Rigid Body Adversarial Attacks

Supplementary Material

In this supplemental document, we provide an explicit
formulation of the optimization problem solved in each
timestep of the forward simulation, an overview of calculat-
ing its derivatives with the adjoint method, as well as further
details regarding experiments.

A. Explicit Formulation of Forward Simula-
tion Problem

To determine the optimization problem in the forward simu-
lation, let us start with Newton’s law: ' = Ma. The BDF-2
scheme is given by:
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Writing Newton’s law with the implicit formulation after
time discretization gives us:

Man+1 = Fn+1.

Applying BDF-2 and substituting the forces with their cor-
responding differentiable potential energies, this expands
to:
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Now, use the BDF-2 formula on the velocities to obtain

an equation in terms of positions:
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Simplifying, we get
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Solving the forward step is then a root-finding problem,
where we find the ¢, that is a zero of:

Let us introduce § = %(24(]” —22¢p—1+8¢n—2—Gn-3),
so that we can write:
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Now, we can construct an energy E such that f = d;}i -,

so finding the root of f is equivalent to minimizing the en-
ergy:
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which is in turn equivalent to minimizing:
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Splitting the potential energy into its constituent compo-
nents yields the following optimization problem to find the
positions at the end of the timestep:
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where M is the FEM consistent mass matrix (see Eq. 12.55
of Rao [78] for tetrahedral definition), ®y is the strain en-
ergy, @, is the gravitational potential energy, and @, is the
contact potential energy.

For ®g, we use the stable Neohookean energy density
given in Eq 6.9 of Kim and Eberle [50]:

Oy = /‘IJSNH av,
(13)

A
\IISNH = %(12 - 3) - ,U,(I3 - 1) + 5([3 - 1)2,

where )\, i1 are the first two Lamé parameters (functions of
Y, v). Note that when calculating this energy density, we
must scale the stiffnesses by the cube of our material occu-
pancy o.

The gravitational potential energy is defined as:

®, =g’ Mq. (14)

For the contact, we use the smoothly clamped barrier en-
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B. Simulation Derivatives

Since we are using reverse mode auto-differentiation, we
are given the gradient of the final cost C' with respect to the
simulation step output (typically called GRAD_OUTPUT in
Torch literature). At each timestep, we solve the minimiza-
tion problem in Eq. 12, with the implied constraint LflE =0.
Thus, using the definition of the adjoint method (Eq. 7 from

the main document), we find:
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where we already have the per-timestep energy Hessian H
( 9 2E ) from the forward simulation, and we can analyti-
cally compute the Jacobians.

C. Experiment Details

In this section we provide additional details regarding the
setup for the experiments we have conducted. Unless spec-
ified otherwise, we use a timestep of 0.01s, an IPC barrier
distance of le-3 m, gravitational acceleration of -9.8 m/s2,
a Young’s modulus range from 2.5 GPa to 650 GPa, a Pois-
son’s ratio range from 0.2 to 0.4, and a mass density range
from 0.8 g/cc to 11.3 g/cc. In our examples, we use ADAM
optimization parameters of §; = 0.7 and 83 = 0.95. We
run all simulations to convergence. By choosing a good
value for the soft constraint coefficient, we are able to get
very tight agreement for the moments of mass between the
reference and adversarial objects, shown in Table 1.

C.1. Adversarial Ball

The adversarial ball scenario is constructed to mimic a stan-
dard basketball setup. The ball is constructed from a tetra-
hedral mesh of a sphere with radius 0.121m and is com-
prised of 1820 vertices and 9056 tetrahedra. The backboard
assembly is constructed out of a plane and a rim, follow-
ing NBA dimensions. The backboard assembly is placed
at position [0, 0, 3.048] m, and is positionally constrained
(treated as a collision mesh rather than simulated). The ball
is placed at position [3.4, -3.287, 1.8495] m, and is released
with velocity [-3.516, 3.516, 6.099] m/s.

While the ball collides off the planar backboard (zz
plane) and has multiple collisions off of the rim, we con-
struct the adversarial ball using just the first impact off the

backboard. To do this, we first simulate the trajectory of the
ball from the release point described above, and capture its
state just prior to the collision off the backboard. We then
use this state as the initial condition for the 0.25s simula-
tions of the ball bouncing off a plane positioned to match
the backboard that we use to construct the adversarial ob-
ject. The optimized adversarial ball is demonstrated from
the initial conditions detailed above for a longer 1.5s simu-
lation. In the black box attack demonstration, we observe a
very large qualitative difference in the trajectories - in ref-
erence case, the ball successfully goes into the hoop and in
the adversarial case, it bounces off the rim and out.

C.2. Adversarial Star

In the adversarial star example, we launch a star off of two
perpendicular planes (located at z = 0 and y = 0). The star
is of radius 1m, and is comprised of 440 vertices and 1506
tetrahedra. The star has an initial position of [0, 2.5, 2.0]
m, and a velocity of [0, -10, -10] m/s. In this example, we
disable gravity and use a timestep of 558- Due to the thin
profile of the star, we choose to optlmlze only the Young’s
modulus, Poisson’s ratio, and mass density (i.e. we keep
the star as a solid object, abstaining from any topology opti-
mization). Additionally, we increase the minimum Young’s
modulus to allow a range of 5GPa to 650GPa. To construct
the adversarial example we simulate 0.3s, but the demon-
stration of the attack against the simulation uses a longer
1s simulation. In this experiment, we observe a roughly 8
degree angular separation between the reference and adver-
sarial trajectories.

C.3. Adversarial Bunny

In the adversarial bunny example, a bunny is bounced off
of the ground towards a bin. Similarly to the adversarial
ball, the adversarial bunny is constructed using just the first
planar contact. The bunny mesh consists of 699 vertices and
2274 tetrahedra. To construct the adversarial example, the
bunny is given an initial position of [0, 1.5, 1.5] m, and an
initial velocity of [0, -7.75, -10] m/s. It is simulated for 0.2s
during which it bounces off of the xy plane. To demonstrate
the attack, the bunny has an initial position of [0, 2.0, 2.0]
m, an initial velocity of [0, -7.75, -10] m/s, and the bin is
placed at [0, -13.75, 0] m. These simulations are run for
2.5s. Similarly to the adversarial ball example, we have a
major qualitative difference in the simulation result, with
the reference bunny successfully going into the bin and the
adversarial bunny failing to do so.

C.4. Adversarial Cubes

The adversarial cubes example differs from the previous
experiments as there are multiple bodies being simulated,
there is non-zero friction, and the simulation used to con-
struct the adversarial example differs greatly from the simu-



Table 1. Comparison of reference and adversarial moments of mass for all of our examples. In all cases, the moments closely match.

ObJECt mo mix miy miy ma za ma yy ma zz m2 zy m2 zz ma yz
Ball (ref) 1.825e+01 -3.215e-05 -4.682e-05 3.930e-05 1.058e-01  1.059%-01 1.055e-01  7.475e-08 -1.050e-06  2.079e-06
Ball (adv) 1.825e+01 -3.215e-05 -4.682e-05 3.930e-05 1.058e-01  1.059e-01  1.055e-01  7.462e-08 -1.050e-06  2.080e-06
Star (ref) 8.811e+02  3.314e-03 -3.201e-03  1.016e-02 2.178e+02 1.155e+02 1.155e+02 -5.076e-04  1.560e-03 -4.151e-03
Star (adv) 8.811e+02  3.311e-03 -3.200e-03  1.016e-02 2.178e+02 1.155e+02 1.155e+02 -5.259e-04  1.565e-03 -4.142e-03
Bunny (ref)  3.901e+03 -2.403e-13  3.41le-13 -4.263e-13 1.382e+03 8.974e+02 1.028e+03  9.705e-01 4.553e+01  2.682e+02
Bunny (adv) 3.901e+03 -1.920e-07  2.939e-08  2.131e-06 1.382e+03 8.974e+02 1.028e+03  9.705e-01  4.553e+01  2.682e+02
Cube (ref) 3.124e-01  9.922e-07  3.564e-07 2.571e-07 1.301e-04 1.301e-04 1.301le-04 1.164e-08  3.443e-08 -1.833e-08
Cube (adv) 3.124e-01  9.922e-07  3.565e-07  2.571e-07 1.301e-04 1.301e-04 1.301le-04 1.164e-08  3.443e-08 -1.833e-08
Bat (ref) 4.132e+00  3.082e-05 -2.229e-05 2.287e+00 1.453e+00 1.453e+00 1.713e-03  2.258e-07 -1.887e-05  2.489e-05
Bat(adv) 4.132e+00 -8.139e-05 -4.273e-05 2.287e+00 1.453e+00 1.453e+00 1.930e-03  3.406e-06 -2.030e-05  2.410e-05

lation used to evaluate it. To construct the adversarial cube,
we use a simplified setup where the cube of side length Scm
is placed at [0, 0, 0.05] m, is given an initial velocity of [0,
0, -0.1] m/s. The cube bounces off the xy plane, and again
off a plane above it at z = 0.1. The cube mesh contains
2167 vertices and 10164 tetrahedra.

The evaluation of this example involves three identical
cubes stacked (offset) atop each other, and a fourth cube
strikes the stack from above (inspired by Figure 6 of Twigg
and James [94]). The three cubes are placed at: [0, O,
0.026]m, [0, -0.0225, 0.65]m, and [0, O, 0.128]m. The
fourth cube is rotated 45 degrees in the x-axis, and is given
an initial position of [0, -0.0225, 0.65] m and an initial ve-
locity of [0, 0, -3.0] m/s. These simulations use a timestep
of 1e-3s and a friction coefficient of 0.4. In this experiment,
the stack of reference cubes successfully stays upright post
collision, and the top cube in the stack of adversarial cubes
falls over.

C.5. Adversarial Bat

The adversarial bat example contains two different simu-
lated bodies - the bat which contains the degrees of free-
dom, and the ball whose trajectory is optimized. This case
also differs from the previous examples in that it is a di-
rected attack rather than undirected. The optimization ob-
jective is to get the ball as close as possible to the center
(i.e. x = 0). This gives us an optimization cost term of
||Gaav (tena)z||?. The bat consists of 2214 vertices and 9098
tetrahedra. The swing of the bat is encoded by choosing the
14 vertices on the base of the bat to be used as Dirichlet
boundary conditions; at each timestep of the simulation, the
energy minimization problem has a constraint that pins the
boundary condition vertices to their positions correspond-
ing to the swing. We solve this using the standard extension
to Newton’s method for feasible start nonlinear optimiza-
tion problems with equality constraints. In this way, we
give the bat a constant angular velocity of 1.257 rad/s, and
placed with its base at the origin with an initial orientation
of -55 degrees about the 2z axis. The ball is given an initial
position of [0.75, 1.25, 0.245] m, with an initial velocity of
[0, -6, 0] m/s. To construct the adversarial bat, we follow

the same procedure as with the adversarial ball example,
running the simulation forward to capture the state shortly
before contact, and using that state as the initial conditions
for the simulation in the optimization loop. For construct-
ing the adversarial example, the simulation duration is 0.25
s, and for demonstrating it is 2.0 s. As with the star, we
increase the minimum Young’s modulus to 25 GPa to keep
the bat’s motion perceptually rigid. In this experiment, we
observe a roughly 5 degree angular difference between the
rigid body and adversarial trajectories.

D. Baseline Simulations

Different simulation tools work very differently under the
hood, for instance, the use of barrier functions vs linear
complementarity problem for contact modelling, choice of
integrator, etc. One might wonder to what extent the trajec-
tory difference of the adversarial object is due to the con-
struction of the object itself as opposed to the differences in
the simulation tools used. We investigate these concerns by
running baseline simulations in our deformable simulator
(POLYFEM) with extremely stiff, uniform material objects.

Ultimately, both rigid body and deformable simulators
are meant to model real world phenomena. Thus, by tak-
ing measures such as choosing appropriate simulation pa-
rameters and using highly stiff materials, one would expect
that the simulated results match across simulators. For the
baseline material parameters, we use a Young’s modulus of
le13 Pa, a Poisson’s ratio of 0.28, and a mass density of 2.5
g/cc. We choose to run the baseline simulation using the
same timesteps and contact parameters used in the general
experiments.

The results of these baseline simulations are show in fig-
ures 10, 11, 12, 13, and 14. We see that the baseline sim-
ulations match the rigid body simulations reasonably well.
In the three experiments that have a qualitative “success /
failure” outcomes (adversarial ball, bunny, cubes), the base-
line simulations match the rigid body simulations. For the
star and bat examples, the baseline simulation trajectories is
about two degrees off from the rigid body reference. While
this difference is certainly nontrivial, we note that in both



cases the baseline simulation is closer to the rigid body ref-
erence than it is to the adversarial examples.

We believe the main sources of the inaccuracies between
the simulators are our large timesteps, the internal mesh
contact sampling, and the use of single value coefficient
of restitution in the rigid body simulators (standard in rigid
body simulation). It may be possible to get much better
agreement by decreasing the timestep, exploring different
levels of mesh refinement, and using more advanced resti-
tution models such as Wang et al. [96].
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Figure 10. Following the setup from Fig. 7, the baseline simulation (gold) matches the rigid body simulation’s (blue) defining characteristic
of successfully going into the bin. Note that the trajectories are in very close agreement.
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Figure 11. Following the setup from Fig. 1, the baseline simu-
lation (gold) matches the rigid body simulation’s (blue) defining
characteristic of successfully going into the hoop.
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Figure 12. The trajectory of the baseline simulation (gold) cor-
responding to the star example from Fig 3 is close to that of the

rigid body simulation (blue), with a roughly 2 degree angular dif-
ference.
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Figure 13. Here, we simulate a collision between a block and a
stack of blocks using a stiff deformable simulation (gold). The
post collision state looks similar to that of the corresponding rigid
body simulation (blue), with the stacks left intact after the colli-

sion.

Figure 14. The baseline simulation (gold) of the bat example from
Fig. 9 shows poorer agreement than the other examples. We see a
roughly 2 degree angular difference between the rigid body (blue)
and baseline trajectories.
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