorithm for 200 iterations in order to reduce
the importance of the feature gender. At each iteration, we checked if the audit detector was able
to identify the manipulation of S7. Results averaged over the five runs are shown in Figure We
see that the detector is able to systematically identify the fraud after around 50 iterations while the
resulting decreases in amplitude of the sensitive feature remain small (about 30% decrease). On the
other hand, results from Section[5.4] show that our attacks is undetectable and enables reductions in
amplitude that range from 60% to 90% for XGB models fitted on Adults.
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Figure 18: Genetic algorithm attacks of five XGBs fitted on Adult. Left: The relative decreases
in amplitude and detection rates across five runs. Right: One example of CDF of the misleading
subsets f(.S)), f(S7) and the CDF over the whole data. f(Dy), f(D;). Here the audit can detect the
manipulation of S7.
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