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A Additional results

In this section, we provide additional results for logit and internal feature visualizations, and feature
inversion.

For all of the following visualizations, we used the same parameters as in the main paper. For the
feature visualizations derived from Olah et al. [1], we used all 10 transformations set from the
Lucid library§. For MACO, τ only consists of two transformations; first we add uniform noise
δ ∼ U([−0.1, 0.1])W×H and crops and resized the image with a crop size drawn from the normal
distribution N (0.25, 0.1), which corresponds on average to 25% of the image. We used the NAdam
optimizer [65] with a lr = 1.0 and N = 256 optimization steps. Finally, we used the implementation
of [1] and CBR which are available in the Xplique library [66] ¶ which is based on Lucid.

A.1 Logit and Internal State Visualization

Figure S1: Feature visualizations on a ResNet50. We compare feature visualizations for 9 different
classes from ImageNet generated via MACO and Olah et al.. We observe that our visualizations are
much sharper, and parts of the target class show up really clearly. On the other hand, the baseline
produces overexposed images with mostly textures that are somewhat related to the class.

§https://github.com/tensorflow/lucid
¶https://github.com/deel-ai/xplique

16

https://github.com/tensorflow/lucid
https://github.com/deel-ai/xplique


Figure S2: Feature visualizations on FlexiViT, ViT and ResNet50. We compare the feature
visualizations from MACO generated for (a) FlexiViT, (b) ViT and (c) ResNet50 on a set of different
classes from ImageNet. We observe that the visualizations get more abstract as the complexity of the
model increases.
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Figure S3: Logits and internal representation of a ViT. Using MACO, we maximize the activations
of specific channels in different blocks of a ViT, as well as the logits for 4 different classes.

Figure S4: Hue invariance. Through feature visualization, we are able to determine the presence of
hue invariance on our pre-trained ViT model manisfesting itself through phantom objects in them.
This can be explained the data-augmentation that is typically employed for training these models.

18



A.2 Feature Inversion

Figure S5: Feature inversion and Attribution-based transparency. We performed feature inversion
on the images on the first column to obtain the visualizations (without transparency) on the second
column. During the optimization procedure, we saved the intensity of the changes to the image in
pixel space, which we showcase on the third column, we used this information to assign a transparency
value, as exhibited in the final column.
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Figure S6: Feature inversion and Attribution-based transparency. We performed feature inversion
on the images on the first column to obtain the visualizations (without transparency) on the second
column. During the optimization procedure, we saved the intensity of the changes to the image in
pixel space, which we showcase on the third column, we used this information to assign a transparency
value, as exhibited in the final column.
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B Screenshots from the website

For our website, we picked a ResNet50V2 that had been pre-trained on ImageNet [70] and applied
CRAFT [50] to reveal the concepts that are driving its predictions for each class. CRAFT is a
state-of-the-art, concept-based explainability technique that, through NMF matrix decompositions,
allows us to factorize the networks activations into interpretable concepts. Furthermore, using Sobol
indices and implicit differentiation, we can measure the importance of each concept, and trace its
presence back to and locate it in the input image.

Figure S7: Overview of a class explanation. Screenshot of the first glimpse of the explanations for
the class axolotl. We display the concept visualizations by order of importance (the most important
concepts first), with a bar plot of the importance scores and a plot of their similarity.

In particular, we applied this technique to explain all the classes in ImageNet, and used MACO to
generate visualizations that maximize the angle of superposition with each direction in the network’s
activation space (i.e. each concept). We also plot each of the concepts’ global importance, as well
as the similarities between concepts of the same class. For each class, we first showcase the most
important concepts with their respective visualizations (see Fig. S7 and Fig. S8), and by clicking
on them, we exhibit the crops that align the most with the concept (see Fig. S9). This allows
us to diminish the effect of potential confirmation bias by providing two different approaches to
understanding what the model has encoded in that concept.

Finally, we have also computed the similarity between concepts of different classes and display the
closest (see Fig. S10). This feature can help better understand erroneous predictions, as the model
may sometimes leverage similar concepts of different classes to classify.
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Figure S8: Most representative crops. If we scroll down, we get access to the crops that represent
the most each of the concepts alongside the visualizations. By representing the concepts through two
different approaches side by side, we reduce the effect of confirmation bias.

Figure S9: Revealing the crops. On the first overview, it is also possible to click on each concept to
reveal the most representative crops.

22



Figure S10: Inter-class concept similarity. Scrolling further down, we also present the concepts from
other classes that are the most similar to those of the current class. This can help better understand
erroneous predictions, as the model may sometimes leverage similar concepts of different classes to
classify.

C Human psychophysical study

To evaluate MACO ’s ability to improve humans’ causal understanding of a CNN’s activations,
we conducted a psychophysical study closely following the paradigm introduced in [67]. In this
paradigm, participants are asked to predict which of two query inputs would be favored by the model
(i.e., maximally activate a given unit), based on example "favorite" inputs serving as a reference (i.e.,
feature visualizations for that unit). The two queries are based on the same natural image, but differ
in the location of an occludor which hides part of the image from the model.

Participants. We recruited a total of 191 participants for our online psychophysics study using
Prolific (www.prolific.com) [September 2023]. As compensation for their time (roughly 7 minutes),
participants were paid 1.4$. Of those who chose to disclose their age, the average age was 39 years
old (SD = 13). Ninety participants were men, 86 women, 8 non-binary and 7 chose not to disclose
their gender. The data of 17 participants was excluded from further analyses because they performed
significantly below chance (p < .05, one-tailed).

Design. Participants were randomly assigned to one of four Visualization conditions: Olah [1],
MACO with mask, MACO without mask, or a control condition in which no visualizations were
provided. Furthermore, we varied Network (VGG16, ResNet50, ViT) as a within-subjects variable.
The specific units whose features to visualize were taken from the output layer, meaning they
represented concrete classes. The classes were: Nile crocodile, peacock, Kerry Blue Terrier, Giant
Schnauzer, Bernese Mountain Dog, ground beetle, ringlet, llama, apiary, cowboy boot, slip-on shoe,
mask, computer mouse, muzzle, obelisk, ruler, hot dog, broccoli, and mushroom. For every class,
we included three natural images to serve as the source image for the query pairs. This way, a
single participant would see all 19 classes crossed with all 3 networks, without seeing the same
natural image more than once (which image was presented for which network was randomized across
participants). The main experiment thus consisted of 57 trials, with a fully randomized trial order.

Stimuli. The stimuli for this study included 171 ((4-1)x3x19) reference stimuli, each displaying a
2x2 grid of feature visualizations, generated using the respective visualization method. The query
pairs were created from each of the 57 (19x3) source images by placing a square occludor on them.
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In one member of the pair, the occludor was placed such that it minimized the activation of the
unit. In the other member of the pair, the occludor was placed on an object of a different class in
the same image or a different part of the same object. Here, we deviated somewhat from the query
geneation in [67], where the latter occludor was placed where it maximized the activation of the unit.
However, we observed that this often resulted in the occludor being on the background, making the
task trivial. Indeed, a pilot study (N = 42) we ran with such occludor placement showed that even
the participants in the control condition were on average correct in 83% of the trials.

Task and procedure. The protocol was approved by the University IRB and was carried out in
accordance with the provisions of the World Medical Association Declaration of Helsinki. Participants
were redirected to our online study through Prolific and first saw a page explaining the general purpose
and procedure of the study (Fig. S11). Next, they were presented with a form outlining their rights as a
participant and actively had to click “I agree” in order to give their consent. More detailed instructions
were given on the next page (Fig. S12, Fig. S13). Participants were instructed to answer the following
question on every trial: “Which of the two query images is more favored by the machine?”. The
two query images were presented on the right-hand side of the screen. The feature visualizations
were displayed on the left-hand side of the screen (Fig. S14). In the control condition, the left-hand
side remained blank (Fig. S15). Participants could make their response by clicking on the radio
button below the respective query image. They first completed a practice phase, consisting of six
trials covering two additional classes, before moving on to the main experiment. For the practice
trials, they received feedback in the form of a green (red) frame appearing around their selected query
image if they were correct (incorrect). No such feedback was given during the main experiment.

Analyses and results. We analyzed the data through a logistic mixed-effects regression analysis,
with trial accuracy (1 vs. 0) as the dependent variable. The random-effects structure included a by-
participant random intercept and by-class random intercept. We compared two regression models, both
of which had Visualization and Network as a fixed effect, but only one also fitted an interaction term
between the two. Based on the Akaike Information Criterion (AIC), the former, less complex model
was selected (AIC = 11481vs.11482). Using this model, we then analyzed all pairwise contrasts
between the levels of the Visualization variable. We found that the logodds of choosing the correct
query were overall significantly higher in both MACO conditions compared to the control condition:
βMACO Mask − βControl = 0.69, SE = 0.13, z = 5.38, p < .0001;βMACO NoMask − βControl =
0.92, SE = 0.13, z = 7.07, p < .0001. Moreover, MACO visualizations helped more than Olah
visualizations: βMACO Mask − βOlah = 0.43, SE = 0.13, z = 3.31, p = .005;βMACO NoMask −
βOlah = 0.66, SE = 0.13, z = 4.99, p < .0001. No other contrasts were statistically significant
(at a level of p < .05). P -values were adjusted for multiple comparisons with the Tukey method.
Finally, we also examined the pairwise contrasts for the Network variable. We found that ViT
was the hardest model to interpret overall: βResNet50 − βV iT = 0.49, SE = 0.06, z = 8.65, p <
.0001;βV GG16 − βV iT = 0.35, SE = 0.06, z = 6.38, p < .0001. There was only marginally
significant evidence that participants could better predict ResNet50’s behavior in this task than
VGG16: βResNet50 − βV GG16 = 0.13, SE = 0.06, z = 2.30, p = 0.056.

Taken together, these results suggest that MACO indeed helps humans causally understand a CNN’s
activations and that it outperforms Olah’s method [1] on this criterion.
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Figure S11: Welcome page. This is a screenshot of the first page participants saw when entering our
online psychophysics study.
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Figure S12: Instructions page. After providing informed consent, participants in our online
psychophysics task received more detailed instructions, as shown here.
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Figure S13: Instructions page for control condition. After providing informed consent, participants
in our online psychophysics task received more detailed instructions, as shown here. If they were
randomly assigned to the control condition, they were informed that they would not see examples of
the machine’s favorite images.
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Figure S14: Example trial. On every trial of our psychophysics study, participants were asked to
select which of two query images would be favored by the machine. They were shown examples of
the machine’s favorite inputs (i.e., feature visualizations) on the left side of the screen.

Figure S15: Example trial in the control condition. On every trial of our psychophysics study,
participants were asked to select which of two query images would be favored by the machine. In the
control condition, they were not shown examples of the machine’s favorite inputs and the left side of
the screen remained empty.
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