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A STANDARD DEVIATION

Table 1: Standard Deviation Analysis Standard deviations (STD) corresponding to Table 1. Each
experiment shows three STD values separated by a backslash: (1) STD over 30 experiments with 10
random templates and 3 seeds, (2) mean STD over templates, and (3) mean STD over seeds.

Model
Dataset ~ Method | BLOOM 1.7B | GPT-j 6B | Llama3 8B
2 4 6 2 4 6 2 4 6
Prefix Tuning  00.5/00.4/00.1 03.1/02.7/01.9 03.1/02.6/02.1 00.8/00.6/00.2 02.3/01.5/00.7 05.8/04.3/03.9 - - -
ICL 04.3/04.0/01.5 12.6/08.6/09.4 14.9/10.6/09.7 05.5/04.0/03.0 14.1/12.6/08.2 13.1/09.9/09.9 13.2/12.7/06.1 15.7/11.9/10.2 13.7/12.2/06.5
PTF 07.6/07.6/00.4 08.2/08.2/00.7 08.1/08.1/00.6 06.8/06.5/02.3 07.8/06.9/04.3 09.5/09.0/04.9 16.6/16.5/01.0 17.1/17.1/01.6 12.7/10.9/05.7
PT 08.6/08.5/01.7 08.9/08.6/02.4 08.7/08.4/025 07.7/07.6/01.3 07.0/07.0/00.9 07.4/07.4/01.0 06.4/06.1/03.1 06.8/06.6/02.8 07.0/06.5/03.7
SST2  IPTY 12.3/12.3/03.4  14.1/11.4/09.8 15.3/10.1/12.6 05.8/05.1/02.5 11.1/08.0/08.3 12.3/12.3/02.0 08.7/06.8/05.6 12.5/11.2/07.3 02.7/02.6/01.6
IPT 02.0/01.5/00.4 11.6/08.7/08.2 14.8/09.0/11.8 00.7/00.4/002 13.0/08.1/10.0 07.2/05.7/04.7 13.7/13.7/03.9 10.6/09.6/05.5 12.0/10.3/05.3
LoRA 06.9/06.9/00.2  06.5/06.5/00.5 06.4/06.3/00.5 09.5/09.5/00.8 10.2/10. 2/[)1 2 10.0/09.9/01.4 11.4/11.4/01.4 15.0/14.6/07.6 12.1/11.9/07.2
CPT} 12.3/12.3/03.6  13.8/09.8/10.5 15.4/14.2/09.6 07.6/06.7/03.2 .0 07.0/06.2/04.1 05.0/04.3/02.5 04.1/03.0/02.3 02.0/01.7/01.2
CPT 07.7/05.3/02.9 12.0/11.1/06.9 12.9/10.5/09.7 05.5/03.9/02.9 10.7/08.9/05.1  13.2/10.9/08.5 01.6/01.5/01.0 01.3/01.2/01.0

Prefix Tuning  01.7/01.7/00.6  05.8/02.9/05.2  05.3/03.9/03.9 05.9/05.9/00.5 12.7/09.4/08.2 = — —
ICL

10.5/06.8/08.7 11.7/10.1/06.4 12.2/11.1/06.0 10.0/08.9/05.2 2 10.4/09.4/05.0 08.8/03.2/08.1 03.2/03.0/02.3 03.1/02.7/02.4

PT} 05.2/04.1/04.1  06.0/04.3/04.4 10.9/10.5/07.3 16.2/16.1/00.9 13.7/11.5/09.5 13.6/11.9/07.8 11.9/11.8/06.1 10.9/10.3/05.8 10.5/09.0/06.5

PT 07.9/04.6/06.9 08.4/06.8/05.7 09.9/09.3/05.2 12.3/11.5/05.3 10.8/06.7/08.6 07.0/02.5/06.8 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2

AG News  IPT} 11.7/09.2/08.4  07.5/05.5/05.0 15.0/09.4/124 11.0/08.3/07.9 07.1/03.1/06.5 07.6/03.5/06.8 02.7/02.5/01.6 03.5/02.8/02.2 03.4/02.9/02.5
IPT 12.0/08.6/08.9  10.6/09.1/07.2 12.0/09.4/07.9 11.1/10.0/06.3 08.8/04.6/07.6 07.4/04.6/05.7 03.6/03.1/01.8 08.1/03.2/07.6 05.2/02.2/04.7

LoRA 03.2/03.2/00.5 06.8/03.3/06.1 04.6/04.4/02.7 09.0/09.0/01.3 09.4/09.3/01.8 08.8/05.3/07.3 15.0/15.0/01.5 15.4/15.2/02.7 12.4/12.3/02.2

CPT} 07.2/05.7/05.4  06.0/03.4/04.8 11.9/08.5/09.2 09.6/07.2/07.1 09.0/03.6/08.5 09.2/04.4/08.1 03.1/02.5/02.2 02.9/02.6/02.4 03.4/01.8/03.2

CPT 128/08:7/10.3 122/078/10.3 113/08./07.1 08.6/05.4/07.4 09.1/03.8/08.5 07.2/03.7/00.2 03.3/02.6/02.3 04:3/03.6/02.8 02.9/02:3/02:3

Prefix Tuning  03.5/03.4/01.9 06.4/03.1/05.7 08.7/03.6/08.1 02.3/02.3/01.7 04.5/02.7/03.6 07.0/04.9/06.2 = =
ICL 23.3/06.9 25.8/23.5/08.9 23.9/23.6/06.0 16.6/16.3/05.9 15.7/13.1/08.1 06.7/05.8/04.0 07.7/06.4/06.2 06.8/02.6/06.5 04 z/oz 3/04.0
3/ 7/08.:

PTH 09.7/09.6/01.7  07.1/04.6/05.8 06.3/05.8/04.2  06.3/05.8/04.2 19.5/17.3/11.0 15.7/12.7/09.0
PT 10.8/10.8/01.3  13.0/12.4/05.9 11.3/07.1/09.1 08.9/05.0/07.5 11.9/11.7/04.2 15 k
DBpedia  IPTY 25.6/21.2/14. 7 24.3/22.6/08.9 27.3/26.2/08.5 1 11.0/09.7/06.2  06.8/05.3/05.2  05.3/04.3/03.0 04 04.5/04.1/01.9
IPT 26.2/25.1/07.5  25.0/20.3/11.9  07.6/07.0/02.9 12. z/l 1.2/06.0  09.6/06.0/07.2 05.4/03.7/04.1 09.7/08.4/046 06.0/03.6/051 05.6/03.1/05.3
LoRA 11.4/11.0/03.1  11.6/11.6/00.3 11.7/11.7/00.4 11.6/10.9/04.9 13.0/06.0/11.6 09.8/06.0/07.9 13.1/13.0/01.7 14.3/14.2/02.2 13.7/13.7/01.5
CPT} 23.2/14.5/18.0 12.0/10.1/07.1 22.1/20.1/10.5 15.6/08.6/14.3 06.5/05.0/04.5 06.0/03.2/05.2 06.2/05.6/02.7 03.8/03.4/02.4 02.3/02.2/01.7
CPT 15.5/13.4/06.5 11.8/08.8/07.1 04.7/04.0/02.5 10.9/08.2/05.5 05.0/03.8/03.5 03.9/03.0/03.0 06.1/05.0/04.8 04.3/03.5/03.0 04.3/02.6/03.5
Prefix Tuning  06.7/00.8/06.6 06.4/02.9/06.0 07.0/04.6/06.0 03.1/02.0/02.5 05.9/02.6/05.1 03.7/03.6/00.8 = = =
ICL 11.0/07.2/08.2  10.5/08.2/06.8 13.8/09.0/09.1 08.9/05.9/06.8 11.0/08.2/07.8 12.6/08.3/09.4 08.6/05.6/06.3 14.2/07.9/12.0 13.2/08.3/10.7
PT} 05.9/04.4/03.7 07.5/06.7/04.5 11.2/08.7/07.8 05.5/04.3/03.4 4.3 135/08.2/1L.7 09.5/05.7/08.3 11.3/06.1/09.4 10.3/08.4/08.1
PT 03.8/03.4/01.5  08.2/07.3/06.7 11.2/08.6/09.1 04.0/04.0/00.9 09.7/08.2/07.8  05.0/05.0/0L5  04.5/04.5/02.5 03.8/03.8/02.0
TREC IPTT 05.5/03.6/04.0 10.1/09.1/07.1 16.8/08.1/15.5 06.8/05.3/04.2 14.0/07.8/11.9  13.6/06.3/12.3 4/
IPT 10.5/07.1/07.8  06.1/05.9/05.0 14.1/07.4/12.8 09.7/05.4/08. 13.0/03.8/12.5  12.1/08.5/07.8
LoRA 03.9/03.9/01.0  04.0/04.0/00.3 04.1/04.1/004 02.5/02.5/00.4 2 11.9/07.2/104 03.3/03.3/01.0 03.5/02. 16.5/08. |/|d 4
CPTY 08.0/05.8/05.4  07.7/06.9/06.3 09.9/07.0/07.9 08.5/05.7/06.4 12.9/08. 3/10 o 11.2/08.2/09.0 13.1/06.9/11.6  09. 8/03 7/09.2 05.0/04.1/03.4
CPT 09.1/05.2/07.3  07.9/07.2/05.6 12.9/07.0/10.8 07.4/04.1/06.1 08.7/06.2/06.9 08.6/05.5/07.3 16.8/08.4/14.5 07.4/06.5/05.8 07.9/05.6/06.5

In table [T] we present the standard deviations (STD) corresponding to the main results shown in
Table 1. For each experiment, we display three STD values, separated by a backslash. These values
represent the variability in the results across different configurations:

1. The first value shows the standard deviation over 30 experiments, which includes 10 random
templates and 3 seeds that determine the training examples. 2. The second value provides the
mean of the standard deviation over the templates, the standard deviation across 10 templates, and
the mean of the standard deviation across 3 seeds. 3. The third value presents the mean standard
deviation over the seeds, the standard deviation over 3 seeds, and the mean over 10 templates.

This detailed breakdown of standard deviations allows for a more thorough understanding of the
variability in model performance across different templates and seeds.
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B EVALUATION DETAILS

All the graphs and ablation studies were conducted and evaluated using the DBPedia dataset with
the GPT-J model. This setup was chosen due to the diversity of the DBPedia dataset, which includes
a broad range of categories and entities, making it an ideal candidate for comprehensive evaluation.
The use of GPT-J, a powerful generative model, ensures that the results are reflective of state-of-
the-art performance in language modeling tasks. The combination of DBPedia and GPT-J allows us
to thoroughly investigate the behavior of the model across various ablation settings, ensuring robust
insights into the performance of different methods and configurations.

B.1 PRUNING FOR CLASSIFICATION

In our evaluation setup, we use pruning for classification by focusing only on the first token of the
label, which is unique across all datasets. A common approach in the in-context learning setup is
to iterate over all possible labels for each test sample and select the label with the highest proba-
bility according to the language model (LM). However, this approach can become computationally
expensive, especially in cases where there are a large number of classes.

Similarly to Ratner et al.| (2022), and given that the first token in each dataset is unique, we predict
only the first token of the label and perform classification based on this value. While this approach
deviates slightly from the common practice of iterating over all possible labels, the effect on the
results should be minor.

B.2 TEST SET SIZE

For our experiments, we used a varying number of test examples depending on the dataset. Specif-
ically, we used 100 test examples for the SST-2 dataset, and for datasets with a larger number of
classes, the number of test examples was scaled linearly with the number of classes. For example,
in the DBpedia dataset, which has 7 times more classes than SST-2, we used 700 test examples
to ensure that the evaluation is proportional to the number of classes. This scaling helps to main-
tain a balanced evaluation across datasets with differing complexities, ensuring robust performance
metrics for each method.
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C INSTRUCTION DETAILS

In some of the experiments, we use specific instructions to guide the model in performing the clas-
sification tasks. Below in table 2] that shows the instructions used for each dataset across all relevant
methods:

Table 2: Instructions used for relevant datasets in the experiments.

Dataset | Instruction

SST2 Classify the sentiment of the following text as positive or negative:

AG News | Classify the following text into one of the following categories: World, Sports, Busi-
ness, Technology

DBpedia | Classify the following text into one of the following categories: Company, Educational
Institution, Artist, Athlete, Office Holder, Mean Of Transportation, Building, Natural
Place, Village, Animal, Plant, Album, Film, Written Work

TREC Classify the following text into one of the following categories: Description, Entity,
Expression, Human, Location, Number
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Table 3: Dataset Overview These are the datasets used, representing a range of different types of
classification tasks, including SST-2, AG News, DBpedia, and TREC. Each dataset has a varying
number of classes (denoted by |C|).

Dataset Task |C]
SST-2 Sentiment analysis (movie) 2
AG News News classification (topic) 4
DBpedia Ontology classification 14

TREC Question classification (answer type) 6

D DATASET DETAILS

In our experiments, we used four different datasets, each representing a unique classification task.
Table |3| provides an overview of the datasets and their respective tasks. Each dataset has a varying
number of classes, denoted by |C'|, which are detailed below:

e SST-2: This dataset is used for sentiment analysis, where the task is to classify movie
reviews as either positive or negative. It contains 2 distinct classes.

* AG News: The AG News dataset is used for news classification. The task is to classify
news articles into one of four categories: World, Sports, Business, and Technology. This
dataset contains 4 classes.

* DBpedia: The DBpedia dataset is focused on ontology classification. The task involves
classifying textual content into one of 14 distinct categories, which include entities such as
Company, Artist, Village, and more.

* TREC: This dataset is used for question classification, where the goal is to classify ques-
tions into one of 6 answer types, including Description, Entity, Human, and Location.

Each dataset contains a specific number of examples based on its classification task, allowing us to
evaluate the model’s performance across a diverse range of challenges.
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E TEMPLATE DETAILS

Table 4: Template Options for Various Datasets We provide various template options for different
datasets. Each dataset include both input and output templates, and also includes intra-separators
between inputs and labels, as well as inter-separators between examples.

Dataset Input Template  Intra-Separator Output Template Inter-Separator
“output: {}7, "target: {}7, "label: {}7,
SST-2 “input: {}”, “emotion: {}”, "semtiment: {}”, ”A {} one.”, o
“text: 7, ”7, "It was {}.”, "All in all {}.”, ”A {} piece.” o
AG News  sentence: {}”, ”\n” “output: {}”, “target: {}”, ’label: {}”, ,,\nrin’”
DBpedia “{ “Topic: {}.”, "Subject: {}.”,
“ TREC “This is about {}.”, "It is about {}.”

In our experiments, we use randomly selected templates from the options provided in table ] sug-
gested in [Voronov et al.| (2024). Each dataset is associated with both input and output templates,
which are used to format the input data and the expected output during few-shot learning tasks.

* Input Template: As shown, this column lists the different templates for formatting the
input data. For example, the SST-2 dataset uses “input: ~” and “text: ” as input templates to
introduce the input text.

* Intra-Separator: This separator is used between components (input and output) within a
single example. For instance, AG News uses \n” as an intra-separator between the input
sentence and the output label.

* Output Template: The output template defines how the expected output is structured. For
example, SST-2 employs formats like output: , target: , label: ” to guide the model in
generating structured output.

¢ Inter-Separator: This column represents the separator used between multiple examples
during training. In datasets like AG News and DBpedia, ”\n\n” is used to separate exam-
ples.

We randomly select templates from the ones listed in table [ for each experiment. This randomness
in selecting templates introduces variability in the prompts, making the evaluation more robust and
testing the model’s ability to generalize across different input-output structures.
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F IMPLEMENTATION DETAILS

F.1 HYPERPARAMETER DETAILS

In table [5] we present the hyperparameters used in our experiments across different models and
datasets. The table provides the specific learning rates (‘Ir‘), epsilon values (‘¢’), and format settings
for the various methods applied to each dataset. The experiments were conducted using multiple
model architectures, including BLOOM 1.7B, GPT-j 6B, and Llama3 8B, and we selected the
best hyperparameters for each experiment: 2, 4, and 6 shots. Below is an overview of the key

hyperparameters:

Table 5: Hyperparameters Hyperparameters used for each experiment across 2, 4, and 6 shots for
different models, including BLOOM 1.7B, GPT-j 6B, and Llama3 8B. The table shows learning rates
(Ir), epsilon values for input and format, and other parameters for methods such as Prefix Tuning,
Prompt Tuning, IPT, LoRA, and CPT. The experiments were conducted on datasets like SST-2, AG
News, DBpedia, and TREC.

o BLOOM 1.7B GPT-j 6B Llama3 8B
Dataset Method Paremeter 4 6 2 4 6 H 2 4 6
Prefix Tuning 1Ir le—3 le—3 1le—3 1le—5 le—4 1le—3 — —
PTY Ir le—5 le—5 le—5 le—4 le—3 1le—3 1le—5 le—5 1le—5
PT Ir le—5 1le—5 1le—5 1le—5 1le—5 le—5 1le—5 1le—5 1le—5
IPT¥ Ir le—5 le—4 le—4 le—5 le—3 le—4 1le—5 le—5 le—4
IPT Ir le—5 le—5 le—5 1le—5 le—4 le—4 1le—5 1le—5 1le—5
SST-2 LoRA Ir le—5 le—5 le—5 le—5 le—5 le—5 1le—5 le—4 1le—4
Ir le—=5 1le—3 le—4 le—5 le—4 le—3 le—5 le—5 le—5
CPT¥ Input e le—3 1le—0 1le—0 1le—3 1le—1 1le—1 1le—1 1le—1 1le—0
Format e le—3 1le—3 1le—3 1le—3 le—2 1le—3 1le—2 1le—1 1le—0
Ir le—3 1le—3 le—4 le—5 le—4 le—4 1le—3 le—4 1le—4
CPT Input e le—2 1le—0 1le—0 1le—=3 1le—0 1le—0 1le—2 1le—0 1le—2
Format € le—2 1le—2 le—3 le—3 le—3 le—2 1le—3 le—3 1le—3
Prefix Tuning Ir le—4 1le—3 le—3 le—5 le—5 1le—3 - —
PTY Ir le—3 le—3 1le—3 1le—5 le—3 1le—3 1le—4 le—4 1le—4
PT Ir le—3 le—3 1le—3 1le—4 le—3 1le—3 1le—4 1le—5 le—4
IPTY Ir le—3 1le—3 1le—3 le—5 le—4 le—4 le—4 le—5 1le—5
IPT Ir le—4 le—3 le—4 le—5 1le—5 le—4 1le—5 le—5 1le—5
AG News LoRA Ir le—5 le—4 le—3 le—5 le—5 le—4 1le—5 le—5 1le—5
Ir le—4 le—3 1le—3 le—4 le—4 le—4 1le—5 1le—5 1le—5
CPT¥ Input € le—2 1le—0 le—0 le—1 le—1 1le—2 1le—1 1le—3 1le—3
Format e le—1 le—2 1le—0 1le—1 le—3 1le—0 1le—1 1le—2 1le—3
Ir le—4 le—4 1le—3 le—3 le—4 le—4 1le—3 le—4 1le-3
CPT Input e le—2 1le—0 1le—0 1le—2 1le—0 1le—0 1le—2 1le—3 1le—3
Format € le—2 1le—0 1le—0 le—3 le—3 1le—0 le—3 le—3 1le—3
Prefix Tuning Ir le—3 1le—3 1le—3 1le—3 1le—3 1le—3 — — —
PT¥ Ir le—3 le—5 1le—3 1le—5 1le—3 1le—3 1le—4 le—4 1le—4
PT Ir le—4 le—5 le—4 1le—3 1le—3 1le—3 1le—4 1le—5 1le—5
IPT} Ir le—4 le—5 le—5 le—5 le—4 le—5 1le—5 le—5 le—5
IPT Ir le—5 le—5 le—5 le—5 1le—5 le—5 le—5 le—5 le—5
DBpedia LoRA Ir le—4 le—5 le—5 le—4 le—4 le—4 1le—5 le—5 1le—5
Ir le—5 le—5 le—5 le—4 1le—5 le—5 1le—5 1le—5 1le—5
CPT¥ Input e le—2 1le—2 1le—1 1le—0 1le—1 1le—1 1le—0 1le—1 1le—1
Format e le—1 le—0 le—1 1le—3 1le—0 le—1 1le—1 1le—0 1le—1
Ir le—4 le—4 le—5 le—4 le—4 le—4 1le—5 le—5 1le—-5
CPT Input e le—0 1le—2 1le—0 1le—0 1le—0 1le—0 1le—2 1le—0 1le—3
Format € le—0 le—0 1le—0 1le—0 le—3 1le—3 le—2 le—3 le—2
Prefix Tuning Ir le—-3 1le—3 1le—3 1le—3 1le—3 1le—-5 — — —
PT+ Ir le—3 1le—3 1le—3 1le—3 1le—3 1le—3 le—4 1le—4 1le—4
PT Ir le—=5 1le—3 1le—3 le—5 le—3 1le—3 le—5 le—5 le—5
IPT} Ir le—3 1le—3 1le—3 le—4 1le—3 le—4 1le—4 le—4 1le—5
IPT Ir le—5 le—3 1le—3 1le—4 le—4 le—4 1le—5 1le—5 1le—5
TREC LoRA Ir le—4 le—5 le—5 le—5 le—5 le—4 le—5 le—5 le—4
Ir le—3 1le—3 1le—3 1le—4 1le—4 le—xz 1le—4 1le—5 1le—5
CPT¥ Input € le—0 1le—0 1le—0 le—1 1le—0 1le—0 1le—1 1le—1 1le—1
Format € le—3 le—1 1le—2 le—1 1le—0 le—2 1le—3 1le—0 1le—0
Ir le—3 le—3 le—4 1le—3 le—3 1le—3 1le—4 1le—4 1le—4
CPT Input e le—0 1le—0 1le—0 1le—0 1le—0 1le—3 1le—0 1le—0 1le—0
Format e le—0 1le—0 le—3 1le—2 1le—2 1le—0 1le—2 1le—3 1le—0
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* Learning Rate (‘Ir’): The table provides the learning rates used for each method and
dataset combination. For methods like Prefix Tuning (PT), Prompt Tuning (PT), IPT, and
LoRA, learning rates vary from 1le-5 to 1e-3, depending on the specific model and dataset.

* CPT Hyperparameters: For CPT, we also report epsilon values (‘¢’) for both the input
and the format components. These epsilon values control the magnitude of the perturba-
tions applied during optimization. The values of epsilon vary across different models and
datasets, generally ranging from 1e-2 to 1e-0 for both input and format components.

* Model Variability: The table reflects variability in hyperparameter choices depending on
the model size and architecture. For instance, GPT-3 6B typically requires higher learning
rates compared to BLOOM 1.7B, as seen with CPT and other methods. The hyperpa-
rameters are carefully tuned to optimize performance on tasks such as SST-2, AG News,
DBpedia, and TREC.

These hyperparameters are critical for achieving optimal performance in few-shot learning settings.
They control the learning process, model updates, and how much the model is allowed to adapt to
new data. The values in table[5|are based on extensive experimentation and fine-tuning to ensure the
best results for each method and dataset.

F.2 METHODS IMPLEMENTATION DETAILS

In our experiments, we utilized existing implementations for several methods and implemented IPT
ourselves. Specifically, we used the implementations provided by the Parameter-Efficient Fine-
Tuning Mangrulkar et al.| (2022) (PEFT) library [1_-] for methods such as LoRA, Prefix Tuning, and
Prompt Tuning (PT). For IPT, we built our implementation based on the PEFT framework.

For all experiments, we used the recommended parameters:

e For LoRA, we set « = 16 and the rank » = 8.
* For Prompt Tuning, Prefix Tuning, and IPT we used 8 learnable tokens.

By using the PEFT framework, we ensure that our fine-tuning processes for LoRA, Prefix Tun-
ing, and PT are aligned with current standards, while our custom IPT implementation extends the
framework to allow for additional flexibility in parameter-efficient training.

F.3 TRAINING DETAILS

We utilized the ‘Fine-tune a pretrained model’ package from Wolf et al.[ (2020), which provides a
comprehensive framework for training and evaluating modelﬂ For all baselines, we employed the
default parameters provided by the trainer, ensuring consistency across experiments. Each model
was trained for 25 epochs, allowing sufficient time for convergence while maintaining uniform train-
ing conditions across methods.

'nttps://huggingface.co/docs/peft/en/index
https://huggingface.co/docs/transformers/en/training
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G INPUT PREPARATION

In this section, we provide a detailed explanation of how the input is constructed for different meth-
ods, including Prompt Tuning (PT), Instruction Prompt Tuning (IPT), and Context-Aware Prompt
Tuning (CPT), both with and without the T variant. To clarify the differences, we use SST-2 as an
example with the instruction: ”Classify the sentiment of the following text as positive or negative.”

Each example is constructed using a template that includes input: and output:, where the
input corresponds to the actual text of the example, and the output corresponds to its label. For
instance:

* Example 1: The input is "the greatest musicians", and the output is
"positive".

* Example 2: The input is "the action is stilted", and the output is
"negative".

Using the template, these examples are represented as:

e Example 1: input: the greatest musicians output: positive

e Example 2: input: the action is stilted output: negative
This template-based construction ensures consistency across the methods, allowing us to clearly
define how the input and output are represented in different approaches, such as PT, IPT, and CPT.

The table below outlines the construction of the prefix for each method and highlights which parts
are updated during training.

Table 6: Input Construction for PT, IPT, and CPT (with and without 1) using SST-2. The updated
text during training is marked in red.

Method | Prefix Construction

PT In this part, we use only random embedding
initialization.

PTt Classify the sentiment of the following text as positive
or negative.

IPT In this part, we use only random embedding
initialization. input: the greatest musicians output:
positive. dinput: the action is stilted output:
negative.

IPTY Classify the sentiment of the following text as positive
or negative. input: the greatest musicians output:
positive. input: the action is stilted output:
negative.

CPT input: the greatest musicians output: positive.
input: the action is stilted output: negative.

CPT7 Classify the sentiment of the following text as positive
or negative. input: the greatest musicians output:
positive. input: the action is stilted output:
negative.
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H PROJECTED GRADIENT DESCENT (PGD) ALGORITHM

In our method, we initialize the context tokens, denoted as x;, using the training examples, with
each token x; associated with a vector ¢;, which is initially set to zero. For simplicity, we use x; and
d; to denote these components only in this part of the explanation.

During the optimization process, the tokens x; remain fixed, while the §; vectors are updated iter-
atively. After each optimizer update, we perform a post-processing step where each J; is projected
to ensure that its L2 norm does not exceed a predefined limit, €. It is important to note that this
projection step is independent of the optimizer and serves as an additional operation to control the
extent of change for each context token.

1: Initialize each §; < 0

2: Initialize x; + training_examples_tokens

3: for j « 1tonum of _training_steps do

4: d; « 6; —aVLoss(f(x; + ;) i) > Gradient descent step
5: n; < [|6;]| > Compute the L2 norm of ¢;
6: d; + 6; X clip(ng,€)/n; > Project §; to ensure L2 norm < €
7: end for

This ensures that the updates to §; remain constrained, preventing excessive modifications to the
context tokens and maintaining a balance between optimization and regularization. The process
allows the model to adapt while ensuring that changes to the context tokens remain meaningful and
controlled.
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I EVALUATING THE IMPACT OF PROJECTED GRADIENT DESCENT (PGD)

Our method use the same optimizer used for all baselines. However, our method incorporates an
additional step after each parameter update: we project each token, restricting its allowed change.
The allowed change is determined by the hyperparameters Input € and Format e, which define
the L2 norm limit for each token’s modification.

To ensure that PGD Madry et al.| (2017)) is not the sole reason for our method’s improvement, we
conducted two types of experiments. First, we compared our method without PGD to PT and IPT.
Second, we added a PGD step to PT and IPT for comparison.

For the first experiment, we compared CPT (without PGD) to PT and IPT on the DBpedia dataset.
The results for 2, 4, and 6 shots are presented in Table

Table 7: Performance Comparison Without PGD (DBpedia), using GPT-j.

Method 2 Shots | 4 Shots | 6 Shots
PT 23.39 29.69 40.53
IPT 52.86 67.27 70.73
CPT (No PGD) 68.28 74.17 77.52

For the second experiment, we compared CPTt to PT{ and IPTt (with and without PGD) on the
DBpedia dataset. To ensure a fair comparison, we performed hyperparameter tuning (HPT) over ¢
and the learning rate for both PT and IPT. The results for 2, 4, and 6 shots are presented in Table@

Table 8: Performance Comparison With and Without PGD (DBpedia), using GPT-j.

Method 2 Shots | 4 Shots | 6 Shots
PTY 12.96 22.12 37.44
PTt{ + PGD 12.80 22.02 38.69
IPT} 47.10 66.37 75.09
IPT} + PGD 47.10 66.40 75.09
CPT{ +PGD | 52.87 77.30 81.00

The results clearly demonstrate that, in both experiments, our method consistently outperforms PT
and IPT. Furthermore, it is evident that other methods do not necessarily benefit from the addition
of PGD. While we cannot definitively explain this, we hypothesize that it may be due to the highly
effective way in which we employ PGD, leveraging prior knowledge about the structure of the
input, format, and labels within the context. Our approach allows us to apply distinct projections
to different components of the context, which we believe significantly contributes to the superior
performance of our method.
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