
Published as a conference paper at ICLR 2021

A APPENDIX

A.1 CONTINUOUS CONVOLUTION INVOLVING ρreg

This section is a more detailed version of Section 4.4.

Define the input f to be ρreg-field, that is, a distribution over R2 valued in ρreg. Define K : R2 →
ρreg ⊗ ρreg. After identifying SO(2) with its underlying manifold S1, we can identify K(x) as a
map S1 × S1 → R and f (x) : S1 → R. Define the integral transform

K(x) } f (x)(φ2) =

∫
φ1∈S1

K(x)(φ2, φ1)f (x)(φ1)dφ1.

For y ∈ R2, define the convolution g = K ? f by

g(y) =

∫
x∈R2

K(x) } f(x+ y)dx.

The }-operation parameterizes linear maps ρreg → ρreg and is thus analogous to matrix multiplica-
tion. If we chose to restrict our choice of κ to κ(φ2, φ1) = κ̃(φ2−φ1) for some function κ̃ : S1 → R
then this becomes the circular convolution operation.

The SO(2)-action on ρreg by Rotθ(f)(φ) = f(φ− θ) induces an action on κ : S1 × S1 → R by

Rotθ(κ)(φ2, φ1) = κ(φ2 − θ, φ1 − θ).

This, in turn, gives an action on the torus-field K by

Rotθ(K)(x)(φ2, φ1) = K(Rot−θ(x))(φ2 − θ, φ1 − θ).

Thus Equation 3, the convolutional kernel constraint, implies that K is equivariant if and only if

K(Rotθ(x))(φ2, φ1) = K(x)(φ2 − θ, φ1 − θ).

We use this to define a weight sharing scheme as described in Section 3.2. The cases of continuous
convolution ρ1 → ρreg and ρreg → ρ1 may be derived similarly.

A.2 COMPLEXITY OF CONVOLUTION WITH TORUS KERNEL

The complexity class of the convolution with torus kernel is O(n · k2reg · cout · cin), where n is
the number of particles, the regular representation is discretized into kreg pieces, and the input and
output contain cin and cout copies of the regular representation respectively. We are not counting
the complexity of the interpolation operation for looking up K(θ, r).

A.3 EQUIVARIANT PER-PARTICLE LINEAR LAYERS

Since this operation is pointwise, unlike positive radius continuous convolution, we cannot map
between different irreducible representations of SO(2). Consider as input a ρin-field I and output a
ρout-field O where ρin and ρout are finite-dimensional representations of SO(2). We define O(i) =
WI(i) using the same W , an equivariant linear map, for each particle 1 ≤ i ≤ N . Denote the
decomposition of ρin and ρout into irreducible representations of SO(2) as ρin ∼= ρi11 ⊕ . . .⊕ρinn and
ρout ∼= ρj11 ⊕ . . .⊕ ρjnn respectively. By Schur’s lemma, the equivariant linear map W : ρin → ρout
is defined by a block diagonal matrix with blocks {Wk}nk=1 where Wk is an ik × jk matrix. That
is, maps between different irreducible representations are zero and each map ρk → ρk is given by a
single scalar.

Per-particle linear mapping ρ1 → ρreg and ρ1 → ρreg. Since the input and output features are
ρ1-fields, but the hidden features may be represented by ρreg, we need mappings between ρ1 and
ρreg. In all cases we pair continuous convolutions with dense per-particle mappings, this we must
describe per-particle mappings between ρ1 and ρreg.

13

Published as a conference paper at ICLR 2021

By the Peter-Weyl theorem, L2(SO(2)) ∼=
⊕∞

i=0 ρi. In the case of SO(2), this decomposition is
also called the Fourier decomposition or decomposition into circular harmonics. Most importantly,
there is one copy of ρ1 inside of L2(SO(2)). Hence, up to scalar, there is a unique linear map
i1 : ρ1 → L2(SO(2)) given by (a, b) 7→ a cos(θ) + b sin(θ).

The reverse mapping pr1 : L2(SO(2))→ ρ1 is projection onto the ρ1 summand and is given by the
Fourier transform pri(f) = (

∫
S1 f(θ) cos(θ)dθ,

∫
S1 f(θ) sin(θ)dθ).

Per-particle linear mapping ρreg → ρreg. Though ρreg is not finite-dimensional, the fact that it
decomposes into a direct sum of irreducible representations means that we may take ρin = ρout =
ρreg above. Practically, however, it is easier to realize the linear equivariant map ρireg → ρjreg as a
convolution over S1,

O(θ) =

∫
φ∈S1

κ(θ − φ)I(φ)

where κ(θ) is an i× j matrix of trainable weights, independent for each θ.

A.4 ENCODING INDIVIDUAL PARTICLE PAST BEHAVIOR

We can encode these individual attributes using a per vehicle LSTM (Hochreiter & Schmidhuber,
1997). Let X(i)

t denote the position of car i at time t. Denote a fully connected LSTM cell by
ht, ct = LSTM(X

(i)
t , ht−1, ct−1). Define h0 = c0 = 0. We then use the concatenation of the hidden

states [h
(1)
tin . . . h

(n)
tin] of all particles as Z ∈ RN ⊗ Rk as the encoded per-vehicle latent features.

A.5 ENCODING PAST INTERACTIONS

In addition, we also encode past interactions of particles by introducing a continuous convolution
LSTM. Similar to convLSTM we replace the fully connected layers of the original LSTM above with
another operation Xingjian et al. (2015). While convLSTM is well-suited for capturing spatially
local interactions over time, it requires gridded information. Since the particle system we consider
are distributed in continuous space, we replace the standard convolution with rotation-equivariant
continuous convolutions.

We can now define Ht, Ct = CtsConvLSTM(Xt, Ht−1, Ct−1) which is an LSTM cell using equiv-
ariant continuous convolutions throughout. Note that in this case Xt, Ht−1, Ct−1 are all particle
feature fields, that is, functions {1, . . . , n} → Rk.

Define CtsConvLSTM by

it = σ(Wix ?cts X
(i)
t +Wih ?cts ht−1 +Wic ◦ ct−1 + bi)

ft = σ(Wfx ?cts X
(i)
t +Wfh ?cts ht−1 +Wfc ◦ ct−1 + bi)

ct = ft ◦ ct−1 + it ◦ tanh(Wcx ?cts X
(i)
t +Wch ?cts ht−1 + bc)

ot = σ(Wox ?cts X
(i)
t +Woh ?cts ht−1 +Woc ◦ ct + bo)

ht = ot ◦ tanh(ct),

where ?cts denotes CtsConv. We then can use Htin as input feature for the prediction network.

A.6 EQUIVARIANCE ERROR

We prove the proposition in Section 4.5.

Proposition. Let α = 2π/kθ. Let θ̄ be θ rounded to nearest value in Zα. Set θ̂ = |θ − θ̄|. Assume
n particles samples uniformly in a ball of radius R with features f ∈ ρc1. Let f and K have entries
sampled uniformly in [−a, a]. Let the bullseye have radius 0 < Re < R. Let F = CtsConvK,R
and Tθ = ρ1(Rotθ). Then the expected EE is bounded

EK,f ,x[T (F (f ,x))− F (T (f), T (x))] ≤ | sin(θ̂)|C ≤ 2πC/kθ

where C = 4cna2(1−R2
e/R

2).

14

Published as a conference paper at ICLR 2021

Proof. We may compute for a single particle x = (ψ, r) and multiply our result by n by linearity.
We separate two cases: x in bullseye with probabilityR2

e/R
2 and x in angular slice with probability

1−R2
e/R

2. If x is in the bullseye, then there is no equivariance error since K(x) is a scalar matrix.
Assume x is an angular sector.

For nearest interpolation, the equivariance error is then

‖ρ1(θ̄)K(x)ρ1(−θ̄)ρ1(θ)f − ρ1(θ)K(x)f‖.

Since ρ1(θ) is length preserving, this is

‖ρ1(−θ)ρ1(θ̄)K(x)ρ1(−θ̄)ρ1(θ)f −K(x)f‖
=‖ρ1(β)K(x)ρ1(−β)f −K(x)f‖ (7)

where β = ±θ̂. We consider only a single factor of ρ1 in f . The result will then be multiplied by c.
Let

K(x) =

(
k11 k12
k21 k22

)
, f =

(
f1
f2

)
.

We can factor out an a from K(x) and an a from f and assume kij , fi samples from
Uniform([−1, 1]). One may then directly compute that Equation 7 equals√

((k21 + k12)2 + (k11 − k22)2)(f21 + f22) sin2(β)

This is bounded above by 4| sin(β)| = 4| sin(θ̂)|. Collecting the above factors, this proves the bound
C| sin(β)|.
The further bound follows by the first order bound,

| sin(θ̂)| ≤ |θ̂| ≤ 2π/kθ.

The relationship EE ≈ 2πC/kθ is visible in Figure 4. We can also see clearly the significance of
the term | sin(θ̂)| by plotting equivariance error against θ as in Figure 7.

Figure 7: The above plot is generated from random input and kernels. We can clearly see the
dependence of of EE on | sin(θ̂)|

A.7 DATA DETAILS

Argoverse dataset includes 324K samples, which are split into 206K training data, 39K validation
and 78K test set. All the samples are real data extracted from Miami and Seattle, and the dataset
provides HD maps of lanes in each city. Every sample contains data for 5 seconds long, and is
sampled in 10Hz frequency.

15

Published as a conference paper at ICLR 2021

TrajNet++ Real dataset contains 200K samples. All the tracking in this dataset is captured in both
indoor and outdoor locations, for example, university, hotel, Zara, and train stations. Every sample
in this dataset contains 21 timestamps, and the goal is to predict the 2D spatial positions for each
pedestrain in the future 12 timestamps.

A.8 IMPLEMENTATION DETAILS

Argoverse dataset is not fully observed, so we only use cars with complete observation as our input.
Since every sample doesn’t include the same number of cars, we only choose those scenes with less
than or equal to 60 cars and insert dummy cars into them to achieve consistent car numbers. Tra-
jNet++ Real dataset is also not fully observed. And here we keep our pedestrain number consistent
to 160.

Moreover, for each car, we use the average velocity in the past 0.1 second as an approximate to the
current instant velocity, i.e. vt = (pt − pt−1)/2. As for map information, we only include center
lanes with lane directions as features. Also, we introduce dummy lane node into each scene to make
lane numbers consistently equal to 650.

In TrajNet++ task, no map information is included. And since pedestrians don’t have a speedometers
to tell them exactly how fast they are moving as drivers, instead they depends more on the relative
velocities and relative positions to other pedestrians, we tried different combination of features in
ablative study besides only using history velocities.

Our models are all trained by Adam optimizer with base learning rate 0.001, and the gamma rate for
linear rate scheduler is set to be 0.95. All our models without map information are trained for 15K
iterations with batch size 16 and learning rate is updated every 300 iterations; for models with map
information, we train them for 30K iterations with batch size 16 and learning rate is updated every
600 iterations.

For CtsConv, we set the layer sizes to be 32, 64, 64, 64, and kernel size 4× 4× 4; for ρ1-ECCO, the
layer sizes are 16, 32, 32, 32, kθ is 16, kr is 3; for ρreg-ECCO, we choose layer size 8, 16, 8, 8, kθ
16, kr 3, and regular feature dimension is set to be 8. For Argoverse task, we set the CtsConv radius
to be 40, and for TrajNet++ task we set it to be 6.

A.9 ABLATIVE STUDY

We perform ablative study for ECCO to further diagnose different encoders, usage of HD maps and
other model design choices.

Choice of encoders Unlike fluid simulations (Ummenhofer et al., 2019) where the dynamics are
Markovian, human behavior exhibit long-term dependency. We experiment with three different en-
coders refered to as Enc to model such long-term dependency: (1) concatenating the velocities from
the past m frames as input feature, (2) passing the past velocities of each particle to the same LSTM
to encode individual behavior of each particle, and (3) implementing continuous convolution LSTM
to encode past particle interactions. Our continuous convolution LSTM is similar to convLSTM
(Xingjian et al., 2015) but uses continuous convolutions instead of discrete gridded convolutions.

We use different encoders to time-aggregate features and compare their performances (Table 3).

Use of HD Maps In Table 4, we compare performance with and without map input features.

Choice of features for pedestrian Unlike vehicles, people do not have a velocity meter to tell
him how fast they actually walk. We realize that people actually tend to adjust their velocities based
on others’ relative velocity and relative position. We experiment different combination of features
(Table 5), finding using relative velocities and relative positions as feature has the best performance.

A.10 QUALITATIVE RESULTS FOR TRAJNET++

Figure 8 show qualitative results for TrajNet++. Note that the non-equivariant baseline (2nd column)
depends highly on the global orientation whereas the ground truth and equivariant models do not.

16

Published as a conference paper at ICLR 2021

Encoder Argoverse TrajNet++
ADE DE@1s DE@2s DE@3s ADE FDE

Markovian 4.67 - - 9.84 0.969 1.952
LSTM 2.05 1.06 2.51 4.71 0.909 1.909
CtsConvLSTM 3.98 2.02 5.11 8.40 0.962 1.941
CtsConvDLSTM 2.02 1.03 2.46 4.58 0.910 1.916
D-Concat(20t feats) 1.87 1.01 2.43 4.22 0.895 1.872

Table 3: Ablation study on encoders for Argoverse and TrajNet++. Markovian: Use the velocity
from the most recent time step as input feature. LSTM: Used LSTM to encode velocities of 20
timestamps. CtsConvLSTM: Instead of dense layer, the gate functions in LSTM are replaced by
CtsConv. CtsConvDLSTM: Replaced gate functions by CtsConv + Dense. D-Concat (20t feats):
Stacked velocities of 20 time steps as input.

Model w/o Map w/ Map

ADE DE@1s DE@2s DE@3s ADE DE@1s DE@2s DE@3s

CtsConv 1.87 1.01 2.43 4.22 1.85 0.99 2.42 4.32
ρ1-ECCO 1.81 1.02 2.42 4.14 1.70 0.93 2.22 3.89
ρreg-ECCO 1.81 1.00 2.38 4.12 1.62 0.89 2.12 3.68

Table 4: Ablative study on HD maps for Argoverse. Prediction accuracy comparison with and
without HD Maps.

Velocity Relative Position Acceleration ADE FDE

Absolute × × 0.92 1.95
Absolute × X 0.90 1.87
Relative × X 0.89 1.86
Relative X X 0.86 1.79

Table 5: Ablative study on features for Traj++. Acceleration means whether we used acceleration to
make numerically extrapolated position.

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

22 20 18 16 14 12 10 8

12

10

8

6

4

2

0

18 16 14 12 10 8

12

10

8

6

4

2

22 20 18 16 14 12 10 8

12

10

8

6

4

2

0

22 20 18 16 14 12 10 8

12

10

8

6

4

2

0

Figure 8: The x,y-axes are the position (m). The dashed line represents the 2s past trajectory. The
solid line represents the 3s prediction. Red represents the agent. Top row: The predictions are made
on the original data. Bottom row: We rotate the whole scene by 160◦ and make predictions on
rotated data. From left to right are visualizations of ground truth, CtsConv, ρ1-ECCO, ρreg-ECCO.

17

