
Under review as a conference paper at ICLR 2023

A APPENDIX

B DATASET DETAILS

B.1 KUBRIC

Kubric dataset (Greff et al., 2022) consists of the rigid-body simulations of diverse 3D objects tossed
simultaneously onto a large plane. The simulations are created using the Bullet simulator (Coumans,
2015). Kubric provides several datasets with increasing complexity of the object meshes: MoviA,
MoviB, MoviC, etc. In this work, we train the models on MoviA and MoviB, as those already
present a challenge to baseline models. We also provide the generalization experiments on MoviC.

Each trajectory in Kubric MoviA contains 3-10 objects of different sizes tossed toward the given
position on the floor. In MoviA, only simple shapes are used: cubes (51 nodes), spheres (64 nodes),
and cylinders (64 nodes). MoviB and MoviC contain simulations with 11 and 1030 objects respec-
tively (the latter taken from the Google Scanned Objects Downs et al. (2022)), with between 51 and
several thousand nodes.

The objects have two types of material properties: metal (friction 0.4, restitution 0.3, density 2.7)
or rubber (friction 0.8, restitution 0.7, density 1.1) for MoviA or MoviB, For MoviC, the material
parameters are the same for all objects (friction 0.5, restitution 0.5 and density 1.0). We append
mass, friction and restitution to the features for each node of the object.

The Kubric dataset was originally created for perception tasks and includes images of the generated
trajectories. In this work, we use only the information about the physical state, consisting of the rest
position of the mesh, the object position and rotation quaterion. To obtain the state information, we
re-generate the dataset using the github code github.com/google-research/kubric. For
each of MoviA, MoviB and MoviC datasets, we use 1500 trajectories for training, 100 for validation
and 100 for testing. Each trajectory consists of 96 time steps.

B.2 MIT PUSHING

Figure B.1: Objects used in the MIT pushing dataset. Figure credit to Yu et al. (2016).

The MIT Pushing Dataset introduced by Yu et al. (2016) consists of 6000 real-world pushes for 11
different objects (Figure B.1) along 4 different surfaces, resulting in a total of 264000 trajectories.
The trajectories vary in that the pusher’s velocity and acceleration can change, as well as the point
of contact between the pusher and the object, and the angle between the pusher and the surface of
the object where it makes contact. Object poses and pusher poses were recorded at a rate of 250 Hz,
with each push unfolding over 5cm. We preprocess the data using the script provided by Kloss et al.
(2022) at github.com/mcubelab/pdproc.

Trajectories from this dataset consist of the positions and rotations of the object and robotic pushing
tip. To compare results to Kloss et al. (2022), we take the subset of trajectories which have a pusher
acceleration of 0. Each trajectory is cut off after 0.5 seconds have passed, corresponding to 125
timesteps. From the full set of trajectories, we randomly choose 10000 trajectories across all objects
from the “abs” surface material for training, and 1000 for testing. Of these 10000 trajectories, we
sample different dataset sizes for training to examine FIGNet’s sample efficiency.

For this dataset, we do not use static properties of objects in the node features, other than to indicate
that nodes with mass 0 belong to the controlled pusher. However, we do subsample trajectories for
training and rollouts to once every 3 timesteps, which stabilizes training. To compensate for errors in
state estimation in the dataset, we found a larger node noise value was also critical (0.001). Because
this dataset has a controlled pusher, we also do not predict the pusher’s position. We predict only the

13

github.com/google-research/kubric
github.com/mcubelab/pdproc

Under review as a conference paper at ICLR 2023

movement of the object mesh. Otherwise, all training details and architecture choices were identical
to those used for the Kubric dataset.

C METHOD DETAILS

C.1 FULL MODEL DESCRIPTION

FIGNet uses an Encode-Process-Decode approach similar to Sanchez-Gonzalez et al. (2020); Pfaff
et al. (2021). Crucially the encoder and processor are adapted to be able to support multiple node
and edge types simultaneously. Also we introduce a new type of edge update function for message
passing through face-face edges, which each have three sender and three receiver nodes, rather than
just one. Note in our case face-face edges are always triangle-triangle edges, hence the three senders
and receivers, but this approach would generalize to any other type of edges, such as triangle-point
edges, tetrahedron-triangle edges, segment-triangle edges, etc. Also note that our approach is a strict
generalization of message passing between pair of nodes, and when applied to point-point edges, it
recovers all aspects of regular edge updates.

C.1.1 ENCODER

The encoder constructs the input graph G = (VM,VO, EM, EOM, EMO,QF) that represents the scene
from the mesh M t with 2 different node types, 3 different regular edge types, and 1 face-face edge
type. Each node type has some features associated with it, which are encoded into fixed-size latent
spaces.

Mesh nodes VM represents the set containing each of the mesh nodes vM
i , with input features

vM,features
i = [xt

i − xt−1
i , ...,xt−h+1

i − xt−h
i ,pi, ki, f

t
i], where xt

i is the position of the node at time
t, pi are static object properties, ki is a binary “kinematic” feature that indicates whether the node
is subject to dynamics (e.g. the moving objects), or its position is set externally (e.g. the floor), and
f ti = ki(x

t+1
i − xt

i) is a feature that indicates how much kinematic nodes are going to move at the
next time step. We use an MLP to encode all of these features into an initial latent representation for
mesh nodes:

vM
i = MLPencoder

VM (vM,features
i)

Object nodes VO represents the set containing each of the object nodes representing each rigid
body vO

i , with input features vO,input
i analogous to those of the mesh nodes, using the center of mass

of the object as the position for the object node. We use an MLP to encode all of these features into
an initial latent representation for mesh nodes:

vO
i = MLPencoder

VO (vO,input
i)

Mesh edges EM are bidirectional edges added between mesh nodes that are connected in the mesh.
For each mesh edge eM

vM
s →vM

r
connecting a sender mesh node vM

s to a receiver mesh node vM
r we build

edge features eM,features
vM

s →vM
r

= [drs,d
U
rs], where drs = vM

r −vM
s is a vector of position differences between

the nodes in the currently rotated mesh M t (e.g. the positions of the nodes at the current of timestep,
which are also affected by training noise); and dU

rs is the position difference in the reference mesh
MU (which is static and independent of the dynamics). We use an MLP to encode all of these
features into an initial latent representation for mesh nodes:

eM
vM

s →vM
r
= MLPencoder

EM (eM,features
vM

s →vM
r
)

Object-Mesh edges EOM are unidirectional edges that go from each of the object nodes, to all of
the mesh nodes that belong to that object. There is one object-mesh edge eOM

vO
s →vM

r
for each mesh

node in VM. Input features eOM,features
vO

s →vM
r

are analogous to the mesh edges,computed from the positions
of the object and mesh nodes. We use an MLP to encode all of these features into an initial latent
representation for mesh nodes:

eOM
vO

s →vM
r
= MLPencoder

EOM (eOM,features
vO

s →vM
r

)

14

Under review as a conference paper at ICLR 2023

Mesh-Object edges EMO are unidirectional edges that go from each of the mesh nodes, to the
object node representing the object it belongs to. There is also one mesh-object edge eMO

vM
s →vO

r
for

each mesh node in VM. Input features eMO,features
vM

s →vO
r

are analogous to the mesh edges, computed from
the positions of the mesh and object nodes. We use an MLP to encode all of these features into an
initial latent representation for mesh nodes:

eMO
vM

s →vO
r
= MLPencoder

EMO (eMO,features
vM

s →vO
r

)

Face-face edges QF are edges that connect two mesh faces belonging to different objects. A face-
face edge qF

FM
s →FM

r
is added if any point of the sender face FM

s is within the collision radius dc

from any point of the receiver face FM
r . This is a new type of edge, because from the point of

view of the nodes of the graph, this is a “directed hyper edge”, that connects the three mesh nodes
of the sender mesh face FM

s = (vM
s1 , v

M
s2 , v

M
s3), to the three mesh nodes of the receiver mesh face

FM
s = (vM

r1 , v
M
r2 , v

M
r3).

For each face-face edge, we build features, qF,input
FM

s →FM
r
= [drs, [dsj]j=1,2,3, [drj]j=1,2,3,nr,ns]. The

features are defined with respect to the “closest collision points” between the two faces ps (on the
sender face Fs), and ps (on the receiver faceFr). Geometrically, the closest point in the face might
be either inside of the face, on one of the triangle edges or at one of the nodes. Then the features
are defined as follows: (1) the relative vector between the closest points drs = pr − ps for the two
faces, (2) the spanning vectors of three nodes of the sender face Fs relative to the closest point at
that face dsi = xsi − ps, (3) the spanning vectors of three nodes of the receiver face Fr relative to
the closest point at that face dri = xri − pr, and (4) the face normal unit-vector of the sender and
receiver faces ns and nr, pointing towards the outside of the object.

We use an MLP, followed by a reshape operation, to encode all of these features into an initial latent
representation for each face-face edge as three vectors, one for each receiver node: qfeatures

Fs→Fr
into

three face-face edge latent vectors, one for each receiver node FM
s = (vM

r1 , v
M
r2 , v

M
r3) of each face-face

interaction:

QFM
s →FM

r
= [qj,Fs→Fr

]j=1,2,3 = reshape(MLPencoder
QF (qfeatures

FM
s →FM

r
)))

Having one edge vector per edge receiver node will be a crucial aspect of the face-face edge update
and mesh node update. Crucially, for each edge, and before computing features (2) and (3), we sort
the nodes of the sender face FM

s = (vM
s1 , v

M
s2 , v

M
s3) and receiver face FM

s = (vM
r1 , v

M
r2 , v

M
r3) as function

of the distance to the closest collision point in the corresponding face. This achieves permutation
equivariance of the entire model, w.r.t. to the order in which the sender, and receiver nodes of each
face are specified.

C.1.2 MESSAGE PASSING AND ITERATIVE PROCESSOR

The goal of one step of message passing in the processor is to update all latent representa-
tions in the encoded graph based on neighborhood information. This includes mesh edge latents
eM
vM

s →vM
r

, object-mesh edge latents eOM
vO

s →vM
r

, mesh-object edge latents eMO
vM

s →vO
r

, face-face edge la-
tents QFM

s →FM
r

, object node latents vO
i , and mesh node latents vM

i , to produce updated (indicated as
”prime”) versions of those: eM

vM
s →vM

r

′, eOM
vO

s →vM
r

′, eMO
vM

s →vO
r

′, QFM
s →FM

r
, vO

i
′ and vM

i
′. From a high level

perspective the update occurs in two stages: (1) run an edge update (also referred to as “message
function”) on all of the different edge types (mesh edges, object-mesh edges, mesh-object edges and
face-face edges), gathering information about the nodes adjacent to the edge, and (2) run a node
update for each node type (mesh nodes and object nodes), aggregating information from edges of
different types adjacent to the nodes.

The previous paragraph describes a single layer of message passing, but following a similar approach
to Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021) this layer can then be applied iteratively, as
many times as necessary, with either shared or unshared neural network weights. Also similar to
those we also add residual connections (sum the input to each layer to the output of the layer) at
each layer, to improve gradient flow during training. Our processor consists of 10 steps of message
passing, with unshared weights.

15

Under review as a conference paper at ICLR 2023

Regular edge updates are used to update the mesh edge latents eM
vM

s →vM
r

, object-mesh edge la-
tents eOM

vO
s →vM

r
, mesh-object edge latents eMO

vM
s →vO

r
. Each edge is updated following the edge update

approach from Battaglia et al. (2018):

e′vX
s →vY

s
= MLPprocessor

EXY ([evX
s →vY

s
,vX

s ,vY
r])

where X , Y may take the role of mesh (M) or object (O) nodes, depending on the type of edge.

Face-face edge updates are used to update the face-face edge latents QFM
s →FM

r
. The approach to

update each face-face edge is similar to regular edges, except that now each edge has three latent
vectors, three senders and three receivers, and we also need to produce three output vectors:

QFs→Fr

′ = [q′
j,Fs→Fr

]j=1,2,3 = reshape(MLPprocessor
QF ([[qj,Fs→Fr

,vM
sj ,v

M
rj]j=1,2,3]))

noting that, this does not update the three latent vectors independently, but all nine input latent
vectors [[qj,Fs→Fr ,v

M
sj ,v

M
rj]j=1,2,3] contribute to all three updated face-face edge latent vectors

QFs→Fr

′.

Object node updates are used to update the object node latents vO
i . Each node is updated fol-

lowing the node update approach from Battaglia et al. (2018), aggregating all of the updated edge
latents (or messages) for mesh-object edges that are adjacent to that object node:

vO
i

′
= MLPprocessor

VO

([
vO
i ,

∑
∀eMO

vM
s →vO

r
/vO

r =vO
i

eMO
vM

s →vO
r

′])

Mesh node updates are used to update the mesh node latents vM
i . Mesh nodes may receive in-

formation from object-mesh edges, mesh edges, and face-face edges, so to update each mesh node,
information of adjacent edges to that node is aggregated for each of the edge types:

vM
i

′
= MLPprocessor

VM

([
vM
i ,

∑
∀eOM

vO
s →vM

r
/vM

r =vM
i

eOM
vO

s →vM
r

′
,

∑
∀eM

vM
s →vM

r
/vM

r =vM
i

eM
vM

s →vM
r

′
,

∑
∀qF

Fs→Fr
/FM

r [j]=vM
i

q′
j,Fs→Fr

])

where the second and third terms correspond to regular edge aggregation (just like in the object node
update), and the last term sums over the set of face-face edges for which vM

i is one of the receivers
and q′

j,Fs→Fr
selects the specific face-face edge vector corresponding to vM

i as a receiver, i.e. from
Q′

Fs→Fr
, selects the first, second, or third vector, depending on whether vM

i , is the first, second or
third vector in that receiver face (recall it is always sorted by distance to the closest point in the face,
so the model remains permutation equivariant).

C.1.3 DECODER

Similar to Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021), the goal of the decoder is to produce
output features. In our model we only require output features for the mesh nodes vM

i . We produce
this by applying an MLP decoder from the latent space of the mesh nodes after the processor, which
outputs a finite-difference approximation to the acceleration:

ai = MLPdecoder
VM (vM

i)

C.2 OTHER MODEL DETAILS

Norm features For all relative spatial feature vectors d, we also also concatenated their norm |d|
as part of the inputs.

16

Under review as a conference paper at ICLR 2023

Training noise To make models stable for long rollouts while training on one-step data, we use
the same strategy from Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021)to train with random walk
noise in the inputs, asking the model to correct for noise in the input velocities.

Predicted targets Similar to Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021) our models pre-
dicts a finite-difference acceleration that is used to update the position xt+1

i = ai + 2xt
i − xt−1

i .

Normalization Similar to Sanchez-Gonzalez et al. (2020); Pfaff et al. (2021) we normalized all
inputs and targets to zero-mean unit-variance. The loss is computed in the normalized space of the
targets. This means our entire model and loss is agnostic to the scale of the data.

MLPs We use MLPs with 2 hidden layers, and 128 hidden and output sizes (except the decoder
MLP, with an output size of 3). All MLPs, except for those in the decoder, are followed by a
LayerNormBa et al. (2016) layer.

Optimization All models are trained to 1M steps with a batch size of 128 across 8 TPU devices.
We use Adam optimizer, and an an exponential learning rate decay from 1e-3 to 1e-4.

D BASELINE DETAILS

D.1 MUJOCO AND BULLET SIMULATORS FOR REAL-WORLD MIT PUSHING DATASET

For the MIT Pushing Dataset we compare with the MuJoCo (Todorov et al., 2012) and Bullet
(Coumans, 2015) simulators. While the objects have a provided mesh geometry, the physical prop-
erties of this real-world system, as well as the optimal internal simulator parameters, are unknown
and thus must be estimated by system identification.

We construct this system identification problem as a black-box optimization procedure as follows.
The objective we minimize is the sum of the relative translation error and relative rotation error of
the object being pushed. To measure this objective we use a 50-trajectory subset of the full training
dataset; making predictions for these 50 trajectories takes 5-10 minutes for each simulator. Using
more trajectories for fitting did not yield improved results. As our optimizer, we choose Bayesian
optimization with Gaussian processes as implemented by Vizier (Golovin et al., 2017). We perform
500 trials of optimization, then take the best-performing hyperparameters and evaluate them on a
100-trajectory validation set.

For MuJoCo we model the externally-controlled pusher as a non-physical motion capture body
attached via an equality constraint to the physically-modeled pusher geometry. This allows the
simulator to impute velocities for the geometry which are unavailable when using motion capture
positions directly, making the physics stabler and more realistic. We find that modeling contacts with
three degrees of freedom and neglecting the differential effects of rotational and rolling friction gives
strictly superior results and so perform our final optimization using this setting. We use the expensive
but more accurate RK4 integrator rather than the default Euler integrator for greater precision in
modeling hard contact. We search over the space of scalar friction coefficients k ∈ [0, 5] for all three
objects, as well as over the number of physics substeps {1, 10, 100, 1000}. The best-performing
solution has kobject = 1.91, kpusher = 0.41, and kfloor = 0.0, and uses 1000 physics substeps per data
timestep. For Bullet we create a fixed constraint for the tip and directly update the parent location
of the fixed constraint with the positions of the tip given by the input trajectories. We search over
the space of lateral friction coefficients k ∈ [0, 5] for all three objects, as well as over the number of
engine substeps {0, 1, 2, 3, 4, 5}. The best-performing solution has kobject = 0.28, kpusher = 0.0, and
kfloor = 1.106, with 0 substeps.

D.2 MESHGRAPHNETWORKS (MGN)

To make the comparison more informative and fair, we reimplement MeshNets to refer to a model
with the same “bells and whisles” to ours, except for two joint ablations of important differences
with (Pfaff et al., 2021).

17

Under review as a conference paper at ICLR 2023

0.10

0.20

0.40

0.80

1.60

Er
ro

r (
m

)

Translation error

10.00

15.00

20.00

30.00

40.00

Er
ro

r (
de

g)

Rotation error

102

103

104

105

Co
llis

io
n

ed
ge

s

Collision edges
FIGNet
FIGNet-NoFaceCollision-LargeRadius+
FIGNet-NoObjectNode
FIGNet-NoFaceCollision+

Figure E.1: Model ablations on Movi-A dataset. Replacing the face-face collisions with the node-
node collisions makes the performance deteriorate the most. Models with ∗ use an implicit floor
representation, while models with + use a subdivided floor.

Remove object nodes (FIGNet-NoObjectNode). The ablation consists of removing the object
nodes, as well as all of the object-mesh/mesh-object edges from the graph.

Node based collisions (FIGNet-NoFaceCollision). The ablation consists of computing collisions
according to the distance between the mesh nodes, rather than the faces, and replacing the face-face
edges, by regular mesh-mesh edges, referred to as “world edges” in (Pfaff et al., 2021). Unlike
MeshGraphNets, this model has the per-object node, similarly to FIGNet. In order to give this
ablation a chance, we (1) use a larger collision radius dc (LargeRadius) and (2) subdivide the two
gigantic triangles that make up the floor into smaller triangles of similar in size to the collision radius
(1.5), or (3) when (2) becomes too we use an “implicit floor” by adding an extra feature to the nodes
indicating if they are within the collision radius distance dc from the floor and by how much. We
also provide some results from applying these ablations independently.

D.3 DPI-REIMPLEMENTED

To make the comparison more informative and fair, we use DPI-Reimplemented to refer to a model
with the same “bells and whisles” to ours, except for three joint ablations of important differences
with (Li et al., 2019b).

Object-level predictions (FIGNet-DPILoss) The ablation consists of: (1) use a decoder for the
object nodes, to produce a velocity/acceleration, for the position and rotation quaternion of the center
of mass of the object, (2) used that prediction to update the mesh nodes positions, (3) compute the
effective mesh node acceleration, and (4) use this to build the loss.

Particles (FIGNet-Particles) We replaced the mesh data by a dense particle representation of the
object, and use those particles as nodes. As there aren’t any faces we also use node-based collisions.
Note in this case, we still keep the central object node, following (Li et al., 2019b) which would
correspond to a k = 1 level hierarchy in their model.

We also provide some results from applying these ablations independently.

E ABLATION RESULTS

To motivate the importance of the per-object nodes and face-face collisions, we provide the ablations
of our model where we remove either of these properties from the model.

Figure E.1 and Figure E.2 demonstrate the ablation on Movi-A and Movi-B datasets respectively.
Removing the face-face collisions, but keeping the same collision radius (NoFaceCollision model)
makes the performance deteriorate on both Movi-A and Movi-B, presumably because the current
collision radius does not allow to capture all the nodes that are necessary to resolve the collision.

18

Under review as a conference paper at ICLR 2023

0.10

0.20

0.40

0.80

1.60

Er
ro

r (
m

)

Translation error

10.00

15.00

20.00

30.00

40.00

Er
ro

r (
de

g)

Rotation error

102

103

104

105

Co
llis

io
n

ed
ge

s

Collision edges
FIGNet
FIGNet-NoFaceCollision-LargeRadius*
FIGNet-NoObjectNode
FIGNet-NoFaceCollision*

Figure E.2: Model ablations on Movi-B dataset. Removing the object node and replacing face-face
collisions with node-node drastically affects the performance, making it worse. Models with ∗ use
an implicit floor representation, while models with + use a subdivided floor.

Figure E.3: Model ablations towards DPI (Li et al., 2019b) on Movi-A dataset. While the loss
formulation has little effect, replacing the mesh with densely sampled particles creates huge issues
with memory requirements, and makes overall translation and rotation error worse. Models with ∗

use an implicit floor representation.

Increasing the collision radius (NoFaceCollision-LargeRadius) restores the performance on Movi-A,
but it is not sufficient on Movi-B to match the performance of FIGNet.

Next, we consider the ablation of removing the per-object node from FIGNet. On Movi-A this
modification does not affect the performance as much, presumably because the small number of
nodes per object in Movi-A is relatively small and it does not require additional message-passing
through the object node. However, on Movi-B we observe much higher translation and rotation
errors compared to FIGNet and other baselines. This result highlights the importance of object-level
node in the complex datasets like Movi-B, as provides a ”shortcut” the message-passing between
the nodes of the object.

Note that the FIGNet-NoFaceCollision and FIGNet-NoFaceCollision-LargeRadius baselines replace
the face-face message-passing with node-node interactions. They suffer from the same issues re-
lated to floor parameterizations as MeshNets, as desribed in the main text. Therefore we use the
parameterization with subdivided floor for Movi-A, and implicit floor for Movi-B for these models,
similarly to MeshNets (see explanation for Figure 5a and Figure 5b in the main text).

We also consider various ablations that gradually move the FIGNet model towards the DPI-
Reimplemented particle-based model, as outlined in the ablations sections. Note that changing to a
particle based representation makes it impossible to represent the floor using a dense representation,
so all models with particles use an implicit floor (marked with ∗ as in the main text).

19

Under review as a conference paper at ICLR 2023

Figure E.4: Model ablations towards DPI on Movi-B dataset. While the loss formulation has little
effect, replacing the mesh with densely sampled particles creates huge issues with memory require-
ments, and makes overall translation and rotation error worse. Models with ∗ use an implicit floor
representation.

F GENERALIZATION ACROSS SURFACE GEOMETRIES

To test generalization across different surface geometries, we created custom scenes where a sphere
is dropped in some location and rolls along the different surfaces (Figure F.1). Despite never seeing
inclined, curved or concave planes during training, FIGNet produces plausible trajectories of how
the ball should roll. This supports our findings on the remarkable ability of FIGNet to generalize to
new scenes, shapes and floor landscapes.

Figure F.1: Demonstration of generalization rollouts from Kubric MoviB to a 3D adaptation of the
Bridge level from the Virtual Tools Game Allen et al. (2020). Grey and blue are static and dynamic
objects respectively.

G GENERALIZATION ACROSS OBJECT SHAPES

To test generalization across different shapes, we train models on the MoviA or MoviB datasets,
and test their generalization to MoviB or MoviC respectively, with no further fine-tuning. In Fig-
ure G.1a and Figure G.1b, FIGNet clearly outperforms alternative methods in generalization. Even
more remarkably, FIGNet’s performance on MoviB, when trained only on MoviA, still surpasses all
baseline performances when the baselines are trained on MoviB directly. This suggests that FIGNet
is not only accurate when trained, but provides compelling reasons to believe it will generalize to
further complex dynamics in future.

20

Under review as a conference paper at ICLR 2023

Figure F.2: Demonstration of generalization rollouts from Kubric MoviB to a manually de-
signed u-slide and imported asset (hippo.obj asset imported from github.com/mmacklin/
tinsel.git). Grey and blue are static and dynamic objects respectively.

Figure F.3: Demonstration of generalization rollouts from Kubric MoviB to an unseen ramp.

(a) MoviA to MoviB

(b) MoviB to MoviC

Figure G.1: Generalization performance of the FIGNet model (a) trained on Kubric MoviA and
tested on MoviB (b) trained on Kubric MoviB and tested on MoviC.

21

github.com/mmacklin/tinsel.git
github.com/mmacklin/tinsel.git

Under review as a conference paper at ICLR 2023

Ground
Truth

FIGNet

MGN

MGN
LargeRa-

dius

DPI
Reimple-
mented

Figure G.2: Rollout examples on Movi-A dataset

Ground
Truth

FIGNet

MGN

MGN
LargeRa-

dius

DPI
Reimple-
mented

Figure G.3: Rollout examples on Movi-B dataset

22

Under review as a conference paper at ICLR 2023

Ground
Truth

FIGNet

MeshNets

MeshNets
LargeRa-

dius

DPI
Reimple-
mented

Figure G.4: Generalization from Movi-A to Movi-B dataset

Ground
Truth

FIGNet

MeshNets

MeshNets
LargeRa-

dius

Figure G.5: Generalization from Movi-B to Movi-C dataset

23

Under review as a conference paper at ICLR 2023

H PENETRATION MEASURES

To measure penetration, we implement the algorithm from TODO. Since this algorithm is imperfect
when faces are small, we report penetration statistics with respect to the ground truth trajectories
given the same initial scene. FIGNet penetration distances are only 3% greater than the ground
truth simulator, with only 4% more faces in penetration with each other relative to ground truth. By
comparison, MeshGraphNets performs considerably worse when using a small collision radius, with
penetration distances greater than 4x the ground truth model. These results are reported in Table H.1

Table H.1: Penetration distances and counts reported as a ratio to the distances and counts for the
ground truth PyBullet simulator for the MoviA dataset.

Model Penetration distance ratio Penetration count ratio
FIGNet 1.037± 0.033 1.041± 0.037
MGN-LargeRadius+ 1.071± 0.020 1.073± 0.018
MGN+ 4.613± 0.143 5.246± 0.187

I RUNTIME

We additionally report runtime performance to more directly compare the amount of time taken to
run a single forward step of each model. These results are reported in I.1 for the Movi-A dataset.

FIGNet has the shortest inference runtime in comparison to baselines. MGN-LargeRadius+, which
is closest to FIGNet in terms of accuracy (Figure 5(a)), requires 2.7x more time to perform one
inference step. DPI-Reimplemented* and MGN+ are inferior to FIGNet in terms of both runtime
and accuracy.

Table I.1: Time of one inference step for each model on Movi-A dataset, in seconds.

Model Runtime (seconds)
FIGNet 0.094± 0.005
MGN-LargeRadius+ 0.258± 0.010
DPI-Reimplemented* 0.126± 0.006
MGN+ 0.160± 0.007

J EFFECTS OF DIFFERENT COLLISION RADII

Figure J.1 demonstrates the ablations over different collision radii for the MeshGraphNets (MGN+)
(Pfaff et al., 2021) model compared to FIGNet with collision radius 0.1 on the Kubric Movi-A
dataset. Notably, there is no collision radius where MeshGraphNets would simultaneously have
comparable runtime to FIGNet while also having comparable accuracy. Large values for the colli-
sion radius lead to better accuracy, but at the cost of runtime performance. The increase in collision
radius also leads to an exponential increase in collision edges in MeshGraphNets, as more nodes fall
into the collision radius, leading to higher memory consumption. In our experiments, the increase
in collision edges manifested as 50% increase in runtime from collision radius 0.05 to 1.5.

24

Under review as a conference paper at ICLR 2023

0.05 0.1 0.5 1.0 1.5
Collision radius

0.1

0.2

0.4

0.8

1.6

Er
ro

r (
m

)

Translation error

0.05 0.1 0.5 1.0 1.5
Collision radius

10.0

15.0
20.0

30.0
40.0

Er
ro

r (
de

g)

Rotation error

MGN+ FIGNet

0.05 0.1 0.5 1.0 1.5
Collision radius

0.1

0.2

0.3

Ru
nt

im
e

(s
ec

)

Runtime

0.05 0.1 0.5 1.0 1.5
Collision radius

1.0

100.0
1000.0

10000.0

ed

ge
s

Num collision edges

Figure J.1: Ablation over collision radii on Movi-A dataset for MGN, compared to FIGNet with
collision radius 0.1. If the nodes (in MGN) or faces (in FIGNet) between different objects lie within
the collision radius, we connect them with an edge in the graph.

By comparison FIGNet is not particularly sensitive to the collision radius. We trained models with
a collision radius of 0.05 and 0.5 relative to the main model’s radius of 0.1. The errors for these
different collision radii are given in Table J.1

Table J.1: FIGNet collision radius sensitivity analysis for Movi-A dataset.

Metric Collision radius
0.05 0.1 0.5

Translation error (m) 0.151± 0.014 0.115± 0.008 0.105± 0.006
Rotation error (deg) 16.8± 0.3 14.4± 0.2 13.4± 0.4

K RESULTS FROM MAIN TEXT AS TABLES

For ease of comparison between models, we provide the results on Kubric from the main text as
tables.

Table K.1: Results on Kubric datasets from main text as table

Kubric Movi-A results
Model Translation error Rotation error Collision edges
DPI-Reimplemented* 0.180± 0.017 20.817± 0.926 2515.354± 34.341
MGN-LargeRadius+ 0.119± 0.009 15.069± 0.649 10637.350± 317.336
MGN+ 0.705± 0.069 31.210± 0.989 3.792± 0.396
FIGNet 0.115± 0.008 14.387± 0.175 232.644± 2.135

Kubric Movi-B results
Model Translation error Rotation error Collision edges
DPI-Reimplemented* 0.368± 0.057 26.928± 2.740 2250.688± 64.507
MGN-LargeRadius* 0.460± 0.045 26.342± 1.397 1797.985± 59.699
MGN* 0.538± 0.035 26.914± 0.783 34.367± 4.075
FIGNet 0.127± 0.006 13.990± 0.464 1385.610± 23.818

25

	Appendix
	Dataset details
	Kubric
	MIT Pushing

	Method details
	Full model description
	Encoder
	Message passing and iterative processor
	Decoder

	Other model details

	Baseline details
	MuJoCo and Bullet simulators for real-world MIT Pushing Dataset
	MeshGraphNetworks (MGN)
	DPI-Reimplemented

	Ablation results
	Generalization across surface geometries
	Generalization across object shapes
	Penetration measures
	Runtime
	Effects of different collision radii
	Results from main text as tables

