A. More Results

Additional speed benchmarking with different hardware
configurations is reported in Tab. 6. We show per-scene
pose accuracy metrics for all datasets from Tab. 7 to Tab. 11.
The per-scene NeRF and Gaussian Splatting evaluation on
Tanks and Temples is shown in Tab. 12.

B. Technical Details
B.1. Distortion Estimation

Hierarchical search In order to accelerate the interval
search in distortion estimation, which scales linearly with
the number of candidates, we employ a hierarchical search
strategy that iteratively shrinks the interval. At each level of
the hierarchy, after finding the solution, we set the left and
right candidates as the endpoints of the new interval for the
next level. The solution at the last level is the final estimate.
Multiple cameras If the two images in a pair do not share
intrinsics, but the distortion parameter of one of the images
is known, we can use a similar 1D search method to deter-
mine the distortion parameter of the other image. With this,
we can extend the distortion estimation algorithm to deal
with multiple different cameras, each of which corresponds
to a known subset of images.

We say that an image pair is ready for a camera if either
. both images correspond to that camera; or
. only one of the images corresponds to that camera, but

the distortion parameter of the other image is already es-

timated.
We estimate the distortion parameters for these cameras one
by one. Each time, among the cameras whose distortion
have not been estimated, we pick the one with the largest
number of ready image pairs. The distortion parameter for
this camera is then estimated using these image pairs. To do
that, the only modification to the original algorithm (origi-
nally for a single image pair) is that for each candidate of
«a we compute the average epipolar error over all the point
pairs in all the ready image pairs. The next camera is picked
likewise, until the distortion parameters for all the cameras
are estimated.
Importance of undistortion The most direct impact of
incorrect distortion is on focal length estimation as illus-
trated in Figure 3, which visualizes focal length validity
(smoothed over discrete samples) on two of the scenes
with and without distortion estimation. After keypoints are
undistorted (green), the validity score peaks at an accurate
FoV estimation. Without distortion estimation (red), the to-
tal validity score decreases drastically, and the peak deviates
from the correct FoV.

B.2. Focal Length Estimation

N —

We adopt a similar strategy as distortion estimation Sec. B.1
to deal with multiple cameras. However we do not use hi-
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Figure 3. Effect of distortion on focal length estimation. Curves in
are with undistortion, and curves in red without. The dotted
lines indicate the ground-truth FoVs.

erarchical sampling because processing each candidate is
relatively cheap, and we can afford to densely sample the
interval.

B.3. Global Rotation
B.3.1 Initialization

In this section we discuss how to initialize the global rota-
tion matrices for optimization. It is a modified version of
Martinec and Pajdla [38].

Denote the set of images as 7 and the set of image pairs
as P = {(i,7)} @, j)ezxz> Where each element has relative
rotation matrix R*77. The goal is to construct a solution of
global world to camera rotation matrices {R; };c7 to mini-
mize the objective (note that in contrast to the final objective
used in iterative optimization, this one uses L2 loss)

=Y HR(J') _Ri~IR®
(4,5)EP

Unfortunately, this problem cannot be directly solved us-
ing simple least square techniques since R(Y) € SO(3) are
3 x 3 matrices with orthogonality constraints. However, we
can decompose it into several sub-problems to circumvent
the constraints. In the following we use A, j to denote the
k™ solumn of a matrix A. Note that each term inside the

summation in Eqn. 10 can be splitted into three parts

e Y3 [Ri-woms

(4,)€EP k=1,2,3

‘ 2

(10)

1)

’ 2

Since R is an orthogonal matrix, the column vectors Rgf)k
have unit length and are mutually orthogonal. These or-
thogonality constraints are difficult to deal with, but if we
only look at one particular column, say k£ = 1, and ignore
the unit length constraint, the objective becomes an uncon-

strained least squares problem
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FASTMAP (1G+2C) GLOMAP COLMAP
n_imgs w/ cuda w/o cuda 1G+48C 1G+12C 48C 1G+48C 48C

z_alameda 1734 134: x 1.0 917: x6.8 848 'X6.3 934 : X 6.9 3805 : x28.2 4541 x33.6 24641 : x182.5
z_berlin 1511 1522><1_(J 5453><3.6 893Z><5>t) 10153><(>_7 18022><11_x 6478:><42_4 246482><1(7]>4
z_london 1874  102:.19 556:454 566 : 55 669:y65 2092: 903 2643 : 257 19238 : 1871
zZ_-nyc 990 88 ix1.0 338 %38 451 %51 487:><5.5 921 %105 1618 'x18.4 1988 %226
milll9,building 1920 258 % 1.0 1366 : %53 6289 %243 7792 % 30.1 38428: % 148.4 27080 1% 104.6 152839 : % 590.1
mill19_rubble 1657 240 : x 1.0 789: x3.3 2849 Ix11.8 2466 : x10.2 11571 : x48.0 12153 %504 64987 : % 269.8
urbn_Campus 5871  740:y109 3009:y4, 3869 : 5, 4175: 456 21916 : 4296 106055 : 1432 349490 : 4700
urbn_Sci-Art 3019 445 % 1.0 1760 : X 4.0 4601 %103 5712 x12.8 28824 : X 64.7 42032 %944 286454 : X 643.4
eft_apartment 3804 549:.;0 1003:4;3g 5905 : %1038 8341:, 152> 124310:%2063 | 185361 :43375 timeout
eft_kitchen 6042 2202:.19 6796:y3; | 22884 :y 104 34287 : 56 timeout timeout timeout

Table 6. Detailed system runtime comparisons (seconds:speed_ratio) with different GPU (G) and CPU threads (C) configurations. Despite
the cuda-accelerated ceres solver for bundle adjustment, a significant part of GLOMAP and COLMAP pipeline workload is still CPU-
bound, and having at least 12 threads is necessary for higher speed. FASTMAP performs all data structure marshaling on GPU with

non-trivial tensor indexing, and consumes less CPU resource.

time (sec) ATE} RTA@31

RRA@31

RTA@I1 RRA@I1T AUC-R&T @ 3 1 AUC-R&T @ 11

n.imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FasTMAP GLOMAP COLMAP

m360.bicycle 194 NS00 74 151 || 7.5¢-5 | 5.4e-5 | 5.7e5 1000 1000  100.0 1000 100.0
m360-bonsai 202 [N 306 1043 || 3.9e-5 [MMESN 1.7e4 | 1000 1000 999 | 1000 | 100.0
m360_counter 240 [R5 201 443 | 13e-5 | 2.5e6 | 23e6 1000 1000 100.0 1000 100.0
m360flowers 173 [N 54 120 | 65e5 | 60e-5 l.6e-4 | 1000 | 100.0 = 100.0 | 1000 | 100.0
m360_garden 185 [NNNN28N 152 490 1.5e5  1.5e-5 1000 1000 100.0 1000 1000
m360 kitchen 279 [INNS0N 376 1308 | 44e5  40e5 395 1000 1000  100.0 1000 100.0
m360_room 311 e 218 691 | 34e-3 | Lles | 9.3e6 993 1000 100.0 994 100.0
m360_stump 125 IS 40 74 | 35e5 | 19e5 | 2.de5 1000 1000 100.0 1000 100.0
m360_treehill 141 [NISH 68 202 | 87e5  77e5 [AGESN| 1000 1000 1000 | 1000 100.0

100.0 99.7 100.0 99.9 100.0 100.0 100.0 96.9 97.6 97.5 90.8 92.7 92.6
1000 | 1000 1000 979 | 1000 1000  100.0 9.4 [NOSEN 928 892 INOSEN 797
100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1 99.8 99.8 97.2 99.5 99.5
100.0 998 999 996 | 1000 1000  100.0 9.1 964 920 885 893 763
1000 | 1000 1000 1000 | 1000 1000  100.0 996 990 9.1 988 91 973
100.0 100.0 100.0 100.0 100.0 100.0 100.0 972 97.2 97.2 915 915 91.7
100.0 988 1000 1000 994 1000 100.0 966 | 989 | 99.0 915 | 967 97.0
100.0 99.9 100.0 100.0 100.0 100.0 100.0 98.8 99.4 99.3 96.5 98.1 98.0
100.0 99.7 99.8 99.9 1000 1000 100.0 95.8 96.8 98.3 87.6 90.6 949

Table 7. Per scene camera pose metrics on the MipNeRF360 Dataset.

Using techniques like SVD we can find a non-trivial solu-
tion that is not all zero. And since the relative rotation ma-
trices R/ are also orthogonal matrices, left multiplying it
with a vector preserves the vector length. This means that
in the solution, the three-dimensional vectors Ril)l should
have similar lengths. We can normalize them to unit length
and get a solution of the actual first columns of global rota-
tion matrices {R " };c7.

Given already estimated first columns {Rff)l}vel of
the global rotation matrices, we can estimate the second
columns by minimizing the same objective but adding
additional constraints enforcing orthogonality to the first
columns

1 . a2
0 =7 3 [[RE-RORG
(i,9)eP (13)
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where |P| is the number of image pairs and |Z| is the num-
ber of images, and they are used heuristically for control-
ling the relative weighting of the two terms. Note that in

the above Rfj{ are already fixed and the only free variables

are {Ril)z} So this is still a least squares problem, and can
be solved by applying SVD and then normalizing each 3-

13

dimensional vector to unit length. A simple Gram-Schmidt
process can be used for enforcing the orthogonality between
the first and second columns.

We do not need to solve a least square problem again for
the third columns because it can be directly computed by
taking the cross product of the first two columns

R, = R{)

x R() (14)

B.3.2 Filtering

To improve the robustness of global rotation alignment, we
filter out some image pairs whose number of inlier point
pairs does not exceed certain threshold. Determining this
threshold can be tricky: a low threshold might introduce a
lot of outlier image pairs, but a high threshold could reduce
the number of connections and even disconnect the images
into several clusters. To alleviate this problem, we start
from a large threshold, and reduce it by half if it leads to
disconnected clusters. We do this iteratively until either all
the images are connected, or a minimal threshold is reached.
This partially solves the problem by making the threshold
adaptive to the data. However it is still common that even at
the minimal threshold, a few images are disconnected from
the others. In that case we just consider them as outliers and
ignore them in rotation alignment and later stages.



time (sec) ATE| RTA@31 RRA@31 RTA@17T RRA@I11T AUC-R&T @ 3 1 AUC-R&T @ | +
nimgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP
tntadvn_Auditorium 208 (AN 185 529 || 1de2  33c2 [NISESN| 296 943 95.8 552 94.0 93.4 11.0 93.7 92.8 170 [ISE0N 896 120 [NS08N 880 18 84.8 83.8
tnt_advn_Ballroom 324 NS5 652 1615 | 1.8e2 3.2¢-2 [NSHERN | 49.1 325 [NSSIN| 637 363 [NOSEN| 283 283 [IS7EN| 286 322 [S8EN| 250 265 9350 7.7 178 846
tnt_advn_Courtroom 301 (SN 296 882 | 934 85.1 99.9 99.9 983 1000 100.0 279 99.3 99.8 474 [ 1000 | 100.0 377 96.8 98.6 38 910 19617
tnt_advn_Museum 301 [ 275 752 | 8.5c4 914 | 1000 100.0 1000 1000 100.0 39.9 99.7 99.9 852 1000  100.0 53.8 97.2 98.7 12.1 919 9611
tnt_advn_Palace so1 ONIEY 547 1722 || 33e3 745 479 843 46.4 516 445 36.1 459 412 422 [OI6N| 133 379 844
tnt_advn_Temple 302 [NEEN 190 596 | 9.8e-4 98.8 99.9 99.8 1000 1000 100.0 95.1 9.6 99.4 99.1 1000 100.0 85.8 98.4 98.1 613 95.6 95.0
tnt_intrmdt_Family 152 335 | 83¢:5 | Lles 1000 1000 1000 | 1000 1000  100.0 998 1000 1000 | 1000 1000  100.0 954 | 994 999 865 | 983 | 997
tntintrmdt_Francis 269 789 | 42e5 | 6. 999 1000 1000 | 1000 1000  100.0 995 999 1000 | 1000 1000  100.0 962 | 995 | 999 892 | 985 | 997
nLintrmdt_Horse 134 255 | 6.8e-5 | lde- 1000 1000 1000 | 1000 1000 1000 999 1000 1000 | 1000 1000  100.0 972 | 994 | 998 915 | 983 994
tnt_intrmdt_Lighthouse 355 1270 | 1.0c4 | 23e- 99.6 1000 1000 | 1000 1000  100.0 97.4 | 998 | 100.0 992 1000 1000 920 [ 983 | 994 783 [ 951 [NNSSEN
tntintrmdt_M60 329 873 | 4de-5 | 1.2e- 999 1000 1000 | 1000 1000  100.0 995 1000 1000 | 1000 1000  100.0 964 | 991 | 997 895 | 973 990
tntintrmdt_Panther 390 989 || 6.de-5  6.de- 999 100.0 999 | 1000 1000  100.0 99.0 99.7 974 | 1000 1000  100.0 941 [NS78N 948 829 O 858
tnt_intrmdt_Playground 473 1255 || Lded [NISESN 1.9¢-3 1000 100.0 98.7 1000 100.0 98.7 99.6 99.9 98.7 973 1000 98.7 87.8 99.2 98.3 63.9 97.5 97.5
tnt_intrmdt_Train 414 901 | 805 | 7.8 999 1000 1000 | 1000 1000  100.0 995 999 1000 | 1000 1000  100.0 941 | 994 998 827 | 982 | 993
tnt_tg_Bam 503 3126 | 1.0e4 | 67e6  46e-6 | 1000 1000 1000 | 1000 1000 ~ 100.0 997 1000 1000 | 1000 1000  100.0 942 | 994 | 997 829 | 982 | 992
tnttrng-Caterpillar 374 1367 | SleS [ 56e6 | 4le6 998 1000 1000 | 1000 1000  100.0 995 999 999 | 1000 1000  100.0 962 | 994 997 890 | 984 993
tnttrng_Church 666 4589 || 8.8e-3 75.6 711 948 754 574 703 724 70.8 523 693 9841 195 66.6 96
int_tmg_Courthouse 1297 8285 || 12¢2 409 973 71.4 973 359 973 673 973 337 965 [N99&N| 240 950 [11986
tnttrg Tgnatius 269 682 | 5.2e5 1000 1000 1000 | 1000 1000  100.0 998 1000 1000 | 1000 1000  100.0 969 | 995 999 909 | 986 | 998
tnttmg_Meetingroom 209 575 | 3.ed 985 1000 1000 | 1000 1000  100.0 825 | 999 | 100.0 84.4 | 1000 | 100.0 720 [ 990 | 994 305 [ 970 | 982
tnttrng_Truck 289 635 || 6.9e-5 100.0 527 | 100.0 100.0 526 | 100.0 99.8 526 | 100.0 100.0 526 | 100.0 95.4 51.8 990N || 864 503 [NO9IEN
Table 8. Per scene camera pose metrics on the Tanks and Temples Dataset.
time (sec) ATE| RTA@31 RRA@31 RTA@11 RRA@IT AUC-R&T @3 1 AUC-R&T @ 1 1
nimgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP
nosteuropa 309 [MBEN 239 3387 | 93e4 | 9.0e4 | 88ed 887 888 894 | 1000 1000  100.0 592 601 | 602 985 972 983 632 635 639 337 337 341
nosr_1k2 190 SN 117 570 | 173 | 50e4 | 48¢4 963 972 972 | 1000 1000  100.0 874 885 882 96.7 | 1000 | 99.0 834 848 | 843 63.0 651 640
nosrIwp 354 N 202 2020 || 59e4 | 60ed | 59e4 960 961 962 | 1000 1000  100.0 745 757 762 | 1000 1000  100.0 742 759 762 435 | 483 | 484
nostrathaus 515 [MMIGN 593 5965 | Sded | Sded | S.ded 883 881 886 999 1000 1000 549 551 56.5 995 1000 1000 599 605 612 29 284 288
nostschloss 379 NN 320 2675 | 6led | 6led | 58e4 922 921 922 | 1000 1000  100.0 727 132 138 999 1000 1000 77 723 726 433 448 451
nost_st 397 NMON 262 1435 || 29e3 | 3.0e3 | 29e3 9.5 962 960 980 985 980 869 864 834 98 956 967 80.1 803 786 533 548 515
noststiacob 722 [NNSON 564 6267 || 49e3 33e3 904 930 922 970 997 989 757 780 768 968 | 994 | 989 730 759 748 473 | 506 | 495
nosrstiohann 347 [NNSON 296 2986 | 7.8e4  7.9e4 | 79¢4 849 847 851 | 1000 1000  100.0 578 579 583 993 994 994 616 619 621 347 361 358

Table 9. Per scene camera pose metrics on the NeRF-OSR Dataset.

B.4. Tracks

Consider the graph in which 2D keypoints are nodes and
pairwise edges denote keypoint matches. When a 3D scene
point is observed in m different images, the projected 2D
keypoints should ideally form a complete subgraph with m
vertices. In practice, keypoint matching has low recall and
tends to miss many point-pairs. A subgraph of related key-
points is often far from fully connected. Since the number
(and quality) of matches is critical to the accuracy of pose
estimation, we make up for low matching recall by track
completion. A track is a connected component in the 2D
keypoint connectivity graph and implies the existence of a
shared 3D point. Tracks are used heavily in SfM [44, 53] to
impose extra constraints, e.g., bundle adjustment [60] ini-
tializes 3D points based on tracks and minimizes the re-
projection error of each 3D point with its track members.

FASTMAP avoids bundle adjustment and data structures
containing both 3D scene points and 2D keypoints. Instead
we explicitly convert tracks to additional matches with pair-
wise combinations of all keypoints in each track. This way
we still make use of the transitivity of matching and bene-
fit from the extra constraints. These additional point pairs
are only introduced after global rotation alignment, and are
used in the global translation alignment and epipolar adjust-
ment steps described below.
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B.5. Global Translation
B.5.1 Relative Translation

Global translation alignment in our method relies heavily on
relative translations between image pairs. Rather than using
the translations determined via pose decomposition, we first
re-estimate the relative translations. We do so for two rea-
sons. First, since we have estimated the global rotations,
we can go back and re-compute the relative rotation of any
image pair. The relative rotation computed in this way is
much more accurate than those from relative pose decom-
position. In turn, a better estimate of the relative rotation
enables us to more accurately estimate relative translation.
Second, after generating new point pairs from tracks, some
image pairs that originally had no matches might have some
now, and we can use these new point pairs to estimate the
relative translation. We use 2D grid search to re-estimate
the unit relative translation vectors. We first sample a set
of candidates on the surface of the unit sphere, evaluate the
mean epipolar error of each sample, and choose the candi-
date with the lowest error as the final estimate.

B.5.2 Multiple Initializations

Although random initialization works surprisingly well for
the objective in Eqn. 6, it occasionally produces a small
number of outliers. To deal with the problem, we propose
to do multiple independent runs from different random ini-
tializations, and merge the solutions as the initialization for
the final optimization loop. Since the global rotations are
the same, different solutions can be aligned by moving the



time (sec)

ATE|

RTA@3T

RRA@31

RTA@1T RRA@I1T AUC-R&T @ 31 AUC-R&T @ 11

nimgs FASTMAP GLOMAP

COLMAP  FASTMAP GLOMAP COLMAP FASTMAP

GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

dploy_housel
dploy_house2
dploy_house3
dploy_houscd
dploy_pipesl
dploy_ruins2
dploy_ruins3

138
592
103
128

42

324

dploy_towerl 775 [LNIS8N 419
dploy_tower2 682 06N 634

419 7.5e-5
5702 6.9¢-5
627 4.6e-3
751 1.7e-2
138 6.8e-5
8672 5.2e-5
4986
2809 2.0e-2
6060 1.7e-4

Lle-4
7.2e-5
1.2e-2
1.9e-2
6.2e-5
4.1e-5
5.6e-3
2.0e-3
1.6e-4

Lled | 1000
13e4 | 999

eS| 951

OEEE| 948
6le-s | 1000
20c-4 || 1000
35¢3
25¢3 | 937
13¢3 | 999

99.9
99.9
95.9
98.3
100.0
100.0
94.9
95.2
99.8

99.9 100.0
99.8 100.0
97.2 94.5
98.8 95.6
100.0 100.0
98.3 100.0
95.7 98.4
87.7 99.2
44.6 100.0

100.0
100.0
95.6
91.7
100.0
100.0
99.3
99.5
100.0

100.0 995 990 990 | 1000 1000  100.0 939 932 929 821 802 796
100.0 992 993 956 996 | 99 813 916 917 820 754 | 756 511
9797|807 (858N 787 70.5 712 59.1 66.7 68.0 58.6 24.7 26.4 213
98.9 90.8 97.8 979 86.2 97.7 983 811 89.9 91.0 62.0 745 [E6EN
100.0 999 999 999 | 1000 1000  100.0 958 958 958 875 873 874
100.0 99.0 99.4 823 980 [NIG00N 816 838 O 719 672 [INE6SN 306
83.4 754 OBN 458 394 EGON 241 564 [SO0N 39.1 89 [11097 38
983 86.4 845 515 637 IgaE 379 65.6 675 472 209 [23@ 101
259 755 N 106 1000 100.0 9.6 727 729 84 245 262 0.8

Table 10. Per scene camera pose metrics on the DroneDeploy Dataset.

time (sec)

RRA@31 RTA@11 RRA@I1T AUC-R&T @ 3 1 AUC-R&T @ 11

nimgs FASTMAP GLOMAP

COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FasTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

z_alameda 1734 [NEEN 848
s

z_berlin 1511
z-london 1874
znyc 990
milll9 building 1920
mill19_rubble 1657
urbn_Campus 5871
urbn_Residence 2582
urbn_Sci-Art 3019
eft_apartment 3804

eft kitchen 6042 [N2202N = 22884

893
566
451
6289
2849
3869
2523
4601
5905

4541 1.1e-3
6478 1.0e-3
2643 | NGIGESH
1618 9.7e-3
27080 3.0e-4
12153 3.6e-5
106055 1.1e-5
36778 2.8e-5
42032 1.4e-5
185361 2.8e-3
timeout | | IEHEEN

ATE| RTA@31
19c-4 167661 99.1 99.4 1000 99.7
15e2 | Lle3 977 930 | 989 96.8
13e2 | 28e4 998 999 999 9.8
68¢-6  53e-6 994 1000 100.0 99.4
13e2 99.9 01 999 | 1000
6.4e-5 | 3de-5 999 998 999 | 100.0
47e-6  50e-6 | 1000 1000 1000 | 1000
27e-5  2.6e-5 998 999 999 | 100.0
10e-5  Lle-5 | 1000 1000 1000 | 100.0
9.4e-3 | 2.2e3 86.8 750 [NG0RN|  89.1
7.4e3 - |BNssol 599 - | s

100.0
929
99.9

100.0

74
99.9

100.0

100.0

100.0
75.6
623

100.0 98.9 99.3 99.9 99.1 99.7 99.9 95.4 97.8 98.5 88.1 94.8 95.6
918 | 928 [NOSEN| 947 | 928 [NOEEN| 836 | 909 MNSEEN| o610 | 869 [NNSEEN
99.9 996 999 999 995 999 999 964 | 986 | 985 899 | 960 958
100.0 99.1 100.0 100.0 99.4 100.0 100.0 95.0 98.9 98.9 86.5 96.8 96.8
100.0 99.3 0.0 99.3 100.0 19 99.9 95.5 0.0 95.6 87.0 0.0 874
1000 986 986 987 | 1000 999 1000 | 936 945 946 816 | 847 | 848

100.0 999 999 999 | 1000 1000 1000 940 | 980 | 979 819 | 941 937

100.0 98.8 98.9 99 0 100.0 100.0 100.0 94.6 95.2 95.4 84.6 863 86.8

100.0 999 999 1000 1000 1000 | 974 977 978 922 91 935
511 61.3 - 38.1 56.6 [FOGN| 455 50.5 6200 6.4 182 2190
467 [N - | 204 NEESN - 381 A2l - 4.6 [aA] -

Table 11. Per scene camera pose metrics on several large-scale datasets including ZipNeRF, Mill-19, Urbanscene3D and Eyeful Tower.

Instant-NGP

Gaussian Splatting

FASTMAP GLOMAP COLMAP ‘ FASTMAP GLOMAP COLMAP

Barn 2337 2368 23.69 26.17 27.81 27.79
Caterpillar 20.17 2020 2023 2330 2347 2359
2 Courthouse 19.96 1473 2023 | | 2112 1223 [12250
£ Ignatius 18.11 18.14 1826 | 21.42 2204 21.86
S Meetingroom  21.61 22.59 2241 23.71 25.35 25.17
Truck 21.19 16.86 23.58 1834  [124500
Family 2210 (2199 2145 23.67 2454 2475
Francis 23.68 23.73 23.48 26.94 2730 27597
£ Horse 21.07 2104 2113 22.96 2405  23.89
8 Lighthouse 2084 2099 2091 2200 2219 2212
£ M6o 2480 | 25.11 25.11 26.44 2807 2795
£ Panther 2525 260N | 2574 27.13  [288 | 2797
Playground 21.48 2196  21.99 24.12 2600 2603
Train 19.14 19.26 19.23 20.66 2179 2165
Auditorium 17.05 1941 976N | 17.38 16.67  [124200
3 Ballroom 17.94 13.92 9NN | [ 19.17 11.91 2368
2 Courtroom 1739 [B8O5N 1780 | 2087 2SN | 22.77
% Museum 14.58 14.73 14.53 20.00 20.97 20.96
© Palace 1694 57 17.19 16.41 18.99  [120005"
Temple 15.65 17.10 16.87 19.08 2080 2073

Table 12. Per-scene novel view synthesis results on Tanks and

Temples.

centroid to the origin and rescaling uniformly to have unit
average norm. Then for each image the solution with the

lowest average loss is chosen to be in the merged result.

B.6. Epipolar Adjustment

In this section we derive the following equivalent form of

the L2 epipolar adjustment objective (the re-weighting ob-
jective is similar)

Pl |Qnl

= Z Z m(2 "E, m(l)

n=1m=1

P

Z eTW n€n

15)

Note that each error term is linear in the essential matrix,

s0 we can re-write it as a dot product of the a weight vector
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and a flattened version of the essential matrix

1P| 19l
L=— Z > (@) EL&),)? (16a)
n=1m=1
L P12l
= S (@Rl @ Ey)? (16b)
n=1m=1
1P| 1On]

= % Z Z (w;zrmen)27 (16¢)

n=1m=1

where ® is the element-wise multiplication operator,
W = flatten(a'20 255, ) € R, and e,, = flatten(E,,) €
R?. Now re-arrange the terms to get the summation of a set

of quadratic forms

1 IPL12]
L=~ S (w)nen)’ (17a)
n=1m=1
1 IP1I2a]
= S (whnen) " (w,,en) (17b)
n=1m=1
o P11
= Z Z el wynw, e, (17¢c)
n=1m=1
Pl 10,
=~ Ze > womw,,, | en (17d)
m=1
P

2

=~ > el We, (17¢)
n=1

where W,, = S22 4 ap] € R9XO



m=1 m=2 m=3 m=4 m=3_8

Jionert e RTE@30 0.59 0.09 0.09 0.09 0.10
prert-ny RTA@3 98.59 99.45 99.45 99.45 99.45
Jionert alameda RTE@30 0.32 0.14 0.13 0.09 0.09
P RTA@3 97.90 98.28 98.29 98.40 98.39
ot Train RTE@30 1.40 0.02 0.02 0.02 0.29
- RTA@3 97.15 99.62 99.64 99.61 99.08
it Lishthonse  RTE@30 1.98 0.01 0.01 0.02 0.01
ghthous RTA@3 96.82 99.26 99.23 99.34 99.33

Dolov ruins3 RTE@30 123 0.66 0.67 0.92 0.69
ploy-ruins- RTA@3 92.70 94.56 94.44 94.06 93.77
ooy housed  RTE@30 3.82 0.83 1.00 0.83 0.83
ploy-house RTA@3 93.00 96.92 95.69 97.48 95.48

Table 13. Ablation of multiple translation initializations on se-
lected scenes. The results are obtained right after translation align-
ment and before epipolar adjustment. We bold the RTE@30 en-
tries for m = 1 and m = 2 initializations to highlight its effect.

B.7. Sparse Reconstruction

After pose estimation, we do a sparse reconstruction of
the scene by triangulating the matched keypoint pairs from
track completion. The 3D points corresponding to the same
track are merged by averaging. To eliminate outliers, after
merging the 3D points, we compute the re-projection error
for each 2D keypoint, and mark those with large errors to be
outlier keypoints. A 3D point is dropped if the number of
inlier keypoints in the track is smaller than 3. We also filter
out a 3D point if the maximal triangulation angle is smaller
than some threshold.

B.8. Data Ground Truth

With the exception of Tanks and Temples, each of the
datasets we evaluate on includes author-provided reference
camera poses. These reference poses are obtained through
different means, including COLMAP (for MipNeRF360,
ZipNeRF, NeRF-OSR), PixSfM [35] (for Mill-19 and Ur-
banscene3D), and commercial software (for DroneDeploy
and Eyeful Tower). In the case of Urbanscene3D, we use
the poses provided by Turki et al. [61]. For Tanks and Tem-
ples, we use COLMAP poses provided by Kulhanek and
Sattler [31]. On one of the scenes from Tanks and Temples
(Courthouse), we found that the reference poses are obvi-
ously inconsistent with the images, but decided to still treat
them as ground-truth.

B.9. Additional Ablation Study

B.9.1 Track completion

In Table 14 we show the final performance of the FASTM AP
with and without augmented point pairs from track comple-
tion (Sec. B.4). Track completion significantly improves
performance for MipNeRF360 scenes and some but not all
ZipNeRF scenes.
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AUC@3 AUC@10 RTA@I RTA@5 RRA@3

FASTMAP 97.2 99.1 99.8  100.0  100.0
m360 (9) w/o epipolar adjustment 75.0 90.8 85.5 99.5 94.5
w/o track completion 80.4 86.4 833 91.4 83.6
FASTMAP 95.2 98.1 99.0 99.3 99.9
alameda  w/o epipolar adjustment 86.7 95.5 94.9 99.2 99.8
wi/o track completion 94.8 98.1 99.0 99.4 99.9
FASTMAP 81.6 93.2 92.8 99.2 975
berlin w/o epipolar adjustment 70.4 89.5 82.4 98.8 95.7
w/o track completion 60.4 81.3 70.4 90.8 90.3
FASTMAP 96.6 98.8 99.6 99.9 99.7
london w/o epipolar adjustment 90.1 96.6 97.8 99.7 99.3
w/o track completion 96.1 98.7 99.6 99.9 99.8
FASTMAP 94.6 98.1 99.2 99.6 99.6
nyc w/o epipolar adjustment 89.7 96.7 97.0 99.7 99.6
w/o track completion 93.9 98.0 99.4 99.8 99.8

Table 14. Epipolar adjustment and track completion ablation on
the MipNeRF360 [4] and ZipNeRF [5] datasets. Results for Mip-
NeRF360 are averaged over all the scenes, and for ZipNeRF each
scene is listed separately.

B.9.2 Multiple translation initializations

As shown in Table 13, while a single initialization is prone
to large-error outliers (see RTE@30 defined as 100.0 -
RTA @30), increasing the number of initalizations improves
performance. However, the effect plateaus with increased
initializations and does not completely fix the outlier prob-
lem.

B.9.3 Epipolar adjustment

Table 14 also presents the performance of FASTMAP with
and without the final epipolar adjustment step. On all met-
rics, epipolar adjustment consistently improves over the
poses from global translation alignment. The improvement
is more prominent for stricter metrics (RTA@1), but less so
for more tolerant metrics like RTA@5. This suggests that
after translation alignment the cameras are already roughly
in place, and epipolar adjustment continues to squeeze as
much precision as it can.

C. Limitations

Sparse Views. Our method assumes that the input im-
ages densely cover the 3D scene. Many components in the
pipeline implicitly assume that the coverage is dense so that
the negative effect of outlier image or point pairs will be
averaged out. If the coverage is sparse, the pipeline will
be sensitive to outliers and likely break down. We tested
our method on the ETH3D MVS (DSLR) [54], where each
scene only contains a small number of images, and show the
results in Tab. 15. While FASTMAP still succeeds on many
scenes, it is less robust than GLOMAP.

Intrinsics Estimation. The intrinsics estimation algorithms
in our method can fail under certain cases. Since the inter-
val search used in both distortion and focal length estima-
tion requires at least one image pair of images with shared



ATE| RTA@31 AUC-R&T @31 AUC-R&T @ 11

n_imgs FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP

botanical garden 30 | 8.2¢-3 [NABEHN| 869 [NI000N| 683 INSAEN| 520 WNEIEN
boulders 26 6.7e-4 [NldedN| 991  100.0 912 9707 762 [NoL0Y
bridge 110 | 13e-2 [2I08SN| 929 IN000N| 853 [O7A| 733 os
courtyard 38 382 [Niged| 189 [Ni00.0Y 6.9 119601 22 sl
delivery_area 44 84e-2 [NBNESN| 236 [000N| 139 [No7sH 6.1 933N
door 7 - - 0007 - [e800 -
electro 45 75¢2 30820 | 863 DNO5EN| 769 [NONN| 6l6 NSEN
exhibition_hall 68 7.0e2  69e-2 2.8 s 0.9 4097 0.1 343
facade 76 6.5e-2 [1Odesd| 71.0 [U10000| 668 9741 608 [No2d|
Kicker 31 [159e4] 1.6e2 U985 938 866 917 650 881
lecture_room 23 3.0e-2 842 [000Y| 717 [09500| 553 0857
living room 65 | 13e-4 [NBHESN| 997 99.8 953 96.2 86.8 118921
lounge 10 | 9.6e-2 | 9.5e-2 333 333 323 327 302 314
meadow 15 Lde-l  ldel 133 [Se 7.7 [S02N 49 682l
observatory 27 65e-3 [I58edl| 949 [NOOMN| 765 [N86SN| 485 639N
office 26  97e-3 [6edl| 548 DNOSEN| 439 [NSaEN| 345 [enal
old_computer 54 68e2  5.6e-2 217 658N | 160 [N609N 9.8 5351
pipes 14 58e-4 [I26edl| 989  100.0 925 19741 798 19231
playground 38 83e4 [lied]|| 994 99.9 894 [o71|| 708 [O17
relief 31 6le3 (7285 778 [N10007| 621 [T984] 489 [1952
relief 2 31 37e4 [F79e50| 998 100.0 945 [N98AN| 843 [OsN
statue 11 555 [[23e51| 1000  100.0 99.5 99.7 98.5 99.0
terrace 23 2.0e-4 [T12e41| 1000 1000 97.5 97.7 925 93.1
terrace 2 13 2.6e-4  22e4 | 1000 1000 9.6 969 89.9 908
terrains 42 13e-3 [2Medl| 944 [NO98N| 709 [No46N| 393 846

Table 15. Per scene camera pose metrics on ETH3D.

Recall@1mt AUC@ 1Im?T AUC@5m?T
FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP
CAB 4.77 11.6 4.32 4.7 4.74 16.9
HGE 5.94 48.4 5.26 222 5.70 50.3
LIN 7.16 87.3 3.95 46.7 7.96 85.6

Table 16. Per scene camera pose metrics on LaMAR.

intrinsics to begin with, it will not work if all the images
have different intrinsics. It is also not robust if the number
of images for each distinct camera is small. In addition, the
focal length extraction method relies entirely on fundamen-
tal matrices, and is unreliable when the scene is dominated
by homographies.

Homography. Apart from the impact on focal length esti-
mation, too many homography image pairs can also jeop-
ardize relative pose decomposition. Both essential and ho-
mography decomposition produce four different solutions,
and they are usually disambiguated with a cheirality check.
But for some homography and keypoint pairs, cheirality
check is not enough for determining a unique solution. Our
current strategy is to simply pick the solution with the low-
est index if there is a tie. This has potential issues if there
are too many homography image pairs.

Repetitive Patterns and Symmetric Structures Non-
learning based keypoint features and matching are not ro-
bust in the cases of repetitive patterns and symmetric struc-
tures in the scene. These wrong matches are hard to fil-
ter because they can have a lot of inlier point pairs with a
very consistent two-view geometric model. Most traditional
SfM methods are more or less impacted by these erroneous
matches, and so is ours. In our experiments this problem
is most prominent in the advanced split of the Tanks and
Temples dataset (Tab. 8).

Degenerate Motions One important reason why bundle
adjustment is popular in previous SfM methods is that it
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can utilize 3D points to resolve some ambiguities in global
translation estimation. For example, when all the cam-
eras are aligned in the same line, optimization methods that
solely rely on relative motions or epipolar errors might fail
because there is no way to uniquely (up to scale) determine
the distance of any pair of cameras. Bundle adjustment uses
tracks to impose extra constraints to solve this problem.
This scenario is commonly seen in SLAM-like datasets. We
tested our method on the large-scale LaMAR [52] dataset
and show the results in the Tab. 16. Each scene in LaMAR
consists of multiple trajectories of a moving VR headset or
hand-held phone. These trajectories contain many straight
and forward motions, and different trajectories only over-
lap sparsely. Our method does not work well compared to
GLOMAP.
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