
A Related works

Pre-trained language models. PLMs, which are trained on extensive datasets for a common
task such as predicting masked words [1, 2, 3, 26, 55, 56, 57, 58] or the next word [59, 60] in
a sentence, play a vital role in facilitating knowledge transfer to downstream tasks. They have
demonstrated remarkable achievements across various applications, consistently delivering state-
of-the-art outcomes. Furthermore, scaling up PLMs has proven to yield predictable enhancements
in performance for these downstream tasks [61, 62]. Consequently, the size of released PLMs has
progressively grown, reaching an unprecedented scale of 100 billion parameters [9, 10, 11, 60, 63, 64].
Such large-scale PLMs unveil extraordinary capabilities, enabling zero-shot or in-context learning
[59, 60] for a broad spectrum of tasks. Nevertheless, transfer learning remains a prevalent approach
for effectively deploying these models in new task scenarios [29, 65, 66], which post unparalleled
requirements on the computing resources.

Parameter-efficient fine-tuning. With the advent of large-scale PLMs, a new method that aims to
reduce storage requirements, PEFT, has been proposed [14, 15, 19]. PEFT adds and trains a small
number of parameters while matching the performance of full fine-tuning. There are various ways to
add new parameters. For example, Houlsby et al. [14] and Pfeiffer et al. [16] insert small bottleneck
modules (adapters) to the PLM. LoRA [17] injects rank decomposition matrices into the pre-trained
weights. HiWi [13] inserts the pre-trained parameters to a low-rank adapter. (IA)3 [29] scales the
pre-trained weight with a trainable vector. Prompt-based methods [15, 19] append a sequence of
trainable vectors to the word embeddings or attention components. Recently, some unified methods,
which combine multiple PEFT methods in a heuristic way [18] or with the technique of neural
architecture search [49, 67, 68], have also been proposed. Though PEFTs save the storage by a large
margin compared to full fine-tuning, they still require a similar memory footprint during training as
full fine-tuning [20, 21] because of the activation memory.

Memory-efficient training. Memory-efficient training aims to reduce the memory footprint during
the training process. Reversible neural networks [40, 41, 42] reduce the activation memory by
recomputing the activations with the outputs during back-propagation. Gradient checkpointing [69]
trade computation for memory by dropping some intermediate activations and recovering them from

an extra forward pass. The activation memory is O(1) and O(
√
N) for reversible neural networks

and gradient checkpointing, respectively. MEFT is the first method that is proposed to modify a PLM
to its reversible variant. When applying MEFT on a deeper model, one can use gradient checkpointing
to further reduce the activation memory for the layers with vanilla gradient.

Network compressions, like pruning [70, 71] and knowledge distillation [22, 23, 72], save the memory
footprint for both training and inference. They compress a PLM to a smaller model by either deleting
unimportant parameters or distilling knowledge from the PLM to the smaller model. Treating a
PLM as a feature extractor and avoiding its gradient calculation is also an effective way to reduce
the activation memory [20, 21]. However, these methods normally require extra pre-training before
fine-tuning, or achieve a lower performance compared to full fine-tuning when using the same PLM.

B Limitations

We acknowledge the main limitation of this work is that we only evaluate our proposed methods on a
limited amount of tasks and don’t conduct experiments on the encoder-decoder models. The main
reason for the limited amount of tasks is that our computing resources are constrained. In addition,
the major criterion for our selection of the underlying models is that we could find many strong
baselines on them without reproduction. BERT and RoBERTa fulfill this criterion very well on the
GLUE benchmark. Regarding the encoder-decoder model, recently there is a clear trend of applying
a decoder-only model on sequence-to-sequence tasks. Therefore, we apply OPT in this paper and
plan to include LLAMA [11] for the instruction-finetuning data in the future.

Another limitation of MEFT is its lower score when trained in FP16 and on a deeper model. We have
discussed this problem in §4.2. In sum, more reconstruction error is introduced by FP16 due to its
numerical range and by a deeper model because of the error accumulation. Fortunately, the results
are still comparable to the PEFT baselines when trained in FP16. Even trained in FP32, the activation
memory footprints don’t increase compared to FP16. One only needs to spend more training time in
FP32 when using the same batch size as in FP16 (about 20% more training time). However, since

19

MEFTs reduce the memory footprint, a larger batch size during training is possible, which can save
some training time. For deeper models, we offer a practical and effective setting in Figure 7.

Last but not least, when fine-tuning larger models, like OPT1.3B and OPT6.7B [9], the peak memory
footprint is occupied by the model parameters rather than the activation (see Table 3). One needs to
combine other techniques with MEFT to reduce the peak memory footprint, like loading the model in
FP16 or even in int8 rather than in FP32, combining MEFT with ZeRO [73] as in Table 6.

C Step-by-step design for MEFT1

For the reader’s easy understanding, in this section, we explain MEFT1 step-by-step. First, let’s
re-emphasize the guiding principles for our design: (1) For each reversible layer, we must have two
inputs and two outputs as in Figure 3a. (2) We need to follow the starting point hypothesis. I.e.
whenever we modify a PLM layer, we need to ensure the modified layer has almost the same output
as the original PLM layer if we input the same input of the original PLM layer to the modified layer
at the beginning of training. If the outputs are not similar, they become even more dissimilar after
multiple layers, tearing down the PLM’s initialization.

As shown in Figure 8a, for the first PLM layer, h0 is the input and h1 is the output. In Figure 8b, the
inputs to the first reversible layer is h1

0 = h2
0 = h0. Recapping the architecture of F1 in Figure 4c

(up), we simply insert an adapter in parallel to the two consecutive feed-forward layers, and initialize
the adapter as Wdown,Wup ∼ N (0, 0.022), which results in h1 ≈ F1(h

2
0) since h2

0 = h0. If we set

λ → 0, h1
1 = λh1

0 + F1(h
2
0) ≈ h1. In this way, h1

1 plays the role of preserving the starting point.
Now let’s consider h2

1. Due to our initialization of the adapter, the output from G1 (G1 is simply an
adapter as in Figure 4c (down)) is close to 0. So h2

1 = βh2
0 + G1(h

1
1) ≈ βh0 + 0 = βh0. After

switching the order of h1
1 and h2

1, h1
1 ≈ βh0 and h2

1 ≈ h1.

For the second reversible layer, if we don’t switch the order of h1
1 and h2

1, it looks like Figure 8c.
The input to F2 is βh0, which breaks down the representation continuity of a PLM since the input
to the pre-trained F2 should be close to h1. If we switch their order as in Figure 8d, we preserve
the representation continuity. And it results in h1

2 = λβh0 + F2(h1) ≈ h2 due to λ → 0 and
h2 ≈ F2(h1). Similar to the first reversible layer, h2

2 ≈ βh1. After switching, h1
2 ≈ βh1 and

h2
2 ≈ h2. By analogy, for the nth reversible layer, h1

n ≈ βhn−1 and h2
n ≈ hn.

After the final layer, we simply take the mean of two outputs as h′
N = (h1

N + h2
N)/2, and input h′

N

to a task-specific head, like a classification layer. The design procedure is similar for MEFT2 and
MEFT3. In sum, order switching is mainly for preserving the representation continuity, and setting
the scaling factors close to 0 is mainly for preserving the starting point.

D Implementation details of the question-answering tasks

Compared to GLUE tasks where all tasks are classification tasks and the classification heads are
randomly initialized, the question-answering tasks are sequence-to-sequence tasks and need the
pre-trained output layer that shares the same parameters as the word embedding layer. The output

Feed-Forward

Feed-Forward

++

Layer Norm

Attention Block

ℎ!"#

ℎ!

(a)

+ +

+

ℎ!
"

ℎ!
ℎ!

#
ℎ!
"

ℎ#
#

ℎ#
"

+

+

+

𝜆 𝜆

switch

𝛽

F ! F !

G !

ℎ!
#

= ℎ!
"

= ℎ!

(b)

+ +

+

ℎ!	 𝛽ℎ"

ℎ#
!

ℎ#
#

+

+

+

𝜆 𝜆

𝛽

F ! F !

G !

ℎ!	 𝛽ℎ"

(c)

+ +

+

ℎ!	𝛽ℎ"

ℎ#
! ℎ#

#

+

+

+

𝜆 𝜆

𝛽

F ! F !

G !

ℎ!	𝛽ℎ"

switch

(d)

Figure 8: (a) The nth PLM layer; (b) The first MEFT1 layer; (c) The second MEFT1 layer without
order switching; (d) The second MEFT1 layer.

20

layer requires the continuity of representation. I.e. at the beginning of training, the input to the output
layer, h′

N , should be close to hN . Therefore, we need to do a modification to h′
N instead of using

h′
N = (h1

N + h2
N)/2.

Here we introduce a new scaling factor γ and require γ → 0. For MEFT1, since h2
N ≈ hN (see

Table 1), we set h′
N = γh1

N + h2
N ≈ h2

N ≈ hN . Similarly, h′
N = h1

N + γh2
N ≈ h1

N ≈ hN for
MEFT2, and h′

N = γh1
N + h2

N ≈ h2
N ≈ hN for MEFT3. Without any tuning, we set γ = 0.1 as

other tuned scaling factors by default.

128 256 512

40

60

80

100

120

140

160

S
am

pl
es

 /
S

ec
on

d

Full FT + gradient checkpointing
LoRA + gradient checkpointing
MEFT1

32 64 128

33

34

35

36

128 256 512
Sequence Length

0.5

1.0

1.5

2.0

2.5

A
ct

iv
at

io
n

M
em

or
y

(G
B

)

32 64 128
Batch Size

2

4

6

8

10

Figure 9: Throughput and activation memory for different sequence length and batch sizes on
BERTbase. By default, the sequence length is 512 and the batch size is 32. For your reference, LoRA’s
throughput is 52.7 samples/second without gradient checkpointing for the default setting. Overall,
MEFT shares the same level of throughput as LoRA with gradient checkpointing, while it is the lower
bound of the activation memory for different settings.

E More results

E.1 Compared to gradient checkpointing

Previously, we only theoretically stated that the activation memory for reversible network and gradient

checkpointing is O(1) and O(
√
N), respectively. In addition, we didn’t compare the training time of

MEFT with PEFT in detail. Here we offer some empirical results for your better understanding.

In Figure 9, we compare activation memory and throughput among MEFT , LoRA with gradient
checkpointing and Full FT with gradient checkpointing. The throughput for all three methods is at
the same level, maximum 12% difference between LoRA and MEFT when the sequence length is
128 and the batch size is 32. With an increasing sequence length, the gap becomes narrower to 7.5%.
Notably, the throughput for LoRA without gradient checkpointing is 52.7 samples/second. With
gradient checkpointing, it is 36.1 samples/second, 69% of the original throughput. For MEFT with the
same setting, it is 33.5 samples/second, 64% of LoRA’s throughput without gradient checkpointing.
In sum, MEFT’s throughput is at the same level as LoRA’s with gradient checkpointing, and about
64% of LoRA’s without gradient checkpointing. In addition, MEFT’s activation memory is always
the lower bound among these three methods. The gap between LoRA with gradient checkpointing
and MEFT becomes larger with an increasing sequence length and batch size.

E.2 Compared to quantization methods

Quantization is an orthogonal method to MEFT, which reduces the memory footprint of training
or inference by reducing the parameter size to fewer bits and using low-bit-precision matrix mul-
tiplication. There are mainly three different quantization methods: (1) Post-training quantization

21

Table 5: Compared to QLoRA. r = 8 for all methods. Experimental setting stays the same as the
default setting in Figure 9.

Method Activation Memory (GB) Samples/Second

LoRA + gradient checkpointing 2.62 36.1
QLoRA + gradient checkpointing 2.97 8.7
MEFT1 2.33 33.5

Table 6: Combine MEFT with ZeRO.

Method Peak Memory (GB) Activation Memory (GB)

MEFT1 28.2 8.2
MEFT1 + ZeRO 6.4 6.4

[74, 75] that quantizes a trained model after pre-training or fine-tuning; (2) Lower-bit optimizer [76]
that stores the optimizer state with lower precision and de-quantizes it only for the optimization,
similarly to FP16 or BF16 mixed precision training but with lower-bit; (3) Lower-bit frozen LLM with
LoRA, i.e. QLoRA [77], that applies 4-bit quantization to compress the LLM. During fine-tuning,
QLoRA backpropagates gradients through the frozen 4-bit quantized LLM into the low-rank adapters.
Notably, the computation data type for QLoRA is BF16. It de-quantizes weights to the computation
data type to perform the forward and backward passes.

To some extent, all these three methods are orthogonal to our method and can be combined with
MEFT: (1) Post-training quantization is mainly for reference and it can be applied to any trained
models; (2) 8-bit Adam can also be applied to any models trained based on a gradient; (3) QLoRA
is a combination of (1) and (2). For QLoRA, we conducted some experiments on BERTbase with
the default setting as Figure 9. As shown in Table 5, METF1 saves the most activation memory
while having a similar throughput as LoRA with gradient checkpointing. The reason for the larger
activation memory of QLoRA than LoRA is that it has an additional de-quantization step, which also
causes its smallest throughput.

E.3 Combine MEFT with ZeRO

ZeRO [73] saves memory by partitioning the model’s parameters and optimizer state among GPUs
or between GPU and CPU. This method is orthogonal to MEFT, since MEFT saves memory from
activations. We conduct some experiments on OPT1.3B by combining our method with DeepSpeed
[78] ZeRO stage 3 that offloading model’s parameters and the optimizer state to CPUs. As shown in
Table 6, ZeRO significantly reduces the memory footprint from the model’s parameters, therefore
reducing MEFT’s peak memory from 28.2GB to 6.4GB.

Table 7: Fine-tuning settings. Check §4.2 for the fine-tuning setting on BART.

Hyper-parameter GLUE Question-Answering

RTE, MRPC, STS-B, CoLA SST-2, QNLI, QQP, MNLI

Learning Rate {5, 6, 7, 8} · 10−4 {3, 4, 5} · 10−4 {1, 3, 5, 7} · 10−4

Batch Size {16, 32} {16, 32} {8, 16, 32}
Max Epochs {20, 40} {10, 20} {3, 5, 10}
Weight Decay 0.1 0.1 0.1

Max Gradient Norm 1 1 1

Warmup Ratio 0.06 0.06 0.06

Learning Rate Decay Linear Linear Linear

22

Table 8: Statics of datasets

Task RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI-m MNLI-mm

#Training 2.5k 3.7k 5.8k 8.6k 67.4k 104.7k 363.8k 392.7k

#Development 0.3k 0.4k 1.5k 1k 0.9k 5.5k 40.4k 9.8k 9.8k

Task OpenBookQA PIQA ARC-E ARC-C SciQ

#Training 5.0k 16.1k 2.3k 1.1k 11.7k

#Development 0.5k 3.1k 2.4k 1.2k 1k

Table 9: Statics of models

Model #Parameter #Layer dmodel Size in FP32 (GB)

BERTbase 110M 12 768 0.4
BARTlarge encoder 205M 12 1024 0.8
RoBERTalarge 355M 24 1024 1.4
OPT1.3B 1.3B 24 2048 5.2
OPT6.7B 6.7B 32 4096 25.6

1 def backward_pass(self , y1, y2, dy1 , dy2):
2 with torch.enable_grad ():
3 y1.requires_grad = True
4 # The intermediate activations of G are stored
5 g_y1 = self.G(y1)
6 # Obtain the gradient of y1
7 g_y1.backward(dy2 , retain_graph=True)
8

9 with torch.no_grad ():
10 x2 = (y2 - g_y1) / self.x2_factor
11 # Save memory , same for below
12 del g_y1 , y2
13 dy1 += y1.grad
14 # Save memory
15 y1.grad = None
16

17 with torch.enable_grad ():
18 x2.requires_grad = True
19 # The intermediate activations of F are stored
20 f_x2 = self.F(x2)
21 # Obtain the gradient of x2
22 f_x2.backward(dy1 , retain_graph=False)
23

24 with torch.no_grad ():
25 x1 = (y1 - f_x2) / self.x1_factor
26 del f_x2 , y1
27 dy2 *= self.x2_factor
28 # dy2=dx2 , save memory by using the same variable
29 dy2 += x2.grad
30 x2.grad = None
31 # dy1=dx1
32 dy1 *= self.x1_factor
33 x2 = x2.detach ()
34 return x1, x2 , dy1 , dy2

Listing 1: Backward pass for each Layer. The peak memory happens at Line 10 or Line 25, depending
on whether the subnetwork G is larger than F or the opposite. In the code, we use x1, x2, y1, y2,
x1_factor, x2_factor to represent h1

n−1, h2
n−1, h1

n, h2
n, λ and β, respectively.

23

Table 10: Compared to Y-Tuning on RoBERTalarge. We exclude the memory of Y-Tuning for BART
in Table 2, because it was not reported. Instead, the memory usage of Y-Tuning for RoBERTalarge

was reported. Notably, the STS-B task is excluded from the calculation of the average score, because
it was not evaluated in Liu et al. [20].

Model #Parameter Peak Memory (GB) Average Score

Full FT 100% 11.47 88.4
LoRA 0.23% 6.11 88.1
Y-Tuning 4.57% 2.08 82.1
MEFT1 0.23% 3.63 88.4

0 0.05 0.1 0.5 1
0

10

20

30

40

50

60

70

80

0 0.1 0.5 0.9c

Av
er

ag
e

S
co

re
 (%

)

default init default init with random PLM α = 1 α = 0, trainable α α = 1 / c

Figure 10: The initialization effect for PEFT, Left: LoRA, Right: (IA)3. Instead of initializing
Wup = c like Figure 2b, here we initialize it as Wup ∼ N (c, 0.022), which should be more
suitable for training due to its asymmetry. For convenient comparison, the results of Wup = c

(in grey) are also included. Overall, the results between Wup = c and Wup ∼ N (c, 0.022) are
comparable. However, when c = 0 for LoRA, the result of Gaussian initialization is slightly worse
than the constant initialization. This further supports our starting point hypothesis, since the Gaussian
initialization can’t guarantee the output from the adapter is strictly equal to zero at the beginning of
fine-tuning.

24

