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A PROOFS

A.1 PROOFS FOR GSV

Proposition A.1 (Proposition 2.1). The GSV have the following property

d
ÿ

i“1

Φipf,F ,Bq “ E
x„F

rfpxqs ´ E
x„B

rfpxqs. (11)

Proof. As a reminder, we have defined the vector

Φpf,F ,Bq “ E
x„F
z„B

rφpf,x, zq
‰

, (12)

whose components sum up to

d
ÿ

i“1

Φipf,F ,Bq “
d
ÿ

i“1

E
x„F
z„B

rφipf,x, zq s (13)

“ E
x„F
z„B

„ d
ÿ

i“1

φipf,x, zq



(14)

“ E
x„F
z„B

r fpxq ´ fpzq s (15)

“ E
x„F

rfpxqs ´ E
z„B

rfpzqs (16)

“ E
x„F

rfpxqs ´ E
x„B

rfpxqs, (17)

where at the last step we have simply renamed a dummy variable.

Proposition A.2 (Proposition ??). Let S10 be fixed, and let p
Ñ represent convergence in probability

as the size M of the set S11 „ B1M increases, we have

pΦspf, S
1
0, S

1
1q

p
Ñ

N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq. (18)

Proof.

pΦpf, S10, S
1
1q “

1

M2

ÿ

xpiqPS10

ÿ

zpjqPS11

φpf,xpiq, zpjqq

“
1

M

ÿ

zpjqPS11

ˆ

1

M

ÿ

xpiqPS10

φpf,xpiq, zpjqq

˙

“
1

M

ÿ

zpjqPS11

pΦpf, S10, z
pjqq.

(19)

Since S10 is assumed to be fixed, then the only random variable in pΦspf, S
1
0, z

pjqq is zpjq which
represents an instance sampled from the B1. Therefore, we can define ψpzq :“ pΦspf, S

1
0, zq and we

get

pΦspf, S
1
0, S

1
1q “

1

M

ÿ

zpjqPS11

pΦspf, S
1
0, z

pjqq

“
1

M

ÿ

zpjqPS11

ψpzpjqq with S11 „ B1M .
(20)
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By the weak law of large number, the following holds as M goes to infinity (Wasserman, 2004,
Theorem 5.6)

1

M

ÿ

zpjqPS11

ψpzpjqq
p
Ñ E

z„B1
rψpzqs. (21)

Now, as a reminder, the manipulated background distribution is B1 :“ CpD1,ωq with ω ‰ 1{N1.
Therefore

pΦspf, S
1
0, S

1
1q

p
Ñ E

z„B1
rψpzqs

“ E
z„CpD1,ωq

rψpzqs

“

N1
ÿ

j“1

ωjψpz
pjqq

“

N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq

(22)

concluding the proof.

A.2 PROOFS FOR OPTIMIZATION PROBLEM

A.2.1 TECHNICAL LEMMAS

We provide some technical lemmas that will be essential when proving Theorem A.1. These lemmas
and proofs are provided here for completeness and are not meant as contributions by the authors.

Let us first write the formal definition of the minimum of a function.
Definition A.1 (Minimum). Given some function f : D Ñ R, the minimum of f over D (denoted
f‹) is defined as follows:

f‹ “ min
xPD

fpxq ðñ Dx‹ P D s.t. f‹ “ fpx‹q ď fpxq @x P D.

Basically, the notion of minimum coincides with the notion of infimum (highest lower bound) of
fpDq when this lower bound is attained for some x‹ P D. For the rest of this appendix, we shall
only study constrained optimization problems where points from the feasible set D “ tpx, yq : x P
X , y P Yx Ă Yu can be selected by the following procedure

1. Choose some x P X
2. Given the selected x, choose some y P Yx Ă Y where the set Yx is non-empty and depends

on the value of x.

When optimizing objective functions over these types of domains, one can optimize in two steps as
highlighted in the following lemma.
Lemma A.1. Given a feasible set D of the form described above and an objective function f :
X ˆ Y Ñ R, the following holds

min
px,yqPD

fpx, yq “ min
xPX

min
yPYx

fpx, yq.

Proof. Let rfpxq :“ minyPYx
fpx, yq, which is a well defined function on X since Yx is non-empty

for any x P X . By the definition of the minimum, we have

@x P X , Dy‹pxq P Yx s.t. rfpxq “ fpx, y‹pxqq ď fpx, yq @y P Yx. (23)

Now, we can optimize rf with respect to x i.e. f‹ “ minxPX rfpxq. By applying once again the
definition of the minimum, we get

Dx‹ P X s.t. f‹ “ rfpx‹q ď rfpxq @x P X . (24)
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By virtue of Equation 23, we have that rfpx‹q “ fpx‹, y‹px‹qq “ fpx‹, y‹q, where we labeled
y‹ :“ y‹px‹q for convenience. We get

Dpx‹, y‹q P D s.t. fpx‹, y‹q ď fpx, y‹pxqq @x P X (cf. Equation 24)
ď fpx, yq @ y P Yx. (cf. Equation 23)

Hence we have proven that Dpx‹, y‹q P D s.t. fpx‹, y‹q ď fpx, yq @px, yq P D, which concludes
the proof.

Lemma A.2. Given a feasible set D of the form described above and two functions h : X Ñ R and
g : Y Ñ R, then

min
px,yqPD

ˆ

hpxq ` gpyq

˙

“ min
xPX

ˆ

hpxq ` min
yPYx

gpyq

˙

Proof. Applying Lemma A.1 with the function fpx, yq :“ hpxq`gpyq leads to the desired result.

14
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s t

`j ri

apeq “ βpΦspf, S
1
0, z

pjqq

cpeq “ 8
fpeq ” rωj

apeq “ λ |fpzpiqq ´ fpzpjqq|
cpeq “ 8
fpeq ” rπi,j

apeq “ 0
cpeq “ 1
fpeq “ 1

Figure 6: Graph G on which we solve the MCF. Note that the total amount of flow is d “ N1 and
there are N1 left and right nodes `j , ri.

A.2.2 MINIMUM COST FLOWS

Let G “ pV, Eq be a graph with vertices v P V with directed edges e P E Ă V ˆ V , c : E Ñ R` be a
capacity and a : E Ñ R be a cost. Moreover, let s, t P E be two special vertices called the source and
the sink respectivelly, and d P R` be a total flow. The Minimum-Cost Flow (MCF) problem of G
consists of finding the flow function f : E Ñ R` that minimizes the total cost

min
f

ÿ

ePE
apeqfpeq

s.t. 0 ď fpeq ď cpeq @e P E

ÿ

ePu`

fpeq ´
ÿ

ePu´

fpeq “

$

&

%

0 u P V z ts, tu
d u “ s

´d u “ t

(25)

where u` :“ tpu, vq P Eu and u´ :“ tpv, uq P Eu are the outgoing and incoming edges from u. The
terminology of flow arises from the constraint that, for vertices that are not the source nor the sink,
the outgoing flow must equal the incoming one, which is reminiscent of conservation laws in fluidic.
We shall refer to fppu, vqq as the flow from u to v.

Now that we have introduced minimum cost flows, let us specify the graph that will be employed to
manipulate GSV, see Figure 6. We label the flow going from the sink s to one of the left vertices as
rωi ” ωi ˆN1, and the flow going from `j to ri as rπi,j ” πi,j ˆN1. The required flow is fixed at
d “ N1.
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Theorem A.1. Solving the MCF of Figure 6 leads to a solution of the linear program in Algorithm 1.

Proof. We begin by showing that the flow conservation constraints in the MCF imply that π is
a coupling measure (i.e. π P ∆pB,B1q), and ω is constrained to the probability simplex ∆pN1q.
Applying the conservation law on the left-side of the graph leads to the conclusion that the flows
entering vertices `j must sum up to N1

N1
ÿ

j“1

rωj “ N1.

This implies that ω is must be part of the probability simplex. By conservation, the amount of flow
that leaves a specific vertex `j must also be rωj , hence

ÿ

i

rπij “ rωj .

For any edge outgoing from ri to the sink t, the flow must be exactly 1. This is because we have N1

edges with capacity cpeq “ 1 going into the sink and the sink must receive an incoming flow of N1.
As a consequence of the conservation law on a specific vertex ri, the amount of flow that goes into
each ri is also 1

ÿ

j

rπij “ 1.

Putting everything together, from the conservation laws on G, we have that ω P ∆pN1q, and
π P ∆pB,B1q.
Now, to make the parallel between the MCF and Algorithm 1, we must use Lemma A.2. As a reminder,
the Lemma states that for specific types of domains, one can solve the constrained optimization
problem in two optimization steps. Note that ω is restricted to the probability simplex, while π is
restricted to be a coupling measure. Importantly, the set of all possible coupling measures ∆pB,B1q
is different for each ω (and non-empty) because B1 depends on ω. Hence, we study a feasible set
with the same structure as the ones tackled in the Lemma A.2 (where x P X becomes ω P ∆pN1qq

and y P Yx becomes π P ∆pB,B1q) and we can apply the Lemma A.2 to the objective function of the
MCF.

min
f

ÿ

ePE
fpeqapeq “ min

rω,rπ

N1
ÿ

j“1

βrωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij |fpz
piqq ´ fpzpjqq|

“ min
rω,rπ

N1

N1

ˆ

β
N1
ÿ

j“1

rωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
rω,rπ

ˆ

β
N1
ÿ

j“1

rωj
N1

pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

rπij
N1
|fpzpiqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q,πP∆pB,B1q

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λ
ÿ

i,j

πi,j |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q,πP∆pB,B1q

ˆ

hpωq ` gpπq

˙

“ N1 min
ωP∆pN1q

ˆ

hpωq ` min
πP∆pB,B1q

gpπq

˙

(cf Lemma A.2)

“ N1 min
ωP∆pN1q

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λ min
πP∆pB,B1q

ÿ

i,j

πi,j |fpz
piqq ´ fpzpjqq|

˙

“ N1 min
ωP∆pN1q

ˆ

β
N1
ÿ

j“1

ωj pΦspf, S
1
0, z

pjqq ` λWpB,B1ωq
˙

which (up to a multiplicative constant N1) is a solution of the linear program of Algorithm 1.
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B SHAPLEY VALUES

B.1 LOCAL SHAPLEY VALUES

We introduce Local Shapley Values (LSV) more formally. First of, as explained earlier, Shapley
values are based on coalitional game theory where the different features work together toward a
common outcome fpxq. In a game, the features can either be present or absent, which is simulated
by replacing some features by a baseline value z.
Definition B.1 (Replace Function). Given an input of interest x, a subset of features S Ď

t1, 2, . . . , du that are considered active, and a baseline input z, the replace-function rS : RdˆRd Ñ
Rd is defined as

rSpz,xqi “

"

xi if i P S
zi otherwise.

(26)

We note that this function is meant to “activate” the features in S.

Now, if we let π be a random permutation of d features, and πi denote all features that appear before
i in π, the LSV are computed via

φipf,x, zq :“ E
π„Ω

“

fp rπiYtiupz,xq q ´ fp rπipz,xq q
‰

, i “ 1, 2, . . . , d, (27)

where Ω is the uniform distribution over 2d permutations. Observe that the computation of LSV is
exponential w.r.t the number of features d hence model-agnostic computations are only possible with
datasets with few features such as COMPAS and Adult-Income. For datasets with larger amounts of
features the TreeExplainer algorithm (Lundberg et al., 2020) can be used to compute the LSV
(cf. Equation 27) in polynomial time given that one is explaining a tree-based model.

B.2 CONVERGENCE

As a reminder, we are interested in estimating the GSV Φ ” Φpf,F ,Bq which requires estimating
expectations w.r.t the foreground and background distributions. Said estimations can be conducted
with Monte-Carlo where we sample M instances

S0 „ FM S1 „ BM , (28)

and compute the plug-in estimates

pΦpf, S0, S1q :“ Φpf, CpS0,1{Mq, CpS1,1{Mqq

“
1

M2

ÿ

xpiqPS0

ÿ

zpjqPS1

φpf,xpiq, zpjqq.
(29)

We now show that, pΦpf, S0, S1q is a consistent and asymptotically normal estimate of Φpf,F ,Bq
Proposition B.1. Let f : X Ñ r0, 1s be a black box, F and B be distributions on X , and pΦ ”

pΦpf, S0, S1q be the plug-in estimate of Φ ” Φpf,F ,Bq, the following holds for any δ P s0, 1r and
k “ 1, 2 . . . , d

lim
MÑ8

P
ˆ

|pΦk ´ Φk| ě
F´1
N p0,1qp1´ δ{2q

2
?
M

b

σ2
10 ` σ

2
01

˙

“ δ,

where F´1
N p0,1q is the inverse Cumulative Distribution Function (CDF) of the standard normal

distribution, σ2
10 “ Vx„F rEz„Brφipf,x, zqqs s and σ2

01 “ Vz„BrEx„F rφipf,x, zqqs s.

Proof. The proof consists simply in noting that LSV φkpf,x
piq, zpjqq are a function of two indepen-

dent samples xpiq „ F and zpjq „ B. The model f is assumed fixed and hence for any feature k we
can define hpxpiq, zpjqq :“ φkpf,x

piq, zpjqq. Now, the estimates of GSV can be rewritten

pΦkpf, S0, S1q “
1

|S0| |S1|

ÿ

xpiqPS0

ÿ

zpjqPS1

hpxpiq, zpjqq, (30)
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which we recognize as a well-known class of statistics called two-samples U-statistics. Such statistics
are unbiased and asymptotically normal estimates of

Φkpf,F ,Bq “ E
x„F
z„B

rhpx, zqs. (31)

The asymptotic normality of two-samples U-statistics is characterized by the following Theorem
(Lee, 2019, Section 3.7.1).

Theorem B.1. Let pΦk ” pΦkpf, S0, S1q be a two-samples U-statistic with |S0| “ N, |S1| “ M ,
moreover let hpx, zq have finite first and second moments, then the following holds for any δ P s0, 1r

lim
N`MÑ8

s.t.N{pN`MqÑpPp0,1q

P
ˆ

|pΦk ´ Φk| ě
F´1
N p0,1qp1´ δ{2q
?
M `N

d

σ2
10

p
`

σ2
01

1´ p

˙

“ δ,

where σ2
10 “ Vx„F rEz„Brhpx, zqs s and σ2

01 “ Vz„BrEx„F rhpx, zqs s.

Proposition B.1 follows from this Theorem by choosing N “M,p “ 0.5 and noticing that having
a model with bounded outputs (f : X Ñ r0, 1s) implies that |hpx, zq| ď 1 @x, z P X which means
that hpx, zq has bounded first and second moments.

B.3 COMPUTE THE LSV

Running Algorithm 1 requires computing the coefficients pΦspf, S
1
0, z

pjqq for j “ 1, 2, . . . , N1. To
compute them, first note that they can be written in terms of LSV for all instances in S10

pΦspf, S
1
0, z

pjqq “
1

M

ÿ

xpiqPS10

φspf,x
piq, zpjqq. (32)

The LSV φspf,x
piq, zpjqq are computed deeply in the SHAP code and are not directly accessible

using the current API. Hence, we had to access them using Monkey-Patching i.e. we modified
the ExactExplainer class so that it stores the LSV as one of its attributes. The attribute can
then be accessed as seen in Figure 7. The code is provided as a fork the SHAP repository. For the
TreeExplainer, because its source code is in C++ and wrapped in Python, we found it simpler to
simply rewrite our own version of the algorithm in C++ so that it directly returns the LSV, instead of
Monkey-Patching the TreeExplainer.

Figure 7: How we extract the LSV from the ExactExplainer via Monkey-Patching.
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C STATISTICAL TESTS

C.1 KS TEST

A first test that can be conducted is a two-samples Kolmogorov-Smirnov (KS) test (Massey Jr, 1951).
If we let

pFSpxq “
1

|S|

ÿ

zPS

1pz ď xq (33)

be the empirical CDF of observations in the set S. Given two sets S and S1, the KS statistic is

KSpS, S1q “ sup
xPR

| pFSpxq ´ pFS1pxq|. (34)

Under the null-hypothesis H0 : S „ D|S|, S1 „ D|S1| for some univariate distribution D, this
statistic is expected to not be too large with high probability. Hence, when the company provides the
subsets S10, S

1
1, the audit can sample their own two subsets fpS0q, fpS1q uniformly at random from

fpD0q, fpD1q and compute the statistics KSpfpS1q, fpS
1
1qq and KSpfpS0q, fpS

1
0qq to detect a fraud.

C.2 WALD TEST

An alternative is the Wald test, which is based on the central limit theorem. If S1 „ BM , then the
empirical average of the model output over S1 is asymptotically normally distributed as M increases
i.e.

WaldpfpS1q, fpBqq :“

1
M

ř

zPfpS1q
z ´ µ

σ{
?
M

ù N p0, 1q, (35)

where µ :“ Ez„fpBqrzs and σ2 :“ Vz„fpBqrzs are the expected value and variance of the model
output across the whole background. The same reasoning holds for S0 and the foreground F .
Applying the Wald test with significance α would detect a fraud when

|WaldpfpS11q, fpBqq | ą F´1
N p0,1qp1´ α{2q, (36)

where F´1
N p0,1q is the inverse of the CDF of a standard normal variable.
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D METHODOLOGICAL DETAILS

D.1 TOY EXAMPLE

The toy dataset was constructed to closely match the results of the following empirical study com-
paring skeletal mass distributions between men and women (Janssen et al., 2000). First of, the sex
feature was sampled from a Bernoulli

S „ Bernoullip0.5q. (37)

According to the Table 1 of Janssen et al. (2000), the average height of women participants was 163
cm while it was 177cm for men. Both height distributions had the same standard deviation of 7cm.
Hence we sampled height via

H|S“man „ N p177, 49q

H|S“woman „ N p163, 49q
(38)

It was noted in Janssen et al. (2000) that there was approximately a linear relationship between height
and skeletal muscle mass for both sexes. Therefore, we computed the muscle mass M as

M |tH“h, S“manu “ 0.186h` 5ε

M |tH“h, S“womanu “ 0.128h` 4ε

with ε „ N p0, 1q
(39)

The values of coefficients 0.186, 0.128 and noise levels 5 and 4 were chosen so the distributions
of M |S would approximately match that of Table 1 in Janssen et al. (2000). Finally the target was
chosen following

Y |tH“h,M“mu „ BernoullipP pH,Mq q

with P pH,Mq “
“

1` expt100ˆ 1pH ă 160q ´ 0.3pM ´ 28qu
‰´1

.
(40)

Simply put, the chances of being hired in the past (Y ) were impossible for individuals with a smaller
height than 160cm. Moreover, individuals with a higher mass skeletal mass were given more chances
to be admitted. Yet, individuals with less muscle mass could still be given the job if they displayed
sufficient determination. In the end we generated 6000 samples leading to the following disparity in
Y

PpY “ 1|S“manq “ 0.733 PpY “ 1|S“womanq “ 0.110. (41)
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Table 2: Models Test Accuracy % (mean ˘ stddev).

mlp rf xgb

COMPAS 68.2˘ 0.9 67.7˘ 0.8 68.6˘ 0.8
Adult 85.6˘ 0.3 86.3˘ 0.2 87.1˘ 0.1
Marketing 91.1˘ 0.1 91.4˘ 0.3
Communities 83˘ 2 82˘ 2

Table 3: Models Demographic Parity (mean ˘ stddev).

mlp rf xgb

COMPAS ´0.12˘ 0.01 ´0.11˘ 0.01 ´0.11˘ 0.02
Adult ´0.20˘ 0.01 ´0.19˘ 0.01 ´0.192˘ 0.004
Marketing ´0.104˘ 0.005 ´0.11˘ 0.01
Communities ´0.50˘ 0.01 ´0.54˘ 0.02

D.2 REAL DATA

The datasets were first divided into train/test subsets with ratio 4
5 : 1

5 . The models were trained
on the training set and evaluated on the test set. All categorical features for COMPAS, Adult, and
Marketing were one-hot-encoded which resulted in a total of 11, 40, and 61 columns for each dataset
respectively. A simple 50 steps random search was conducted to fine-tune the hyper-parameters with
cross-validation on the training set. The resulting test set performance and demographic parities
for all models and datasets, aggregated over 5 random data splits, are reported in Tables 2 and 3
respectively.
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E ADDITIONAL RESULTS

E.1 MULTIPLE SENSITIVE ATTRIBUTES

We present preliminary results for settings where one wishes to manipulate the Shapley values
of multiple sensitive features s each part of a set s P S. For example, in our experiments we
considered gender as a sensitive attribute for the Adult-Income dataset and we showed that one
can diminish the attribution of this feature. Nonetheless, there are two other features in Adult-
Income that share information with this gender: relationship and marital-status. In-
deed, relationship can take the value widowed and marital-status can take the value
wife, which are both proxies of gender=female. For this reason, these two other features
may be considered sensitive and decision-making that relies strongly on them may not be accept-
able. Henceforth, we must derive a method that reduces the total attributions of the features in
S “ tgender,relationship,marital-statusu.
We first let βs :“ signr pΦspf, S10, D1q s for any s P S. In our experiments, all these signs will
typically be negative. The proposed approach is to minimize the `1 norm

}ppΦspf, S
1
0, S

1
1qqsPS}1 :“

ÿ

sPS
| pΦspf, S

1
0, S

1
1q |, (42)

which we interpret as the total amount of disparity we can attribute to the sensitive attributes. Re-
member that pΦspf, S10, S

1
1q converges in probability to

ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq (cf. Proposition
??). Therefore minimizing the `1 norm will require minimizing

ÿ

sPS
βs

ÿ

zpjqPD1

ωj pΦspf, S
1
0, z

pjqq “
ÿ

zpjqPD1

ωj
ÿ

sPS
βs pΦspf, S

1
0, z

pjqq, (43)

which is again a linear function of the weights. We present Algorithm 4 as an overload of Algorithm
1 that now supports taking multiple sensitive attributes as inputs.

Algorithm 4 Compute non-uniform weights for multiple sensitive attributes s P S
1: procedure COMPUTE_WEIGHTS(D1,

 

pΦspf, S
1
0, z

pjqq
(

s,j
, λ)

2: βs :“ signr
ř

zpjqPD1

pΦspf, S
1
0, z

pjqq s @s P S;
3: B :“ CpD1,1{N1q Ź Unmanipulated background
4: B1ω :“ CpD1,ωq ŹManipulated background as a function of ω
5: ω “ arg minω

ř

zpjqPD1
ωj

ř

sPS βs
pΦspf, S

1
0, z

pjqq ` λWpB,B1ωq
6: return ω;

The only difference in the resulting MCF is that we must use the cost apeq “
ř

sPS βs
pΦspf, S

1
0, z

pjqq

for edges ps, `jq in the graph G of Figure 6. This new algorithm is guaranteed to diminish the `1
norm of the attributions of all sensitive features. However, that this does not imply that all sensitive
attributes will diminish in amplitude. Indeed, minimizing the sum of multiple quantities does not
guarantee that each quantity will diminish. For example, 4 ` 7 is smaller than 6 ` 6 although 4
is smaller than 6 and 7 is higher than 6. Still, we see reducing the `1 norm as a natural way to
hide the total amount of disparity that is attributable to the sensitive features. Another important
methodological change is the way we select the optimal hyper-parameter λ in Algorithm 3. Now at
line 13, we use the `1 norm

ř

sPS |
ř

zpjqPD1
ωj pΦspf, S

1
0, z

pjqq| as a selection criterion.

Figures 8 and 9 present preliminary results of attacks on three RFs/XGBs fitted on Adults with
different train/test splits. We note that in all cases, before the attack, the three sensitive features had
large negative attributions. By applying our method, we can considerably reduce the amplitude of
the two sensitive attributes. The attribution of the remaining sensitive feature remains approximately
constant or slightly becomes more negative. We leave it as future work to run large scale experiments
with multiple sensitive features for various datasets.
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Figure 8: Example of log-space search over values of λ using RFs classifier fitted on Adults and three
sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as a function
of the parameter λ of the attack. (Right) For each value of λ, the vertical slice of the 11 curves is the
GSV obtained with the resulting B1ω . The goal here is to reduce the amplitude all sensitive features
(red curves) in order to hide their contribution to the disparity in model outcomes.
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Figure 9: Example of log-space search over values of λ using XGBs classifier fitted on Adults and
three sensitive attributes. Each row is a different train/test split seed. (Left) The detection rate as
a function of the parameter λ of the attack. (Right) For each value of λ, the vertical slice of the
11 curves is the GSV obtained with the resulting B1ω. The goal here is to reduce the amplitude all
sensitive features (red curves) in order to hide their contribution to the disparity in model outcomes.
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E.2 EXAMPLES OF ATTACKS

In this section, we present 8 specific examples of the attacks that were conducted on COMPAS, Adult,
Marketing, and Communities.
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Figure 10: Attack of RF fitted on COMPAS. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 11: Attack of XGB fitted on COMPAS. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is race. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 12: Attack of XGB fitted on Adults. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 13: Attack of RF fitted on Adults. Left: GSV before and after the attack with M “ 200. As a
reminder, the sensitive attribute is gender. Right: Comparison of the CDF of the misleading subsets
fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 14: Attack of RF fitted on Marketing. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.
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Figure 15: Attack of XGB fitted on Marketing. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is age. Right: Comparison of the CDF of the mislead-
ing subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q. Since we used the

TreeExplainer for this model, we had to explain its raw output which is a logit and not a
probability. Hence the output is not constrained to the interval r0, 1s.
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Figure 16: Attack of XGB fitted on Communities. Left: GSV before and after the attack with
M “ 200. As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF
of the misleading subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q. Since we

used the TreeExplainer for this model, we had to explain its raw output which is a logit and not
a probability. Hence the output is not constrained to the interval r0, 1s.
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Figure 17: Attack of RF fitted on Communities. Left: GSV before and after the attack with M “ 200.
As a reminder, the sensitive attribute is PctWhite>90. Right: Comparison of the CDF of the
misleading subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q.

E.3 GENETIC ALGORITHM

This section motivates the use of stealthily biased sampling to perturb Shapley values in place of the
method of Baniecki et al. (2021), which fools SHAP by perturbing the background dataset S11 via a
genetic algorithm. In said genetic algorithm, a population of P fake background datasets tS1pkq1 uPk“1
evolves iteratively following three biological mechanisms

• Cross-Over: Two parents produce two children by switching some of their feature values.
• Mutation: Some individuals are perturbed with small Uniform noise.

• Selection: The individuals S1pkq1 with the smallest amplitudes |Φspf, S10, S
1pkq
1 q| are selected for

the next generation.

Although the use of a genetic algorithm makes the method of Baniecki et al. (2021) very versatile, its
main drawback is that there is no constraint on the similarity between the perturbed background and
the original one. Moreover, the mutation and cross-over operations ignore the correlations between
features and hence the perturbed dataset can contain unrealistic instances. Our methods solves both
of these issues. Indeed, our objective is tuned to make sure that the Wasserstein distance between the
original and perturbed background is kept in check. Moreover, since we do not generate new samples
but rather apply non-uniform weights to pre-existing ones, we do not run into the risk of generating
unrealistic data.

To illustrate these points, we have conducted an experiment on Adult-Income. For 5 different train/test
splits, we have fitted a XGB model and run the genetic algorithm for 200 iterations in order to reduce
the importance of the feature gender. At each iteration, we checked if the audit detector was able
to identify the manipulation of S11. Results averaged over the five runs are shown in Figure 18. We
see that the detector is able to systematically identify the fraud after around 50 iterations while the
resulting decreases in amplitude of the sensitive feature remain small (about 30% decrease). On the
other hand, results from Section 5.4 show that our attacks is undetectable and enables reductions in
amplitude that range from 60% to 90% for XGB models fitted on Adults.
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Figure 18: Genetic algorithm attacks of five XGBs fitted on Adult. Left: The relative decreases
in amplitude and detection rates across five runs. Right: One example of CDF of the misleading
subsets fpS10q, fpS

1
1q and the CDF over the whole data. fpD0q, fpD1q. Here the audit can detect the

manipulation of S11.
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