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A EXTENDED RELATED WORK

We present a comparison of our framework, SYNG4ME, and provide further contrast to related work.
Table 2, highlights that related methods often do not permit automated test creation—in particular,
they are often human labor-intensive. Benchmark tasks are tailored to specific datasets and tasks
and hence cannot be customized and/or personalized to an end-user’s specific task, dataset or trained
model. Finally, both benchmark methods and behavioral testing require additional data to be collected
or created—in contrast to SYNG4ME which only requires the original test data, already available.

Table 2: Comparison of related work. (i) Automated test creation, (ii) Permits use case test personal-
ization and (iii) No additional data or info required.

Approach Assumption Use cases (i) (ii) (iii)

SYNG4ME (Ours) Synthetic test data Generative model fits the data -Subgroup testing
-Distributional shift testing ✓ ✓ ✓

BENCHMARK TASKS

Imagenet-C/P (Hendrycks & Dietterich, 2018) Create corrupted images Synthetic corruption
reflects the real-world Image corruption testing × × ×

Wilds (Koh et al., 2021) Collect data with real shifts Wild datasets reflect
sufficient use cases Distribution shift testing × × ×

MODEL BEHAVIOURAL TESTING
CheckList (Ribeiro et al., 2020) Human crafted test scenarios Know a-priori scenarios to test Crafted test scenario tests × ✓ ×
HateCheck (Röttger et al., 2021) Human crafted test scenarios Know a-priori scenarios to test Crafted test scenario tests × ✓ ×
AdaTest (Ribeiro & Lundberg, 2022) GPT-3 creates tests, human selects Human-in-the-loop Weakness probing ✓ ✓ ✓

Data-centric AI. The usage and assessment is vital for ML models, yet is often overlooked as
operational (Sambasivan et al., 2021). The recent focus on data-centric AI (Ng et al., 2021) aims to
build systematic tools to improve the quality of data used to train and evaluate ML models (Polyzotis
& Zaharia, 2021). SYNG4ME contributes to this nascent body of work, specifically around the usage
and generation of data to better evaluate and test ML models

Simulators and counterfactual generators. Simulators have been used to benchmark algorithms
in settings such causal effect estimation and sequential decision-making (Chan et al., 2021). The
work on simulators is not directly related, as the goal is often to test scenarios that are not available in
real-world data. For example, in (Chan et al., 2021) the goal is customization of the decision-making
policy in order to evaluate methods to better understand human decision-making. Similarly, there has
been work on generating realistic synthetic data in the causal inference domain (Neal et al., 2020;
Athey et al., 2021; Parikh et al., 2022), but these methods focus on benchmarking causal inference
methods, do not consider distributional shifts nor subgroup evaluation, and do not explore the value
of the synthetic data beyond realistic, ground-truth counterfactuals.

Synthetic data in computer vision. Synthetic data has been used in computer vision both to improve
model training and to test weaknesses in models. These methods can be grouped as follows by their
motivations:

• Generate synthetic data for training, to reduce the reliance on collecting and annotating
large training sets— This is different from SYNG4ME as they focus on constructing better
training sets, rather than constructing better test sets for model evaluation

• Generate synthetic data to improve the model by augmenting the real dataset with synthetic
examples—*Again, this is different from SYNG4ME as they focus on training better-
performing models, rather than the evaluation of an already trained model

• Generate synthetic data to probe models on different dataset attributes. For example, in face
recognition, how the model might perform on faces with long vs short hair. This is most
similar to SYNG4ME, but there are clear differences in both the goal for and approach to
generating the data. We compare SYNG4ME to (i) CGI- or physics-based simulators and
(ii) deep generative models for probing in computer vision.

In Table 3, we contrast both simulators and generative approaches where synthetic data to probe
models on different dataset attributes.
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Table 3: Comparing SYNG4ME to computer vision synthetic data approaches. A is a performance
metric (Eq. 1) and f the trained predictive model. Dsyn(x) denotes synthetic data is created
dependent on x

Examples Data and/or generator input Conditioning info Does not require
pretrained simulator/generator

Dsyn used for
training or testing Goal

SYNG4ME - Subgroup Dtrain,G = Dtest,f (Any dataset) Subgroups S ✓ Testing
Reliable subgroup performance estimates for f , i.e. choose
Dsyn ∼ pG s.t. A(f ;Dsyn,S)] ≈ E

Diid∼ pR
[A(f ;D,S)]

SYNG4ME - Shift Shift information T
Estimate performance of f under shift T , i.e. choose
Dsyn ∼ pG s.t. A(f ;Dsyn,S)] ≈ E

Diid∼ ps
[A(f ;D,S)]

Computer Vision

Wang et al. (2019) Video game engine (GTA5)
Real-world data Scene info S in virtual world × Training

Improve crowd counting performance on diff. scenes by
generating semi-synthetic data for training f ,
i.e. maxfA(f ;Dtest(S))

Trigueros et al. (2021) Dtrain,f = VGGFace Identity attributes ✓ Training Improve overall performance of facial recognition
i.e. max(A(f ;Dtest))

Kortylewski et al. (2019) 3D face model Nuisance transforms N × Testing
Report face recognition robustness to different
nuisances N , Dsyn(N)
and report A(f ;Dsyn(N)),∀N ∈ N

Ruiz et al. (2022) 3D face model Simulator parameters ρ × Testing
Find adversarial failures for face recognition, i.e.
find ρ = argminρ A(f ;Dsyn(ρ))

Khan et al. (2019) CityEngine, Unreal Engine,
CARLA Weather conditions S × Testing

Report segmentation performance for self-driving
cars under different weather conditions,
i.e. Dsyn(S) and report A(f ;Dsyn(S)),∀S ∈ S

Li & Xu (2021) Pretrained StyleGAN Implicit attributes S
(e.g. age, lighting) × Testing Find attributes with poor performance,

i.e. argminS(A(f ;Dsyn(S)))

McDuff et al. (2019) D = MS-CELEB-1M Subgroups S ✓ Testing Find S with poor face recognition performance,
i.e. argminS(A(f ;Dsyn(S))
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Synthetic data and tabular approaches.

Thank you for highlighting these two works (DataSynthesizer and AITEST). We contrast SYNG4ME
to two works DataSynthesizer (Howe et al., 2017) and AITEST (Saha et al., 2022), which while
seemingly similar have specific differences to SYNG4ME. A side-by-side contrast is presented in
Table 4.

Data Synthesizer

We believe SYNG4ME is significantly different from DataSynthesizer, in terms of aims, assumptions
and algorithmically.

Aim and assumptions. Data Synthesizer primarily focuses on privacy preserving generation of
tabular synthetic data. The closest component to our work is the extension the paper proposes around
adversarial fake data generation. While there are no experiments, the adversarial fake data consists of
three areas. We contrast them to SYNG4ME.

The major difference is Data Synthesizer assumes access to **full knowledge about the
shift/distributional change**. In contrast, SYNG4ME operates in a different setting - (1) **No
prior knowledge** on the shift and (2) **high-level partial knowledge** about the shift through
observing some variables in the target domain.

1. Edit the distribution: this assumes the user knows exactly the shift [Full knowledge of the
shift]. SYNG4ME covers two different settings: (1) No prior knowledge on the shift, where
only minimal assumptions on means of variables allow us to create characteristic curves
like in Section 5.2.* and (2) Incorporating prior knowledge, in which some features are
observed from the shifted distribution and we use these to generate the full data from the
shifted distribution, like in Section 5.2.2. Consequently, the difference is that SYNG4ME
tackles the no and partial information settings, whereas Data Synthesizer tackles the full
info setting of editing the distribution.

2. Preconfigured pathological distributions — this requires full and exact knowledge about the
shift, which differs from SYNG4ME of partial knowledge and no prior knowledge settings.

3. Injecting missing data, extreme values — either such an approach is possible to incorporate
in SYNG4ME. We see these ideas as complementary.

Algorithmic.

The authors propose three methods, one with random features, one with independent features and
one with correlated features. Due to the absence of correlation in the first two, these reduce the data
utility. Let us thus focus on the third method, that does include correlation. This approach uses
Bayesian Networks and is only applicable to discrete data, hence needing to discretise continuous
variables. This loses utility when a coarse discretisation is chosen, while a fine discretisation is often
intractable and data-inefficient due to the ordinal information being lost, e.g. results for age = 31
and age = 32 will generally be similar—exactly the reason why the independent approach was also
introduced. Bayesian Nets are also limited in other ways, e.g. results can be influenced by the feature
generation order deviating from the real data generation process’ ordering, as indicated by the authors
of DataSynthesizer in Figures 5 and 6.

AITEST

We will include AITEST in the related work in the *updated Appendix A*, since indeed it uses
synthetic data for testing. Let us briefly outline why we believe SYNG4ME is novel and significantly
different compared to AITEST. We contrast SYNG4ME to AITEST in terms of aims and assumptions,
algorithm, and use cases.

Aims and assumptions. AITEST has a significantly different aim and method compared to
SYNG4ME. As mentioned by the reviewer, AITEST can test for adversarial robustness by gen-
erating realistic data with user-defined constraints, but this is different from our work that aims to
generate synthetic test data for granular evaluation and distributional shifts.

Additionally, the assumptions on user input are quite different: AITEST enables users to define
constraints on features and associations between features, whereas SYNG4ME requires information
in terms of which subgroups to test or shifts to generate. We do see possibilities to combine
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both frameworks, e.g. through including constraints similar to the ones AITEST uses within the
SYNG4ME method, or using fairness as a downstream task.

We have taken a step in this direction and added fairness as an additional experiment and have
included this experiment in the new Appendix D.4.

Algorithmic AITEST requires a decision tree surrogate of the black-box model, whilst SYNG4ME
does not need to model the black-box predictive model. AITEST defines data constraints by fitting
different distributions to the features and using statistical testing to select the correct distribution. The
dependencies are then captured by a DAG. SYNG4ME does not require predefined constraints and
dependencies, but aims to learn these implicitly with the generative model.

Use cases

• Group fairness: AITEST aims to probe if a model does have a group fairness issue or not.
The goal of SYNG4ME is different — even if models don’t have group bias issues, with
SYNG4ME we desire reliable performance metric estimates (accuracy or even fairness)
which are similar to the oracle estimates on small and intersectional subgroups for which we
have limited real test data.

• Adversarial robustness: AITEST does this by generating more inputs in the neighborhood
of a specific sample and seeing if they behave the same. In reality, this is analogous to
group-wise testing with n = 1, a very specific type of group testing. In contrast, with
SYNG4ME we explore multiple definitions of groups from specific sensitive attributes, to
intersectional groups, to points of interest (i.e. n = 1), to high- and low density regions.

• AITEST does not account for distribution shift, unlike SYNG4ME which looks at distribu-
tion shift with no prior knowledge and high-level knowledge.

Table 4: Comparing SYNG4ME to other tabular approaches of generating synthetic test data. f is
the trained predictive model and we abbreviate A(f ;D) = A(f ;D,Ω) for evaluating f over all of
D (Eq. 1). (i) used for evaluating subgroups, (ii) used for evaluating shifts, (iii) does not require
discretisation of continuous features, (iv) does not require modelling black-box f

Examples Inputs (i) (ii) (iii) (iv) Generator Type Goal

SYNG4ME Dtrain,G = Dtest,f (Any dataset)
Subgroups: S, Shifts: No/Partial knowledge ✓ ✓ ✓ ✓ GAN

Reliable subgroup performance estimates for f , i.e. choose
Dsyn ∼ pG s.t. A(f ;Dsyn,S)] ≈ E

Diid∼ pR
[A(f ;D,S)]

Estimate performance of f under shift T , i.e. choose
Dsyn ∼ pG s.t. A(f ;Dsyn,S)] ≈ E

Diid∼ ps
[A(f ;D,S)]

DataSynthesizer
Howe et al. (2017)

Privacy-sensitive D
Full knowledge of shift × ✓ × ✓ Bayesian network

Generate private data, extensions for generating
pathological data through (i) manual editing, (ii) inserting
extreme values/missingness, and (iii) .

AITEST
Saha et al. (2022)

Dtrain,G = Dtrain,f ,
Constraints and dependencies (DAG) ✓ × ×/✓ ×

Sample features
sequentially
following DAG

Subgroup performance, e.g. fairness between two
sensitive groups (S1, S2), i.e. A(f ;DSyn,S1)

A(f ;DSyn,S2)
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B EXPERIMENTAL DETAILS

This appendix includes details on the experiments, including (i) the datasets, and (ii) the different
settings of the experiments, including the implementation of baselines.

B.1 DATASETS

Here we describe the real-world datasets used in greater detail.

ADULT Dataset The ADULT dataset (Asuncion & Newman, 2007) has 32,561 instances with a total
of 13 attributes capturing demographic (age, gender, race), personal (marital status) and financial
(income) features amongst others. The classification task predicts whether a person earns over $50K
or not. We encode the features (e.g. race, sex, gender etc) and a summary can be found in Table 5.

Note that there is an imbalance across certain features, such as across different race groups, which is
what we evaluate.

Table 5: Summary of features for the ADULT Dataset (Asuncion & Newman, 2007)

Feature Values/Range

Age 17− 90
education-num 1− 16
marital-status 0, 1
relationship 0, 1, 2, 3, 4
race 0, 1, 2, 3, 4
sex 0, 1
capital-gain 0, 1
capital-loss 0, 1
hours-per-week 1− 99
country 0, 1
employment-type 0, 1, 2, 3
salary 0, 1

Covid-19 Dataset The Covid-19 dataset (Baqui et al., 2020) consists of Covid patients from Brazil.
The dataset is publicly available and based on SIVEP-Gripe data (Brazil Ministry of Health). The
dataset consists of 6882 patients from Brazil recorded between February 27-May 4 2020. The dataset
captures risk factors including comorbidities, symptoms, and demographic characteristics. There is a
mortality label from Covid-19 making it a binary classification task. A summary of the characteristics
of the covariates can be found in Table 6.

SEER Dataset The SEER dataset is a publicly available dataset consisting of 240,486 patients
enrolled in the American SEER program (Duggan et al., 2016). The dataset consists of features used
to characterize prostate cancer, including age, PSA (severity score), Gleason score, clinical stage, and
treatments. A summary of the covariates can be found in Table 7. The classification task is to predict
patient mortality, which is a binary label.

The dataset is highly imbalanced, where 94% of patients survive. Hence, we extract a balanced
subset of of 20,000 patients (i.e. 10,000 with label=0 and 10,000 with label=1).

CUTRACT Dataset The CUTRACT dataset is a private dataset consisting of 10,086 patients enrolled
in the British Prostate Cancer UK program (Prostate Cancer UK). It includes the same features as
SEER and also uses mortality as label, see Table 7.

The dataset is highly imbalanced in its labels, hence we choose to extract a balanced subset of 2,000
patients (i.e. 1000 with label=0 and 1000 with label=1).

B.2 EXPERIMENTS

For specifics on how G is evaluated, tuned and selected, please see Appendix C.1.1.

20



Under review as a conference paper at ICLR 2023

Table 6: Summary of features for the Covid-19 Dataset (Baqui et al., 2020)

Feature Range

Sex 0 (Female), 1(Male)
Age 1− 104
Fever 0, 1
Cough 0, 1
Sore throad 0, 1
Shortness of breath 0, 1
Respiratory discomfort 0, 1
SPO2 0− 1
Diharea 0, 1
Vomitting 0, 1
Cardiovascular 0, 1
Asthma 0, 1
Diabetes 0, 1
Pulmonary 0, 1
Immunosuppresion 0, 1
Obesity 0, 1
Liver 0, 1
Neurologic 0, 1
Branca (Region) 0, 1
Preta (Region) 0, 1
Amarela (Region) 0, 1
Parda (Region) 0, 1
Indigena (Region) 0, 1

Table 7: Summary of features for the SEER (Duggan et al., 2016) and CUTRACT Prostate Cancer UK
datasets. Note: the range of age starts slightly lower for SEER (37-95) compared to CUTRACT
(44-95).

Feature Range

Age 37− 95
PSA 0− 98
Comorbidities 0, 1, 2,≥ 3
Treatment Hormone Therapy (PHT), Radical Therapy - RDx (RT-RDx),Radical Therapy -Sx (RT-Sx), CM
Grade 1, 2, 3, 4, 5
Stage 1, 2, 3, 4
Primary Gleason 1, 2, 3, 4, 5
Secondary Gleason 1, 2, 3, 4, 5

B.2.1 EXPERIMENT 5.1: SUBGROUPS

In this experiment, we evaluate the performance estimates on different subgroups based on the
mean absolute error compared to the estimates of subgroup performance using the oracle dataset. In
order, to represent potential variation of selecting different test sets, we repeat the experiment 10
times, where we sample a different test set in each run. That being said, we keep the proportions in
each dataset fixed such that {Dtrain,f ,Dtest,f ,Doracle} = {8.4k, 2.1k, 19.6k}. Given that minority
subgroups have few samples, in this experiment, we generate n samples for each subgroup, where n
is the size of the largest subgroup in Dtest,f . This allows us to “balance” the evaluation dataset.

In producing the intersectional performance matrix, we slice the data for these intersections. However,
as we slice the data into finer intersections, the intersectional groups naturally become smaller. Hence,
to ensure we have reliable estimates, we set a cut-off wherein we only evaluate performance for
intersectional groups where there are 100 or more samples. In computing the mean absolute error, we
do not include the corresponding intersections for which there were insufficient samples.

B.2.2 EXPERIMENTS 5.2 DISTRIBUTIONAL SHIFTS

No prior knowledge: characterizing sensitivity across operating ranges. In this experiment, we
shift the marginal distribution of single features in mean; i.e. we can write for the shifted marginal
ps(Xi) = p0(Xi − s). We vary s over ±σ(Xi), with σ(Xi) the empirical standard deviation of Xi.
To mitigate unrealistic values, we use cut-offs on both ends of the marginal distribution, i.e. we
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discard any samples that fall outside the original range of Xi. We repeat the sampling from G over
5 independent shifts with the same value of s, in order to represent the potential variability of the
estimates. The Oracle target is created using rejection sampling of the oracle source data, see Section
B.3.

Prior Knowledge. In this experiment, we assume we observe some of the feature in the target domain,
i.e. we observe the empirical marginal distribution of Xc. This empirical marginal distribution is
used to sample from, and conditioned on when generating the other features. The Source RS target is
created using rejection sampling of the test data, see Section B.3.

B.3 REJECTION SAMPLING FOR CREATING SHIFTED DATASETS

In experiments 5.2 and 5.3 we use rejection sampling for the oracle and source baselines, respectively.
Let us briefly explain how this is achieved.

Let D be some dataset with distribution p0(X) that can be split into parts p(Xc̄|Xc) and p(Xc).
As noted in Section 3, we assume the latter changes (inducing a shift in distribution), while the
former is fixed. We denote the shifted marginal distribution as ps(Xc) and the full distribution as
ps(X) = ps(Xc)p(Xc̄|Xc).

In experiment 5.2, we desire a ground-truth target dataset for a given shift. We do not have data from
ps(X), however we can use rejection sampling to create such dataset, which we denote by Ds. Since
we do not know p0(X) either, we sample from the empirical distribution, i.e. from data D itself,
which will converge to the true distribution when |D| becomes large. To approximate p0(Xc), we
train a simple KDE model and ps(Xc) is defined by shifting this distribution (see Section 4.2). This
gives the following algorithm:

Algorithm 1: Rejection sampling from source dataset D, given a predefined marginal shift T and
desired test set size.
Given source dataset D, shift T and desired shifted set size ns

Fit density model p̂0(Xc) to {xc|x ∈ D}
p̂s(Xc)← T (p̂0)(Xc)

M ← maxxc∈D
p̂s(xc)
p̂0(xc)

Ds ← {}
while |Ds| < ns do

Sample x from D uniformly
Sample u ∼ U(0, 1)

if p̂s(xc)
p̂0(xc)

> Mu then
Ds ← Ds ∪ {x}

end
end
return Ds

In Experiment 5.2 we run the above with D an oracle test set. Since the oracle test set is very large, it
covers p0 relatively well. This allows us to approximate p0(Xc), and also means that draws from the
empirical distribution are distributed approximately like the true underlying distribution.

In experiment 5.3 we use a similar set-up for creating baseline Source (RS) based on Dtest,f alone,
and to have a fair comparison we use rejection sampling to weigh the points.7 In this case, however,
the distribution p0(Xc), and in turn ps(Xc), cannot be approximated accurately. In addition, we may
have very little data such that the same points need to be included many times (in regions with large
ps(Xc)/p

0(Xc)). As a result, although we see that Source (RS) performs better than unshifted Source
(all), it is a poor evaluation approach.

7Effectively, this reduces to an importance weighted estimate of the performance.
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C GENERATIVE MODEL: REQUIREMENTS, TUNING AND RELIABILITY

This appendix focuses on the influence and choice of the generative model in the SYNG4ME
framework. It consists of three parts. First, we explain how we choose and tune the generative model.
Second, we include an ablation study that varies the size of the dataset SYNG4ME uses —showing
when SYNG4ME does and does not improve model evaluation. Third, we extend on this and delve
into reliability of SYNG4ME, by incorporating uncertainty into the SYNG4ME framework through
using an ensemble of generative models.

C.1 CHOOSING AND TUNING THE GENERATIVE MODEL

Any generative model can be used to produce the synthetic test data, but some models may be better
or worse than others. SYNG4ME uses CTGAN (Xu et al., 2019b), since this model is designed
specifically for tabular data and has shown good performance. In this section, we explain how it is
tuned, and include comparison to other generative models.

C.1.1 ASSESSING THE QUALITY OF GENERATIVE MODEL G IN SYNG4ME.

Approaches to model selection and quality assessment of generative models often measure the
distance between the generated and the true distributions (Borji, 2019). In SYNG4ME, we use
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), a popular choice for synthetic data
quality (Sutherland et al., 2017; Bounliphone et al., 2016).

MMD performs a statistical test on distributions P r (Real) and P g (Generated), measuring the
difference of their expected function values, with a lower MMD implying P g is closer to P r.

We use MMD in our auto-tuning and model selection step, comparing the generated data to a held-out
test set, with G selected as the model with the lowest MMD. This step also serves to ensure that
the data generated by SYNG4ME is indeed close to the real-world reference dataset of interest.
Specifically, hyper-parameters of SYNG4ME when training G are tuned via a Tree-structured Parzen
Estimator. We search over the number of epochs of training [100, 200, 300, 500], learning rate
[2e-4, 2e-5, 2e-6] and embedding dimension [64,128,256]. For all methods, we have a small hyper-
parameter validation set with size of 10% of the training dataset. Our objective is based on MMD
minimization.

That said, of course alternative widely used metrics such as Inverse KL-Divergence or the Jensen-
Shannon divergence could also be used as metrics of assessment.

C.1.2 INFLUENCE OF MODEL CHOICE.

Any generative model can be used as the core of SYNG4ME. For efficiency, a conditional generative
model is highly desirable; this allows direct conditioning on subgroup or shift information, and not
e.g. post-generation rejection sampling. Furthermore, some generative models may provide more or
less realistic data. Here we compare SYNG4ME estimates provided by CTGAN, vs estimates given
by TVAE and Normalizing Flows.

We assess these different base models for G on the race subgroup task from Sec. 5.1. Using
SYNG4ME can assess the generative models based on MMD, but for completeness we also show
inverse KL-divergence and Jensen-Shannon Divergence (JSD), where the metrics are computed vs a
held-out validation dataset.

We show in Table 8, that the better quality metric does indeed translate into better performance when
we use the synthetic data for model evaluation. We find specifically that CTGAN outperforms the
other approaches, serving as validation for our selection.

Additionally, the results highlight that for practical application, one could evaluate the quality of G
first using metrics such as MMD, inverse KLD or JSD, as a proxy for how well the generative model
should perform.

We assume for the purposes of this experiment that the three classes of models are trained with the
same optimization hyperparameters (epochs=200, learning rate=2e-4).
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Table 8: Assessing the influence of model choice for G and illustrating how our quality assessment metrics in
SYG4ME can be used to select the best model which indeed will provide the best performance. We see that
indeed CTGAN performs best in this case.

Base G MMD ↓ Inverse KLD ↑ JSD ↓ Subgroup (%) Mean Absolute Error % ↓

CTGAN 0.0014 0.995 0.03

#1 (86%) 0.28 ± 0.24
#2 (9%) 17.64 ± 0.29
#3 (3%) 2.96 ± 1.02
#4 (1%) 1.14 ± 0.62
#5 (1%) 1.03 ± 0.85

NF 0.0034 0.970 0.09

#1 (86%) 16.25 ± 0.53
#2 (9%) 26.35 ± 1.07
#3 (3%) 20.50 ± 3.31
#4 (1%) 27.14 ± 0.97
#5 (1%) 26.04 ± 2.87

TVAE 0.4557 0.4987 0.505

#1 (86%) 25.93 ± 1.34
#2 (9%) 35.40 ± 0.83
#3 (3%) 24.05 ± 1.12
#4 (1%) 33.0 ± 0.31
#5 (1%) 37.69 ± 0.61

C.2 UNDERSTANDING WHEN TO USE SYNG4ME

Motivation. As discussed in Section 4, there is “no free lunch”, since of course synthetic data cannot
always help with model evaluation. We build on our experimental results to study the effect of test
set sizes on SYNG4ME and in what conditions synthetic data is unnecessary or even harmful.

Setup. As is conventional, our datasets: Dtrain,f and Dtest,f are split with proportion p from dataset
D. Recall, for validation we also have a large amount of unseen independent data Doracle, which can
be thought of as representing the population seen by the model post-deployment. We then train the
generative model G on the hold-out test dataset, i.e. Dtest,f .

In this experiment, we vary the proportion split p of Dtest,f to study the effect of increasing the
amount of test data for model evaluation. Since G is trained on this dataset, this also assesses the
effect on the generator. Note that even in settings with a majority subgroup (many samples) and
minority subgroup (fewer samples), that as the size of Dtest,f increases, so will the number of
samples contained in each subgroup.

Analysis. We quantify the effect of changing the proportion of Dtest,f - i.e. as the proportion
increases, the size of the test set correspondingly increases. We evaluate both the majority and
minority-sized subgroups from the Adult dataset. The results in Fig. 7 provided as an example are for
an RF-model. We interpret them as follows.

• Majority subgroup (many samples): When the proportion of data is lower (i.e. smaller test
set), SYNG4ME is able to outperform test data alone. However, as the proportion gets large
(i.e. more samples), we see that in fact simply having a large amount of real test data is
better than synthetic data. That being said, at such high proportions we would have sufficient
real-data for evaluation and hence typically have no need for synthetic data. Furthermore,
since train-test splits typically have test proportions between 0.2-0.4, the large-portion
situation is also unlikely in practice.

• Minority subgroup (fewer samples): This type of subgroup often does not have sufficient
test data to adequately assess performance. This explains why it performs poorly for
very low proportions <= 0.1 (very few samples) — there are insufficient data samples
to train G. However, as the proportion increases (so does the number of samples), the
performance improves drastically as we are able to better train G. This allows synthetic
data to outperform real data alone, as we are able to generate more samples. Of course, for
very large proportions (meaning we have a large number of samples), then synthetic data
vs real test data are somewhat similar. Similar to the previous point, though such high test
proportions are unlikely in practice.

Takeaway: Synthetic data using SYNG4ME should not be used when we have insufficient samples
to train a generative model (MMD could assess this) or obtain good coverage. Alternatively, there
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Figure 7: Assessment of mean performance difference for SYNG4ME vs Test data for varying
proportion data splits.

may be limited benefit of synthetic in high proportion settings — in any case, we typically have
sufficient real test data in this case.

C.3 UNCERTAINTY QUANTIFICATION TO ASSESS SYNTHETIC DATA

Evidently, on the basis of the previous experiment, we cannot always generate reliable synthetic data,
which may lead to poor performance estimates. It is thus essential that we quantify the confidence of
SYNG4ME estimates, so that we understand when to trust our predictions and when not. We quantify
the uncertainty in the generative process using generative ensembles. We are motivated by the idea
of Deep Ensembles (Lakshminarayanan et al., 2017), which has been shown to work well in the
supervised domain (Rahaman et al., 2021; Lobacheva et al., 2020). We take a similar approach, but
replace the predictive models by our generative models. First, we sample Di

train,G ⊂ Dtrain,G, for
i = 1, ..., nG, with nG the number of generators. Second, similar as before, we (i) train a generative
model Gi on Di

train,G, (ii) generate Di
syn and (iii) evaluate downstream models, repeating this for

all i. The standard deviation in scores between different generators is used to quantify the uncertainty,
with the average providing the final estimated score.
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Figure 8: Example of uncertainty quantification using SYNG4ME.

Set-up. In order to train the deep generative ensemble, we randomly sample Di
train,G ⊂ Dtrain,G,

for i = 1, ..., 5. We then generate synthetic data for each subgroup using each generator and evaluate
downstream model f performance, repeating for all i. The mean and standard deviation of scores
across the ensemble represents the final estimate and uncertainty, respectively. Linked to the previous
experiment, we assess how this translates to performance estimates for a large- and small-subgroup.

Analysis. We first show results for the subgroup setting considered in the main paper (Sec. 5.1). See
Fig. 8 for the results. We observe that the SYNG4ME confidence bounds cover the true value well
for most subgroups. Naturally, a traditional point estimate using just the test set does not provide
such information. Note that for the majority group, the point estimate is decently accurate due to the
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Figure 9: Analysis of how the uncertainty estimates of deep generative ensembles in SYGN4ME can
be used to assess confidence of the SYNG4ME estimates

larger amount of samples available. This shows that SYNG4ME might not be necessary when plenty
of test data is already available—e.g. for a majority group.

Next, we assess the setting with changes in proportions as in the previous experiment, i.e. Sec. C.2.
We keep the range of proportions to 0.1-0.5, as this is the most realistic range in practice. We then
assess the uncertainty of the ensemble of generators as a function of increasing proportion, with the
RF downstream predictive model on Adult as an example. The results are illustrated in Fig. 9.

We see that for small proportions, the generative model produces intervals with large widths indica-
tive of the uncertainty in the generative model, with the interval widths shrinking with increasing
proportion. This result reflects the same pattern as the results from Sec. C.2.

In addition, the regions with small interval widths strongly reflect the regions for which synthetic data
is beneficial (i.e. correct performance estimates), and vice versa, large intervals when it is not. As a
consequence, end users could, in fact, use such intervals to help decide when to trust the performance
estimates using SYNG4ME and when not.

Takeaway. SYNG4ME permits to quantify uncertainty of downstream predictive performance
estimates using deep generative ensembles. The width of uncertainty intervals strongly reflect when
the performance estimates from SYGN4ME are useful.
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D ADDITIONAL EXPERIMENTS

This appendix includes a number of additional results. It consists of three parts. First, we illustrate
how the definition of subgroup, allows two other interesting use cases for granular evaluation: (i)
subgroups defined using a point of interest (i.e. how would a model perform on patients that look like
X), and (ii) subgroups defined in terms of local density (i.e. how would a model perform on unlikely
patients). Second, we include the results for SYNG4ME when we have access to the training set of
predictor model f ; since this dataset is usually larger, it can provide a higher quality model. Third,
we include additional results for the main paper’s experiments, using different downstream models,
predictors and baselines.

D.1 OTHER DEFINITIONS OF SUBGROUPS

D.1.1 SUBGROUPS RELATING TO POINTS OF INTEREST

Motivation. End-users may also be interested in knowing how a model performs on some point of
interest x∗. For example, a clinician may have access to a number of models and may need to decide
for the specific patient in front of them what the model’s potential predictive performance might be
for the specific patient. This is relevant because global performance metrics may hide that models
underperform for specific samples.

We can often assess model performance on samples similar to the sample of interest, i.e. “neighbor-
hood performance”. A challenge in reality is that we often only have access to a held-out test dataset
(i.e. Dtest), rather than the entire population (i.e. Doracle). How then can we quantify performance?

Usually it is not possible to assess local performance using test data alone, since there may be very
few samples that are similar enough—with “similar” defined in terms of some distance metric, i.e.
S = {x ∈ X |d(x, x∗) < ϵ}, with distance metric d and some small distance ϵ ≥ 0. As before,
we can instead generate synthetic data in the region S and compute the performance on this set
instead. This reduces the dependence on the small number of samples, in turn reducing variance in
the estimated performance.

Set-up. We compare two approaches: (i) find nearest-neighbor points in Dtest)—which might suffer
from limited similar samples—, or (ii) use SYNG4ME and generate synthetic samples Dsyn in some
neighborhood of x∗. Similarly as before, we assess these two methods by comparing estimates with
a pseudo-ground truth that uses nearest neighbors on a much larger hold-out set, Doracle. Again,
we compare (1) mean absolute performance difference and (2) worst-case performance difference
between a specific evaluation set and the oracle dataset. We average across 10 randomly queried
points x∗ and use k = 10 nearest neighbours.

Analysis. The results in Table 9 shows that SYNG4ME has a much lower neighborhood performance
gap, both average and worst case for x∗ across models, when compared to the assessment using
Dtest. The rationale is that by using synthetic data, we can generate more examples Dsyn that closely
resemble x∗, whereas with Dtest we might be limited in the similar samples that can be queried -
hence resulting in the higher variance estimates and poorer overall performance.

Table 9: Comparing two types of query methods to evaluate performance on points of interest x∗, which
illustrates that SYNG4ME closer approximates an oracle both on average and worst case.

Model Mean performance differenc ↓ Worst-case performance difference ↓
Dsyn (SYNG4ME) Dtest,f Dsyn (SYNG4ME) Dtest,f

MLP 0.083 0.15 0.482 0.60
RF 0.086 0.18 0.256 0.50

GBDT 0.093 0.18 0.50 0.50

Takeaway. SYNG4ME’s synthetic data can more robustly estimate performance on individual points
of interest based on the samples generated in the neighborhood of x∗.

D.1.2 SUBGROUPS AS HIGH- AND LOW-DENSITY REGIONS

Motivation Models often perform worse on outliers and low-density regions due to the scarcity of
data during training. We generate insight into this by defining subgroups in terms of density.
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Methodology. We would like to partition the points into set of most likely to least likely w.r.t. density.
We use the notion of α-support from (Alaa et al., 2022), namely:

Suppα(p) = argmin
S⊆X̃

V (S) s.t. p(X̃ ∈ S) = α, (2)

with V some volume measure (e.g. Lebesgue). In other words, α-support Suppα(p) denotes the
smallest possible space to contain X̃ with probability α—which can be interpreted as the α most
likely points. Subsequently, we can take a sequence of quantiles, (qi)ki=0 ∈ [0, 1], with qi =

i
k and

look at the sequence of support sets, (Suppqi(p))ki=0.

The α-support itself always contains the regions with the highest density. To actually partition the
points into sets from likely to unlikely, we instead look at the difference sets. That is, let us define
sets Si = Suppqi(p)\Suppqi−1(p) for i = 1, ..., k.

In fact, we do not know p exactly and even if we did, it is usually intractable to find an exact expression
for the α−support. Instead, we compute the α-support in the generative model’s latent space, and not
the original space. The latent distribution is usually chosen as a dz-dimensional standard Gaussian,
which has two advantages: (i) the distribution is continuous—cf. the original space, in which there
may exist a lower-dimensional manifold on which all data falls; and (ii) the α-support is a simple
sphere, with the radius given by CDF−1

χ2
dz

(α).
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Figure 10: Performance on likely vs
unlikely data, where error bars are
over 10 runs

Set-up. We train a generative model G : Z → X̃ as before, where
the input z is dz-dimensional Gaussian noise. During generation
we save inputs {zj}kNj=1 and generate corresponding data Dsyn =

{x̃j}kNj=1. Sets for likely and unlikely points are defined using
α-support in latent space Z , for quantiles q = (qi)

k
i=1—see

Section D.1.2. Specifically, let the index sets for each quantile
set be given by Ii = {j|||zj ||2 < Quantile({||zj ||2}, qi)}, giving
synthetic sets Dqi

syn = {x̃j ∈ Dsyn|j ∈ Ii} for all i. We then
evaluate the predictive model f on each Dqi

syn and plot results
w.r.t. q. We use the SEER dataset.

Analysis. Fig. 10 shows that for the tail quantiles (unlikely) data
that the model performance is indeed highly variable and prone to
possible poor performance. This is in contrast to the likely data,
which has much more stable performance.

Takeaway. SYNG4ME’s synthetic data can be used to quantify
model performance on unlikely and likely data.

D.2 IMPROVING G WHEN TRAINING DATA OF f IS AVAILABLE

Motivation. In previous experiments, we have assumed that we have access to only Dtest,f for
training G. In some scenarios, we have access to Dtrain,f . For example, the model developer has
access to Dtrain,f . Since the training dataset is often larger than the testing dataset, we could use
this data to train G. Evidently, this results in some bias: we are now using synthetic data generated
using G, which is trained on Dtrain,f , to evaluate a predictive model that is also trained on Dtrain,f .
However, here we show that this bias is outweighed by the improved quality of G.

Setup. This experiment evaluates the mean performance difference for (i) SYNG4ME, (ii)
SYNG4ME+ and (iii) Dtest,f . We follow the same setup as the granular subgroup experiment
in Section 5.1, with the only difference being that Dtrain,G = Dtrain,f . We assess the utility of this
setup for granular subgroup evaluation.

Analysis. Table 10 illustrates the performance similar to that of the main paper. We find that
SYNG4ME mostly provides a more accurate evaluation of model performance (i.e. with estimates
closer to the oracle) compared to a conventional hold-out dataset. This is especially true for the
smaller subgroups for which synthetic data is indeed necessary. Furthermore, SYNG4ME has a lower
worst-case error compared to Dtest,f . The results, with SYNG4ME+ also illustrate the benefit of
augmenting real data with synthetic data, leading to lower performance differences.
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Table 10: Mean absolute performance difference between predicted performance and performance
evaluated by the oracle, where G is trained on Dtrain,f . SYNG4ME better approximates true
performance on minority subgroups, compared to test data alone.

Model Subgroup (%) Mean performance diff. ↓ Worst-case performance diff. ↓
SYNG4ME SYNG4ME+ Dtest,f SYNG4ME SYNG4ME+ Dtest,f

RF

#1 (86%) 6.05 ± 0.72 2.33 ± 0.42 9.16 ± 4.48 7.08 2.84 11.65
#2 (9%) 4.16 ± 0.33 4.29 ± 0.47 5.85 ± 3.18 4.44 4.82 8.94
#3 (3%) 2.15 ± 1.04 1.88 ± 0.8 13.59 ± 5.34 3.41 3.03 19.73
#4 (1%) 4.54 ± 0.33 4.54 ± 0.34 7.1 ± 3.93 4.89 4.96 13.23
#5 (1%) 3.15 ± 0.77 3.06 ± 0.77 8.72 ± 0.0 4.2 4.12 8.72

GBDT

#1 (86%) 7.37 ± 1.09 3.25 ± 0.32 1.19 ± 0.81 9.22 3.6 2.42
#2 (9%) 3.44 ± 0.52 3.37 ± 0.54 2.56 ± 1.08 3.98 4.02 4.49
#3 (3%) 2.6 ± 1.53 2.46 ± 1.38 4.53 ± 1.04 4.29 3.97 5.73
#4 (1%) 0.76 ± 0.58 0.76 ± 0.57 6.51 ± 5.07 1.31 1.34 14.53
#5 (1%) 2.23 ± 0.82 2.15 ± 0.85 7.73 ± 3.33 3.47 3.45 9.4

MLP

#1 (86%) 6.72 ± 1.2 3.0 ± 0.46 1.01 ± 0.62 8.55 3.5 1.92
#2 (9%) 4.32 ± 0.46 4.13 ± 0.54 2.45 ± 1.46 4.91 4.87 4.41
#3 (3%) 1.98 ± 1.1 1.88 ± 0.99 4.06 ± 0.8 3.58 3.33 4.69
#4 (1%) 2.57 ± 0.5 2.49 ± 0.53 7.44 ± 3.17 3.37 3.36 12.42
#5 (1%) 2.17 ± 0.62 2.13 ± 0.64 4.3 ± 3.66 3.24 3.22 8.72

SVM

#1 (86%) 6.74 ± 0.58 3.0 ± 0.49 1.26 ± 0.93 7.37 3.6 2.46
#2 (9%) 5.62 ± 0.14 5.31 ± 0.4 3.63 ± 1.25 5.83 5.81 5.63
#3 (3%) 1.09 ± 0.73 1.04 ± 0.73 2.51 ± 1.09 2.43 2.33 3.88
#4 (1%) 1.08 ± 0.4 0.97 ± 0.39 11.62 ± 4.31 1.51 1.44 16.01
#5 (1%) 4.22 ± 0.6 4.17 ± 0.61 3.1 ± 2.99 5.2 5.18 6.71

AdaBoost

#1 (86%) 6.89 ± 0.96 3.06 ± 0.31 1.11 ± 0.71 8.61 3.44 2.14
#2 (9%) 3.91 ± 0.3 3.76 ± 0.44 2.31 ± 1.86 4.24 4.31 5.15
#3 (3%) 2.13 ± 1.43 2.01 ± 1.3 4.59 ± 2.48 4.22 4.0 7.79
#4 (1%) 1.24 ± 0.65 1.16 ± 0.69 8.66 ± 6.46 1.99 1.97 19.89
#5 (1%) 3.42 ± 0.71 3.36 ± 0.73 5.17 ± 3.55 4.47 4.44 8.05

Bagging

#1 (86%) 5.81 ± 1.02 2.65 ± 0.53 10.01 ± 4.49 7.03 3.61 12.83
#2 (9%) 4.89 ± 0.68 5.06 ± 0.44 7.65 ± 3.22 5.97 5.54 10.69
#3 (3%) 3.72 ± 1.65 3.37 ± 1.64 8.5 ± 4.77 5.98 5.67 14.55
#4 (1%) 7.01 ± 0.28 7.0 ± 0.3 6.16 ± 3.51 7.46 7.48 11.21
#5 (1%) 5.06 ± 1.09 5.0 ± 1.09 4.41 ± 4.07 6.59 6.55 9.4

LR

#1 (86%) 6.51 ± 0.63 2.97 ± 0.3 1.09 ± 0.41 7.57 3.38 1.81
#2 (9%) 4.11 ± 0.32 3.9 ± 0.51 3.33 ± 0.98 4.52 4.52 4.57
#3 (3%) 1.15 ± 0.73 1.11 ± 0.64 4.6 ± 2.72 2.28 2.08 7.61
#4 (1%) 1.69 ± 0.59 1.62 ± 0.62 7.16 ± 4.27 2.57 2.55 13.48
#5 (1%) 4.08 ± 0.76 4.02 ± 0.78 4.76 ± 3.21 5.44 5.41 7.38

D.3 ADDITIONS TO MAIN PAPER RESULTS

D.3.1 SUBGROUP PERFORMANCE EVALUATION W/ MORE DOWNSTREAM MODELS

Motivation. The performance of the model, on subgroups, is likely influenced by the class of
downstream predictive model f . We aim to assess the performance of the granular subgroups for a
broader class of downstream models f

Setup. This experiment evaluates the mean performance difference for (i) SYNG4ME, (ii)
SYNG4ME+ and (iii) Dtest,f . We follow the same setup as the granular subgroup experiment
in Section 5.1. We increase the predictive models beyond RF, MLP and GBDT and further include:
SVM, AdaBoost, Bagging Classifier, and Logistic Regression.

Analysis. Table 11 illustrates that SYNG4ME, when evaluated with more models, still better
approximates the true performance on minority subgroups, compared to test data alone. This is in
terms of Mean absolute performance difference between predicted performance and performance
evaluated by the oracle.

D.3.2 SUBGROUP WORST-CASE PERFORMANCE EVALUATION

Motivation. When estimating sub-group performance, of course we want to have as low error as
possible on average (i.e. low mean performance difference). That said, average performance glosses
over the worst-case scenario. We desire that the worst-case mean performance difference is also
low. This is to ensure that, by chance, the performance estimates are not wildly inaccurate. This
scenario is particularly relevant, as by chance the testing data could either over- or under-estimate
model performance, leading us to draw incorrect conclusions.
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Table 11: Mean absolute performance diff. between the predicted performance and the oracle for a
broader class of models

Model Subgroup (%) Mean absolute performance diff. % ↓
Race SYNG4ME SYNG4ME+ Dtest,f

RF

#1 (86%) 7.26 ± 0.94 2.31 ± 1.56 10.02 ± 3.36
#2 (9%) 4.33 ± 0.34 4.55 ± 0.38 6.83 ± 2.67
#3 (3%) 3.48 ± 0.82 2.98 ± 0.79 13.68 ± 4.39
#4 (1%) 1.14 ± 0.62 1.18 ± 0.62 7.26 ± 3.79
#5 (1%) 1.03 ± 0.85 0.96 ± 0.84 8.06 ± 2.0

GBDT

#1 (86%) 7.47 ± 0.83 2.97 ± 0.85 1.39 ± 0.98
#2 (9%) 4.25 ± 0.36 4.07 ± 0.31 2.14 ± 1.0
#3 (3%) 4.40 ± 0.91 4.16 ± 0.91 4.39 ± 1.92
#4 (1%) 1.61 ± 0.62 1.61 ± 0.65 4.50 ± 4.73
#5 (1%) 0.68 ± 0.58 0.68 ± 0.56 6.31 ± 3.29

MLP

#1 (86%) 6.79 ± 1.09 2.85 ± 0.74 1.07 ± 0.83
#2 (9%) 5.06 ± 0.37 4.72 ± 0.27 1.63 ± 1.35
#3 (3%) 3.60 ± 0.82 3.43 ± 0.83 4.75 ± 0.94
#4 (1%) 0.55 ± 0.29 0.57 ± 0.31 6.21 ± 3.44
#5 (1%) 0.48 ± 0.53 0.47 ± 0.54 4.46 ± 2.85

SVM

#1 (86%) 6.80 ± 0.94 2.90 ± 0.89 1.22 ± 0.87
#2 (9%) 4.66 ± 0.63 4.37 ± 0.48 2.57 ± 1.63
#3 (3%) 2.15 ± 0.94 2.05 ± 0.97 3.59 ± 1.91
#4 (1%) 2.86 ± 0.79 2.89 ± 0.82 7.58 ± 5.68
#5 (1%) 3.19 ± 0.87 3.17 ± 0.87 3.63 ± 2.93

AdaBoost

#1 (86%) 6.75 ± 1.2 2.8 ± 0.81 1.12 ± 0.95
#2 (9%) 4.66 ± 0.38 4.36 ± 0.28 1.52 ± 1.57
#3 (3%) 3.96 ± 0.95 3.74 ± 0.98 4.95 ± 2.21
#4 (1%) 1.15 ± 0.71 1.19 ± 0.75 6.77 ± 5.34
#5 (1%) 1.57 ± 0.77 1.55 ± 0.77 4.40 ± 3.08

Bagging

#1 (86%) 7.30 ± 1.23 2.77 ± 1.65 10.97 ± 3.40
#2 (9%) 3.58 ± 0.44 3.97 ± 0.58 8.50 ± 2.66
#3 (3%) 4.28 ± 0.62 3.90 ± 0.60 8.66 ± 4.43
#4 (1%) 1.85 ± 0.81 1.92 ± 0.77 9.33 ± 5.07
#5 (1%) 4.48 ± 0.8 4.41 ± 0.78 5.86 ± 3.70

LR

#1 (86%) 6.62 ± 0.98 2.76 ± 0.86 1.13 ± 0.76
#2 (9%) 4.62 ± 0.35 4.30 ± 0.28 2.00 ± 1.54
#3 (3%) 2.68 ± 0.92 2.52 ± 0.93 5.49 ± 2.40
#4 (1%) 0.89 ± 0.45 0.93 ± 0.45 5.18 ± 4.43
#5 (1%) 2.29 ± 0.77 2.27 ± 0.76 4.32 ± 2.98

Setup. This experiment evaluates the worst-case mean performance difference for (i) SYNG4ME,
(ii) SYNG4ME+ and (iii) Dtest,f . We follow the same setup as the granular subgroup experiment in
Section 5.1.

Analysis. Table 12 illustrates that SYNG4ME and the augmented SYGM4ME+ have a lower worst-
case performance compared to evaluation with real test data. This further shows that, by chance,
evaluation with real data can severely over- or under-estimate performance, leading to incorrect
conclusions about the model’s abilities. SYNG4ME’s lower worst-case error, means even in the worst
scenario, that SYNG4ME’s estimates are still closer to true performance.

D.3.3 INTERSECTIONAL PERFORMANCE MATRIX DEEP-DIVE

Motivation. We perform a deep-dive of the intersectional performance matrices generated by
SYNG4M3E, simply using test data alone and the oracle.

Analysis. We first see in Table 13 that, in general, the intersectional matrix SYGN4ME has a much
lower error when estimating performance for intersectional subgroups. i.e. this is more similar to the
oracle, compared to using Dtest,f . Note that we set the minimum number of samples required for
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Table 12: Worst-case performance difference between the predicted performance and performance
evaluated by the oracle. The worst case is over 10 runs

Model Subgroup (%) Worst-case performance diff. % ↓
Race SYNG4ME SYNG4ME+ Dtest,f

RF

#1 (86%) 10.473 4.181 11.65
#2 (9%) 4.710 5.061 8.936
#3 (3%) 3.136 2.652 19.732
#4 (1%) 2.167 2.205 13.228
#5 (1%) 1.641 1.579 8.725

GBDT

#1 (86%) 10.065 5.000 2.422
#2 (9%) 4.602 4.592 4.487
#3 (3%) 4.815 4.487 5.727
#4 (1%) 2.853 2.858 14.535
#5 (1%) 1.470 1.455 9.396

MLP

#1 (86%) 9.791 4.711 1.920
#2 (9%) 5.130 5.070 4.410
#3 (3%) 4.340 4.060 4.694
#4 (1%) 0.987 1.04 12.418
#5 (1%) 1.290 1.280 8.725

SVM

#1 (86%) 10.107 5.019 2.462
#2 (9%) 5.436 5.369 5.632
#3 (3%) 3.012 2.823 3.883
#4 (1%) 4.057 4.153 16.005
#5 (1%) 3.103 3.094 6.711

AdaBoost

#1 (86%) 9.953 5.234 2.144
#2 (9%) 4.859 4.883 5.149
#3 (3%) 4.273 3.909 7.789
#4 (1%) 1.811 1.965 19.888
#5 (1%) 2.712 2.698 8.054

Bagging

#1 (86%) 10.070 4.666 12.827
#2 (9%) 4.189 4.332 10.694
#3 (3%) 4.657 4.230 14.554
#4 (1%) 3.282 3.246 11.21 0
#5 (1%) 5.476 5.437 9.396

LR

#1 (86%) 8.719 4.704 1.811
#2 (9%) 5.189 5.137 4.569
#3 (3%) 2.691 2.539 7.611
#4 (1%) 1.534 1.635 13.477
#5 (1%) 2.833 2.822 7.383

validation = 100 samples. This induces sparseness, of course, but is necessary in order to prevent
evaluation on too few data points. However, in cases where Dtest,f does not have data for the
intersection (i.e. n < 100), we do not consider these NaN blocks as part of our calculation; in fact,
this makes it easier for Dtest,f .

The rationale is evident when evaluating the intersectional performance matrices for each group. We
present the following findings.

• SYNG4ME’s insights are correct: the underperforming subgroups, as noted by SYNG4ME,
match the oracle. Therefore, it serves as a further validation.

• Dtest,f is very sparse after cut-offs: the 100 sample cut-off highlights the key challenge of
evaluation on a test set. We may not have sufficient samples for each intersection to perform
an evaluation.
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Table 13: Adult: Intersectional performance matrix difference vs the oracle

Model SYNG4ME Dtest,f

Average 0.13 ± 0.005 0.21 ± 0.002
RF 0.133 0.211
GBDT 0.128 0.207
MLP 0.128 0.207
SVN 0.138 0.209
AdaBoost 0.126 0.206
Bagging 0.138 0.211
LR 0.126 0.207

D.3.4 COVID-19 DATA: SUBGROUP & INTERSECTIONAL PERFORMANCE EVALUATION

Motivation. In the main paper, we have performed an evaluation of (P1) Reliable granular evaluation
using the Adult dataset. We extend this to the Covid-19 dataset (Baqui et al., 2020) and assess
the ethnicity subgroup of Brazilian patients that has known variation, due to their representational
differences.

Setup. We use the same set-up and evaluation metrics as in Section 5.1.

Analysis. Table 14 shows the results for the Covid-19 dataset. We find that SYNG4ME mostly
provides a more accurate evaluation of model performance (i.e. with estimates closer to the oracle)
compared to a conventional hold-out dataset. In addition, we find that SYNG4ME often has lower
worst-case performance. However, we note that given the small size of the data set, we have fewer
than 1000 samples to train G. We hypothesize that this result could be improved if we had more data.

We additionally find that for the intersectional performance matrix that SYNG4ME improves esti-
mates, with mean absolute error of 0.16 ± 0.043 lower than for Dtest,f of 0.22 ± 0.06. We present
the intersectional performance matrix for the Covid-19 dataset in Fig. 11.

Table 14: Covid-19 results: SYNG4ME better approximates true performance on minority subgroups.

Model Subgroup (%) Mean performance diff. ↓ Worst-case performance diff. ↓
SYNG4ME SYNG4ME+ Dtest,f SYNG4ME SYNG4ME+ Dtest,f

RF

#1 (59%) 7.859 4.752 16.693 8.64 5.186 20.494
#2 (32%) 15.697 12.974 16.641 17.308 14.4 17.949
#3 (6%) 12.584 12.102 15.733 14.084 13.484 22.147
#4 (2%) 11.526 11.294 29.977 12.509 12.246 33.333

#5 (<0%) 18.477 18.477 70.0 20.525 20.525 70.0

GBDT

#1 (59%) 6.772 5.663 1.996 7.397 6.151 4.732
#2 (32%) 15.635 13.887 5.089 17.794 15.692 7.703
#3 (6%) 12.696 12.53 6.792 15.582 15.553 13.929
#4 (2%) 15.407 15.28 14.021 17.347 17.225 20.671

#5 (<0%) 16.365 16.365 70.0 17.323 17.323 70.0

MLP

#1 (59%) 6.403 5.686 2.133 6.937 6.573 6.524
#2 (32%) 14.667 13.115 3.788 16.726 14.975 4.579
#3 (6%) 9.651 9.591 7.912 11.203 11.048 16.959
#4 (2%) 16.173 16.036 11.099 18.459 18.328 21.861

#5 (<0%) 22.687 22.687 70.0 24.537 24.537 70.0

SVM

#1 (59%) 4.78 4.081 2.284 5.899 5.013 6.09
#2 (32%) 7.391 6.507 3.108 9.271 8.146 7.778
#3 (6%) 6.914 6.908 6.324 9.099 9.15 11.895
#4 (2%) 9.865 9.753 10.688 10.872 10.756 20.238

#5 (<0%) 4.31 4.31 60.0 5.742 5.742 60.0

AdaBoost

#1 (59%) 7.016 5.894 1.866 7.551 6.309 4.393
#2 (32%) 16.447 14.873 2.214 17.584 16.13 3.742
#3 (6%) 13.017 12.984 12.226 14.187 14.176 19.651
#4 (2%) 17.617 17.492 7.463 18.914 18.782 16.667

#5 (<0%) 10.089 10.089 50.0 10.771 10.771 50.0

Bagging

#1 (59%) 7.777 4.605 17.284 8.978 5.59 20.287
#2 (32%) 13.531 11.022 16.257 14.658 12.119 17.778
#3 (6%) 12.118 11.629 16.872 12.913 12.44 24.859
#4 (2%) 14.752 14.558 20.603 15.779 15.558 30.952

#5 (<0%) 3.686 3.686 60.0 5.072 5.072 60.0

LR

#1 (59%) 6.044 5.235 1.444 6.667 5.856 3.969
#2 (32%) 14.833 13.425 1.892 16.348 14.808 2.768
#3 (6%) 7.992 7.926 9.138 9.298 9.217 14.859
#4 (2%) 12.046 11.923 11.424 13.495 13.37 20.238

#5 (< 0%) 25.743 25.743 70.0 27.689 27.689 70.0
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Figure 11: Covid-19 intersectional performance matrix

D.3.5 SENSITIVITY TO SHIFTS ON ADDITIONAL FEATURES

Motivation. In the main paper, we have characterized the sensitivity across operating ranges for
two features in two datasets (Adult and SEER). Ideally, a practitioner would like to understand
the sensitivity to all features in the dataset. We now conduct this assessment on the Adult dataset,
producing model sensitivity curves for all features.

Setup. The setup is the same as in Section 5.2.

Analysis. We include the model sensitivity curves for all features as part of the example model report
in Appendix E, see Figures 14, (a)-(t).

D.4 FAIRNESS METRICS: SUBGROUP EVALUATION

Motivation. We have primarily studied reliable estimation of model performance on different
subgroups. This is easily generalized to estimate fairness metrics of ML models on specific subgroups.
This can provide further insight into the use of synthetic data for model testing.

Setup. This experiment evaluates the mean performance difference for (i) SYNG4ME, (ii)
SYNG4ME+ and (iii) Dtest,f . We follow the same setup as the granular subgroup experiment
in Section 5.1. We evaluate a RF model. We assess the following fairness metrics: (i) Disparate
Impact (DI) ratio (demographic parity ratio) and (ii) Equalized-Odds (EO) ratio. When estimating
these metrics for each subgroup (e.g. race group), we then condition on sex as the sensitive attribute.

The DI ratio is: ratio between the smallest and the largest group-level selection rate E[f(X)|A = a] ,
across all values of the sensitive feature(s) a ∈ A.

The EO ratio is the smaller of two metrics between TPR ratio (smallest and largest of P [f(X) =
1|A = a, Y = 1] , across all values of the sensitive feature(s)) and FPR ratio (similar but defined for
P [f(X) = 1|A = a, Y = 0]), , across all values of the sensitive feature(s) a ∈ A.

Analysis. Table 15 illustrates that SYNG4ME’s performance on both fairness metrics, better approxi-
mates the true oracle metric on minority subgroups, compared to test data alone. This is in terms of
Mean absolute performance difference between predicted performance and performance evaluated by
the oracle.

We also assess the worst-case scenario as well, as done previously.
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Table 15: Mean absolute diff. between the predicted metric and the oracle metric. Fairness metrics:
Disparate Impact (DI) and Equalized-Odds (EO). Averaged over 5 runs.

Metric Subgroup (%) Mean absolute performance diff. % ↓
Race SYNG4ME SYNG4ME+ Dtest,f

DI

#1 (86%) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01
#2 (9%) 0.03 ± 0.01 0.02 ± 0.01 0.02 ± 0.02
#3 (3%) 0.10 ± 0.02 0.10 ± 0.02 0.12 ± 0.09
#4 (1%) 0.09 ± 0.01 0.09 ± 0.01 0.12 ± 0.06
#5 (1%) 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.04

EO

#1 (86%) 0.18 ± 0.08 0.02 ± 0.02 0.09 ± 0.07
#2 (9%) 0.09 ± 0.09 0.08 ± 0.04 0.53 ± 0.22
#3 (3%) 0.29 ± 0.08 0.31 ± 0.08 0.47 ± 0.04
#4 (1%) 0.12 ± 0.08 0.12 ± 0.06 0.28 ± 0.24
#5 (1%) 0.38± 0.02 0.38 ± 0.02 0.46 ± 0.0

Table 16 illustrates that SYNG4ME and the augmented SYGM4ME+ have a lower worst-case
estimated difference compared to evaluation with real test data. This further shows that, by chance,
evaluation with real data can over- or under-estimate fairness, leading to incorrect conclusions about
the model’s abilities. SYNG4ME’s lower worst-case error, means even in the worst scenario, that
SYNG4ME’s estimates are still closer to true fairness metric.

Table 16: Worst-case performance difference between the predicted metric and metric evaluated by
the oracle. Fairness metrics: Disparate Impact (DI) and Equalized-Odds (EO). The worst case is over
5 runs

Metric Subgroup (%) Worst-case performance diff. % ↓
Race SYNG4ME SYNG4ME+ Dtest,f

DI

#1 (86%) 0.033 0.02 0.021
#2 (9%) 0.036 0.034 0.070
#3 (3%) 0.118 0.124 0.216
#4 (1%) 0.102 0.102 0.193
#5 (1%) 0.035 0.036 0.099

EO

#1 (86%) 0.305 0.056 0.221
#2 (9%) 0.240 0.147 0.851
#3 (3%) 0.377 0.393 0.549
#4 (1%) 0.245 0.237 0.750
#5 (1%) 0.400 0.401 0.462
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D.5 INCORPORATING PRIOR KNOWLEDGE ON SHIFT: COVID-19

Motivation. We have the ability of assessing distributional shift where we have some knowledge of
the shifted distribution. Specifically, here we assume we only observe a few of the features, from the
target domain.

Setup. Our setup in similar to Section 5.2.2, however on a different dataset - i.e. Covid-19. There are
known distributional differences between the north and south of Brazil. For example: more different
prevalence of respiratory issues, sex proportions, obesity rates etc. Hence we train the predictive
model on patients from the South (larger population) and seek to evaluate potential performance on
patients from the North. We take the largest sub-regions for each.

To validate our estimate, we use the actual northern dataset (Target) as ground-truth. Our baselines
are as in Section 5.2.2. Since the features are primarily binary, we parameterise the distributions as
binomial with a probability of prevalence for their features. We can then sample from this distribution.

Analysis. Fig. 12 shows the average estimated performance of f , as a function of the number of
features observed from the target dataset. We see that the SYNG4ME estimates are closer to the
oracle across the board compared to baselines. Furthermore, for increasing number of features (i.e.
increasing prior knowledge), we observe that SYNG4ME estimates converge to the oracle.

Figure 12: Dsyn is better able to approximate performance in the target domain compared to baselines
and that performance improves as more prior knowledge is incorporated via added features. Points
are connected to highlight trends.
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E EXAMPLE MODEL REPORT

Below we present an example of the type of model report that could be produced when evaluating
models using using SYNG4ME.

Dataset: Adult (Asuncion & Newman, 2007).

Intersectional model performance matrix: diagnosing at a granular level.

Figure 13: Intersectional performance matrix for the RF model, which diagnoses underperforming
2-feature subgroups (darker implies underperformance).

INSIGHT 1: Model underperformance on married females with 2 or less years of education. (top
left arrow)

INSIGHT 2: Model underperformance on self-employed who work more than 80 hours a week.
(bottom right arrow)
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Model sensitivity curves: helping to understand performance trends for shifts across the
operating range:
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Figure 14: Model sensitivity curves for different features, illustrating the relationships/model perfor-
mance across the operating range.
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Figure 14: Model sensitivity curves for different features, illustrating the relationships/model perfor-
mance across the operating range.

38



Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : White

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

race: White

MLP
RF
GBDT
Original Proportion

(m) Race (White): performance decreases as the
proportion of white individuals increases

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : Husband

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

relationship: Husband

MLP
RF
GBDT
Original Proportion

(n) Relationship (Husband): performance de-
creases as the proportion of individuals classed
as husbands increases

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : Not-in-family

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

relationship: Not-in-family

MLP
RF
GBDT
Original Proportion

(o) Relationship (Not-in-family): performance de-
creases as the proportion of individuals classed as
Not-in-family increases

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : Other-relative

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ac
cu

ra
cy

relationship: Other-relative

MLP
RF
GBDT
Original Proportion

(p) Relationship (other-relative): performance re-
mains consistent as the proportion of individuals
classed as other-relative increases

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : Own-child

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

relationship: Own-child

MLP
RF
GBDT
Original Proportion

(q) Relationship (Own-child): performance re-
mains consistent as the proportion of individuals
classed as Own-child increases

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of : Unmarried

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

relationship: Unmarried

MLP
RF
GBDT
Original Proportion

(r) Relationship (Unmarried): performance in-
creases as the proportion of individuals classed
as Unmarried increases

Figure 14: Model sensitivity curves for different features, illustrating the relationships/model perfor-
mance across the operating range.
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Figure 14: Model sensitivity curves for different features, illustrating the relationships/model perfor-
mance across the operating range.
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