
A. More Results
Additional speed benchmarking with different hardware
configurations is reported in Tab. 6. We show per-scene
pose accuracy metrics for all datasets from Tab. 7 to Tab. 11.
The per-scene NeRF and Gaussian Splatting evaluation on
Tanks and Temples is shown in Tab. 12.

B. Technical Details
B.1. Distortion Estimation
Hierarchical search In order to accelerate the interval
search in distortion estimation, which scales linearly with
the number of candidates, we employ a hierarchical search
strategy that iteratively shrinks the interval. At each level of
the hierarchy, after finding the solution, we set the left and
right candidates as the endpoints of the new interval for the
next level. The solution at the last level is the final estimate.
Multiple cameras If the two images in a pair do not share
intrinsics, but the distortion parameter of one of the images
is known, we can use a similar 1D search method to deter-
mine the distortion parameter of the other image. With this,
we can extend the distortion estimation algorithm to deal
with multiple different cameras, each of which corresponds
to a known subset of images.

We say that an image pair is ready for a camera if either
1. both images correspond to that camera; or
2. only one of the images corresponds to that camera, but

the distortion parameter of the other image is already es-
timated.

We estimate the distortion parameters for these cameras one
by one. Each time, among the cameras whose distortion
have not been estimated, we pick the one with the largest
number of ready image pairs. The distortion parameter for
this camera is then estimated using these image pairs. To do
that, the only modification to the original algorithm (origi-
nally for a single image pair) is that for each candidate of
ω we compute the average epipolar error over all the point
pairs in all the ready image pairs. The next camera is picked
likewise, until the distortion parameters for all the cameras
are estimated.
Importance of undistortion The most direct impact of
incorrect distortion is on focal length estimation as illus-
trated in Figure 3, which visualizes focal length validity
(smoothed over discrete samples) on two of the scenes
with and without distortion estimation. After keypoints are
undistorted (green), the validity score peaks at an accurate
FoV estimation. Without distortion estimation (red), the to-
tal validity score decreases drastically, and the peak deviates
from the correct FoV.

B.2. Focal Length Estimation
We adopt a similar strategy as distortion estimation Sec. B.1
to deal with multiple cameras. However we do not use hi-

Figure 3. Effect of distortion on focal length estimation. Curves in
green are with undistortion, and curves in red without. The dotted
lines indicate the ground-truth FoVs.

erarchical sampling because processing each candidate is
relatively cheap, and we can afford to densely sample the
interval.

B.3. Global Rotation
B.3.1 Initialization

In this section we discuss how to initialize the global rota-
tion matrices for optimization. It is a modified version of
Martinec and Pajdla [38].

Denote the set of images as I and the set of image pairs
as P = {(i, j)}(i,j)→I↑I , where each element has relative
rotation matrix R

i↓j . The goal is to construct a solution of
global world to camera rotation matrices {Ri}i→I to mini-
mize the objective (note that in contrast to the final objective
used in iterative optimization, this one uses L2 loss)

L =
∑

(i,j)→P

∥∥∥R(j) →R
i↓j

R
(i)
∥∥∥
2

(10)

Unfortunately, this problem cannot be directly solved us-
ing simple least square techniques since R

(i) ↑ SO(3) are
3↓ 3 matrices with orthogonality constraints. However, we
can decompose it into several sub-problems to circumvent
the constraints. In the following we use A↔,k to denote the
kth solumn of a matrix A. Note that each term inside the
summation in Eqn. 10 can be splitted into three parts

L =
∑

(i,j)→P

∑

k=1,2,3

∥∥∥R(j)
↔,k →R

i↓j
R

(i)
↔,k

∥∥∥
2

(11)

Since R(i) is an orthogonal matrix, the column vectors R(i)
↔,k

have unit length and are mutually orthogonal. These or-
thogonality constraints are difficult to deal with, but if we
only look at one particular column, say k = 1, and ignore
the unit length constraint, the objective becomes an uncon-
strained least squares problem

L(1) =
∑

(i,j)→P

∥∥∥R(j)
↔,1 →R

i↓j
R

(i)
↔,1

∥∥∥
2

(12)
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FASTMAP (1G+2C) GLOMAP COLMAP

n imgs w/ cuda w/o cuda 1G+48C 1G+12C 48C 1G+48C 48C

z alameda 1734 134 :→1.0 917 :→6.8 848 :→6.3 934 :→6.9 3805 :→28.2 4541 :→33.6 24641 :→182.5
z berlin 1511 152 :→1.0 545 :→3.6 893 :→5.9 1015 :→6.7 1802 :→11.8 6478 :→42.4 24648 :→161.4
z london 1874 102 :→1.0 556 :→5.4 566 :→5.5 669 :→6.5 2092 :→20.3 2643 :→25.7 19238 :→187.1
z nyc 990 88 :→1.0 338 :→3.8 451 :→5.1 487 :→5.5 921 :→10.5 1618 :→18.4 1988 :→22.6
mill19 building 1920 258 :→1.0 1366 :→5.3 6289 :→24.3 7792 :→30.1 38428 :→148.4 27080 :→104.6 152839 :→590.1
mill19 rubble 1657 240 :→1.0 789 :→3.3 2849 :→11.8 2466 :→10.2 11571 :→48.0 12153 :→50.4 64987 :→269.8
urbn Campus 5871 740 :→1.0 3009 :→4.1 3869 :→5.2 4175 :→5.6 21916 :→29.6 106055 :→143.2 349490 :→472.0
urbn Sci-Art 3019 445 :→1.0 1760 :→4.0 4601 :→10.3 5712 :→12.8 28824 :→64.7 42032 :→94.4 286454 :→643.4
eft apartment 3804 549 :→1.0 1003 :→1.8 5905 :→10.8 8341 :→15.2 124310 :→226.3 185361 :→337.5 timeout
eft kitchen 6042 2202 :→1.0 6796 :→3.1 22884 :→10.4 34287 :→15.6 timeout timeout timeout

Table 6. Detailed system runtime comparisons (seconds:speed ratio) with different GPU (G) and CPU threads (C) configurations. Despite
the cuda-accelerated ceres solver for bundle adjustment, a significant part of GLOMAP and COLMAP pipeline workload is still CPU-
bound, and having at least 12 threads is necessary for higher speed. FASTMAP performs all data structure marshaling on GPU with
non-trivial tensor indexing, and consumes less CPU resource.

time (sec) ATE→ RTA@3↑ RRA@3↑ RTA@1↑ RRA@1↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

m360 bicycle 194 20 74 151 7.5e-5 5.4e-5 5.7e-5 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 99.9 100.0 100.0 100.0 96.9 97.6 97.5 90.8 92.7 92.6
m360 bonsai 292 47 306 1043 3.9e-5 2.1e-5 1.7e-4 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 97.9 100.0 100.0 100.0 96.4 98.6 92.8 89.2 95.7 79.7
m360 counter 240 35 201 443 1.3e-5 2.5e-6 2.3e-6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.1 99.8 99.8 97.2 99.5 99.5
m360 flowers 173 19 54 120 6.5e-5 6.0e-5 1.6e-4 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.9 99.6 100.0 100.0 100.0 96.1 96.4 92.0 88.5 89.3 76.3
m360 garden 185 28 152 490 7.7e-6 1.5e-5 1.5e-5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.0 99.1 98.8 97.1 97.3
m360 kitchen 279 50 376 1308 4.4e-5 4.0e-5 3.9e-5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.2 97.2 97.2 91.5 91.5 91.7
m360 room 311 61 218 691 3.4e-3 1.1e-5 9.3e-6 99.3 100.0 100.0 99.4 100.0 100.0 98.8 100.0 100.0 99.4 100.0 100.0 96.6 98.9 99.0 91.5 96.7 97.0
m360 stump 125 15 40 74 3.5e-5 1.9e-5 2.1e-5 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 98.8 99.4 99.3 96.5 98.1 98.0
m360 treehill 141 18 68 202 8.7e-5 7.7e-5 4.6e-5 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.8 99.9 100.0 100.0 100.0 95.8 96.8 98.3 87.6 90.6 94.9

Table 7. Per scene camera pose metrics on the MipNeRF360 Dataset.

Using techniques like SVD we can find a non-trivial solu-
tion that is not all zero. And since the relative rotation ma-
trices Ri↓j are also orthogonal matrices, left multiplying it
with a vector preserves the vector length. This means that
in the solution, the three-dimensional vectors R

(i)
↔,1 should

have similar lengths. We can normalize them to unit length
and get a solution of the actual first columns of global rota-
tion matrices {R(i)}i→I .

Given already estimated first columns {R(i)
↔,1}i→I of

the global rotation matrices, we can estimate the second
columns by minimizing the same objective but adding
additional constraints enforcing orthogonality to the first
columns

L(2) =
1

|P|
∑

(i,j)→P

∥∥∥R(j)
↔,2 →R

i↓j
R

(i)
↔,2

∥∥∥
2

+
1

|I|
∑

i→I

∥∥∥∥R
(i)
↔,1

↗
R

(i)
↔,2

∥∥∥∥
2

,

(13)

where |P| is the number of image pairs and |I| is the num-
ber of images, and they are used heuristically for control-
ling the relative weighting of the two terms. Note that in
the above R

(i)
↔,1 are already fixed and the only free variables

are {R(i)
↔,2}. So this is still a least squares problem, and can

be solved by applying SVD and then normalizing each 3-

dimensional vector to unit length. A simple Gram-Schmidt
process can be used for enforcing the orthogonality between
the first and second columns.

We do not need to solve a least square problem again for
the third columns because it can be directly computed by
taking the cross product of the first two columns

R
(i)
↔,3 = R

(i)
↔,1 ↓R

(i)
↔,2 (14)

B.3.2 Filtering

To improve the robustness of global rotation alignment, we
filter out some image pairs whose number of inlier point
pairs does not exceed certain threshold. Determining this
threshold can be tricky: a low threshold might introduce a
lot of outlier image pairs, but a high threshold could reduce
the number of connections and even disconnect the images
into several clusters. To alleviate this problem, we start
from a large threshold, and reduce it by half if it leads to
disconnected clusters. We do this iteratively until either all
the images are connected, or a minimal threshold is reached.
This partially solves the problem by making the threshold
adaptive to the data. However it is still common that even at
the minimal threshold, a few images are disconnected from
the others. In that case we just consider them as outliers and
ignore them in rotation alignment and later stages.
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time (sec) ATE→ RTA@3↑ RRA@3↑ RTA@1↑ RRA@1↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

tnt advn Auditorium 298 74 185 529 1.4e-2 3.3e-2 1.8e-3 29.6 94.3 95.8 55.2 94.0 93.4 11.0 93.7 92.8 17.0 94.0 89.6 12.0 90.8 88.0 1.8 84.8 83.8
tnt advn Ballroom 324 55 652 1615 1.8e-2 3.2e-2 5.1e-3 49.1 32.5 98.1 63.7 36.3 98.2 28.3 28.3 97.7 28.6 32.2 98.2 25.0 26.5 93.5 7.7 17.8 84.6
tnt advn Courtroom 301 45 296 882 9.3e-4 4.3e-5 2.3e-5 85.1 99.9 99.9 98.3 100.0 100.0 27.9 99.3 99.8 47.4 100.0 100.0 37.7 96.8 98.6 3.8 91.0 96.1
tnt advn Museum 301 44 275 752 8.5e-4 5.5e-5 3.3e-5 91.4 100.0 100.0 100.0 100.0 100.0 39.9 99.7 99.9 85.2 100.0 100.0 53.8 97.2 98.7 12.1 91.9 96.1
tnt advn Palace 501 113 547 1722 3.3e-3 6.4e-3 1.5e-4 74.5 47.9 97.1 84.3 46.4 98.4 51.6 44.5 92.6 36.1 45.9 96.5 41.2 42.2 91.6 13.3 37.9 84.4
tnt advn Temple 302 36 190 596 9.8e-4 5.0e-5 1.5e-4 98.8 99.9 99.8 100.0 100.0 100.0 95.1 99.6 99.4 99.1 100.0 100.0 85.8 98.4 98.1 61.3 95.6 95.0
tnt intrmdt Family 152 22 152 335 8.3e-5 1.1e-5 2.8e-6 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 95.4 99.4 99.9 86.5 98.3 99.7
tnt intrmdt Francis 302 29 269 789 4.2e-5 6.2e-6 2.4e-6 99.9 100.0 100.0 100.0 100.0 100.0 99.5 99.9 100.0 100.0 100.0 100.0 96.2 99.5 99.9 89.2 98.5 99.7
tnt intrmdt Horse 151 21 134 255 6.8e-5 1.4e-5 4.6e-6 100.0 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 97.2 99.4 99.8 91.5 98.3 99.4
tnt intrmdt Lighthouse 309 47 355 1270 1.0e-4 2.3e-5 9.4e-6 99.6 100.0 100.0 100.0 100.0 100.0 97.4 99.8 100.0 99.2 100.0 100.0 92.0 98.3 99.4 78.3 95.1 98.2
tnt intrmdt M60 313 37 329 873 4.4e-5 1.2e-5 6.2e-6 99.9 100.0 100.0 100.0 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 96.4 99.1 99.7 89.5 97.3 99.0
tnt intrmdt Panther 314 43 390 989 6.4e-5 6.4e-5 1.5e-4 99.9 100.0 99.9 100.0 100.0 100.0 99.0 99.7 97.4 100.0 100.0 100.0 94.1 97.3 94.8 82.9 92.1 85.8
tnt intrmdt Playground 307 41 473 1255 1.4e-4 1.8e-5 1.9e-3 100.0 100.0 98.7 100.0 100.0 98.7 99.6 99.9 98.7 97.3 100.0 98.7 87.8 99.2 98.3 63.9 97.5 97.5
tnt intrmdt Train 301 41 414 901 8.0e-5 7.8e-6 4.3e-6 99.9 100.0 100.0 100.0 100.0 100.0 99.5 99.9 100.0 100.0 100.0 100.0 94.1 99.4 99.8 82.7 98.2 99.3
tnt trng Barn 410 50 503 3126 1.0e-4 6.7e-6 4.6e-6 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 100.0 100.0 100.0 100.0 94.2 99.4 99.7 82.9 98.2 99.2
tnt trng Caterpillar 383 44 374 1367 5.1e-5 5.6e-6 4.1e-6 99.8 100.0 100.0 100.0 100.0 100.0 99.5 99.9 99.9 100.0 100.0 100.0 96.2 99.4 99.7 89.0 98.4 99.3
tnt trng Church 507 85 666 4589 8.8e-3 2.6e-2 8.0e-4 75.6 71.1 99.6 94.8 75.4 100.0 57.4 70.3 99.3 72.4 70.8 100.0 52.3 69.3 98.4 19.5 66.6 96.1
tnt trng Courthouse 1106 169 1297 8285 1.2e-2 1.7e-2 1.3e-3 40.9 97.3 99.8 71.4 97.3 99.8 35.9 97.3 99.8 67.3 97.3 99.8 33.7 96.5 99.4 24.0 95.0 98.6
tnt trng Ignatius 263 33 269 682 5.2e-5 7.6e-6 2.1e-6 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0 100.0 100.0 96.9 99.5 99.9 90.9 98.6 99.8
tnt trng Meetingroom 371 32 209 575 3.1e-4 1.4e-5 8.3e-6 98.5 100.0 100.0 100.0 100.0 100.0 82.5 99.9 100.0 84.4 100.0 100.0 72.0 99.0 99.4 30.5 97.0 98.2
tnt trng Truck 251 31 289 635 6.9e-5 3.4e-2 2.5e-6 100.0 52.7 100.0 100.0 52.6 100.0 99.8 52.6 100.0 100.0 52.6 100.0 95.4 51.8 99.9 86.4 50.3 99.6

Table 8. Per scene camera pose metrics on the Tanks and Temples Dataset.

time (sec) ATE→ RTA@3↑ RRA@3↑ RTA@1↑ RRA@1↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

nosr europa 309 33 239 3387 9.3e-4 9.0e-4 8.8e-4 88.7 88.8 89.4 100.0 100.0 100.0 59.2 60.1 60.2 98.5 97.2 98.3 63.2 63.5 63.9 33.7 33.7 34.1
nosr lk2 199 32 117 570 1.7e-3 5.0e-4 4.8e-4 96.3 97.2 97.2 100.0 100.0 100.0 87.4 88.5 88.2 96.7 100.0 99.0 83.4 84.8 84.3 63.0 65.1 64.0
nosr lwp 354 41 202 2020 5.9e-4 6.0e-4 5.9e-4 96.0 96.1 96.2 100.0 100.0 100.0 74.5 75.7 76.2 100.0 100.0 100.0 74.2 75.9 76.2 43.5 48.3 48.4
nosr rathaus 515 76 593 5965 5.4e-4 5.1e-4 5.1e-4 88.3 88.1 88.6 99.9 100.0 100.0 54.9 55.1 56.5 99.5 100.0 100.0 59.9 60.5 61.2 26.9 28.4 28.8
nosr schloss 379 44 320 2675 6.1e-4 6.1e-4 5.8e-4 92.2 92.1 92.2 100.0 100.0 100.0 72.7 73.2 73.8 99.9 100.0 100.0 71.7 72.3 72.6 43.3 44.8 45.1
nosr st 397 40 262 1435 2.9e-3 3.0e-3 2.9e-3 96.5 96.2 96.0 98.0 98.5 98.0 86.9 86.4 83.4 96.8 95.6 96.7 80.1 80.3 78.6 53.3 54.8 51.5
nosr stjacob 722 80 564 6267 4.9e-3 1.7e-3 3.3e-3 90.4 93.0 92.2 97.0 99.7 98.9 75.7 78.0 76.8 96.8 99.4 98.9 73.1 75.9 74.8 47.3 50.6 49.5
nosr stjohann 347 50 296 2986 7.8e-4 7.9e-4 7.9e-4 84.9 84.7 85.1 100.0 100.0 100.0 57.8 57.9 58.3 99.3 99.4 99.4 61.6 61.9 62.1 34.7 36.1 35.8

Table 9. Per scene camera pose metrics on the NeRF-OSR Dataset.

B.4. Tracks

Consider the graph in which 2D keypoints are nodes and
pairwise edges denote keypoint matches. When a 3D scene
point is observed in m different images, the projected 2D
keypoints should ideally form a complete subgraph with m
vertices. In practice, keypoint matching has low recall and
tends to miss many point-pairs. A subgraph of related key-
points is often far from fully connected. Since the number
(and quality) of matches is critical to the accuracy of pose
estimation, we make up for low matching recall by track
completion. A track is a connected component in the 2D
keypoint connectivity graph and implies the existence of a
shared 3D point. Tracks are used heavily in SfM [44, 53] to
impose extra constraints, e.g., bundle adjustment [60] ini-
tializes 3D points based on tracks and minimizes the re-
projection error of each 3D point with its track members.

FASTMAP avoids bundle adjustment and data structures
containing both 3D scene points and 2D keypoints. Instead
we explicitly convert tracks to additional matches with pair-
wise combinations of all keypoints in each track. This way
we still make use of the transitivity of matching and bene-
fit from the extra constraints. These additional point pairs
are only introduced after global rotation alignment, and are
used in the global translation alignment and epipolar adjust-
ment steps described below.

B.5. Global Translation
B.5.1 Relative Translation

Global translation alignment in our method relies heavily on
relative translations between image pairs. Rather than using
the translations determined via pose decomposition, we first
re-estimate the relative translations. We do so for two rea-
sons. First, since we have estimated the global rotations,
we can go back and re-compute the relative rotation of any
image pair. The relative rotation computed in this way is
much more accurate than those from relative pose decom-
position. In turn, a better estimate of the relative rotation
enables us to more accurately estimate relative translation.
Second, after generating new point pairs from tracks, some
image pairs that originally had no matches might have some
now, and we can use these new point pairs to estimate the
relative translation. We use 2D grid search to re-estimate
the unit relative translation vectors. We first sample a set
of candidates on the surface of the unit sphere, evaluate the
mean epipolar error of each sample, and choose the candi-
date with the lowest error as the final estimate.

B.5.2 Multiple Initializations

Although random initialization works surprisingly well for
the objective in Eqn. 6, it occasionally produces a small
number of outliers. To deal with the problem, we propose
to do multiple independent runs from different random ini-
tializations, and merge the solutions as the initialization for
the final optimization loop. Since the global rotations are
the same, different solutions can be aligned by moving the
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time (sec) ATE→ RTA@3↑ RRA@3↑ RTA@1↑ RRA@1↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

dploy house1 220 34 138 419 7.5e-5 1.1e-4 1.1e-4 100.0 99.9 99.9 100.0 100.0 100.0 99.5 99.1 99.0 100.0 100.0 100.0 93.9 93.2 92.9 82.1 80.2 79.6
dploy house2 725 124 592 5702 6.9e-5 7.2e-5 1.3e-4 99.9 99.9 99.8 100.0 100.0 100.0 99.2 99.3 95.6 99.6 99.9 87.3 91.6 91.7 82.0 75.4 75.6 51.1
dploy house3 180 50 103 627 4.6e-3 1.2e-2 1.1e-3 95.1 95.9 97.2 94.5 95.6 97.9 80.7 85.8 78.7 70.5 71.2 59.1 66.7 68.0 58.6 24.7 26.4 21.3
dploy house4 349 57 128 751 1.7e-2 1.9e-2 9.4e-3 94.8 98.3 98.8 95.6 97.7 98.9 90.8 97.8 97.9 86.2 97.7 98.3 81.1 89.9 91.0 62.0 74.5 76.7
dploy pipes1 97 17 42 138 6.8e-5 6.2e-5 6.1e-5 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 95.8 95.8 95.8 87.5 87.3 87.4
dploy ruins2 1171 156 907 8672 5.2e-5 4.1e-5 2.0e-4 100.0 100.0 98.3 100.0 100.0 100.0 99.0 99.4 82.3 98.0 100.0 81.6 88.8 92.1 71.9 67.2 76.5 30.6
dploy ruins3 523 84 324 4986 1.2e-3 5.6e-3 3.5e-3 98.3 94.9 95.7 98.4 99.3 83.4 75.4 79.8 45.8 39.4 46.0 24.1 56.4 59.0 39.1 8.9 10.9 3.8
dploy tower1 775 188 419 2809 2.0e-2 2.0e-3 2.5e-3 93.7 95.2 87.7 99.2 99.5 98.3 86.4 84.5 51.5 63.7 74.4 37.9 65.6 67.5 47.2 20.9 23.7 10.1
dploy tower2 682 106 634 6060 1.7e-4 1.6e-4 1.3e-3 99.9 99.8 44.6 100.0 100.0 25.9 75.5 77.6 10.6 100.0 100.0 9.6 72.7 72.9 8.4 24.5 26.2 0.8

Table 10. Per scene camera pose metrics on the DroneDeploy Dataset.

time (sec) ATE→ RTA@3↑ RRA@3↑ RTA@1↑ RRA@1↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

z alameda 1734 134 848 4541 1.1e-3 1.9e-4 6.7e-6 99.1 99.4 100.0 99.7 100.0 100.0 98.9 99.3 99.9 99.1 99.7 99.9 95.4 97.8 98.5 88.1 94.8 95.6
z berlin 1511 152 893 6478 1.0e-3 1.5e-2 1.1e-3 97.7 93.0 98.9 96.8 92.9 98.9 91.8 92.8 98.8 94.7 92.8 98.3 83.6 90.9 96.6 61.0 86.9 92.4
z london 1874 102 566 2643 6.6e-5 1.3e-2 2.8e-4 99.8 99.9 99.9 99.8 99.9 99.9 99.6 99.9 99.9 99.5 99.9 99.9 96.4 98.6 98.5 89.9 96.0 95.8
z nyc 990 88 451 1618 9.7e-3 6.8e-6 5.3e-6 99.4 100.0 100.0 99.4 100.0 100.0 99.1 100.0 100.0 99.4 100.0 100.0 95.0 98.9 98.9 86.5 96.8 96.8
mill19 building 1920 258 6289 27080 3.0e-4 1.3e-2 1.9e-5 99.9 0.1 99.9 100.0 7.4 100.0 99.3 0.0 99.3 100.0 1.9 99.9 95.5 0.0 95.6 87.0 0.0 87.4
mill19 rubble 1657 240 2849 12153 3.6e-5 6.4e-5 3.4e-5 99.9 99.8 99.9 100.0 99.9 100.0 98.6 98.6 98.7 100.0 99.9 100.0 93.6 94.5 94.6 81.6 84.7 84.8
urbn Campus 5871 740 3869 106055 1.1e-5 4.7e-6 5.0e-6 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 94.0 98.0 97.9 81.9 94.1 93.7
urbn Residence 2582 359 2523 36778 2.8e-5 2.7e-5 2.6e-5 99.8 99.9 99.9 100.0 100.0 100.0 98.8 98.9 99.0 100.0 100.0 100.0 94.6 95.2 95.4 84.6 86.3 86.8
urbn Sci-Art 3019 445 4601 42032 1.4e-5 1.0e-5 1.1e-5 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9 99.9 100.0 100.0 100.0 97.4 97.7 97.8 92.2 93.1 93.5
eft apartment 3804 549 5905 185361 2.8e-3 9.4e-3 2.2e-3 86.8 75.0 90.2 89.1 75.6 92.4 51.1 61.3 71.7 38.1 56.6 70.6 45.5 50.5 62.0 6.4 18.2 21.9
eft kitchen 6042 2202 22884 timeout 3.1e-3 7.4e-3 - 85.0 59.9 - 85.1 62.3 - 46.7 51.7 - 26.4 44.5 - 38.1 41.2 - 4.6 14.4 -

Table 11. Per scene camera pose metrics on several large-scale datasets including ZipNeRF, Mill-19, Urbanscene3D and Eyeful Tower.

Instant-NGP Gaussian Splatting

FASTMAP GLOMAP COLMAP FASTMAP GLOMAP COLMAP

tra
in

in
g

Barn 23.37 23.68 23.69 26.17 27.81 27.79
Caterpillar 20.17 20.20 20.23 23.30 23.47 23.59
Courthouse 19.96 14.73 20.27 21.12 12.23 22.25
Ignatius 18.11 18.14 18.26 21.42 22.04 21.86
Meetingroom 21.61 22.59 22.41 23.71 25.35 25.17
Truck 21.19 16.86 21.45 23.58 18.34 24.50

in
te

rm
ed

ia
te

Family 22.10 21.99 21.45 23.67 24.54 24.75
Francis 23.68 23.73 23.48 26.94 27.30 27.59
Horse 21.07 21.04 21.13 22.96 24.05 23.89
Lighthouse 20.84 20.99 20.91 22.00 22.19 22.12
M60 24.80 25.11 25.11 26.44 28.07 27.95
Panther 25.25 26.01 25.74 27.13 28.27 27.97
Playground 21.48 21.96 21.99 24.12 26.00 26.03
Train 19.14 19.26 19.23 20.66 21.79 21.65

ad
va

nc
ed

Auditorium 17.05 19.41 19.76 17.38 16.67 24.20
Ballroom 17.94 13.92 19.12 19.17 11.91 23.64
Courtroom 17.39 18.95 17.80 20.87 23.11 22.77
Museum 14.58 14.73 14.53 20.00 20.97 20.96
Palace 16.94 17.57 17.19 16.41 18.99 20.05
Temple 15.65 17.10 16.87 19.08 20.80 20.73

Table 12. Per-scene novel view synthesis results on Tanks and
Temples.

centroid to the origin and rescaling uniformly to have unit
average norm. Then for each image the solution with the
lowest average loss is chosen to be in the merged result.

B.6. Epipolar Adjustment
In this section we derive the following equivalent form of
the L2 epipolar adjustment objective (the re-weighting ob-
jective is similar)

L=
1
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nm Enx̃
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nm)2 =

2
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e↗nWnen

(15)
Note that each error term is linear in the essential matrix,

so we can re-write it as a dot product of the a weight vector

and a flattened version of the essential matrix
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where ↔ is the element-wise multiplication operator,
wnm = flatten(x̃(2)

nmx̃(1)↗
nm ) ↑ R9, and en = flatten(En) ↑

R9. Now re-arrange the terms to get the summation of a set
of quadratic forms
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m = 1 m = 2 m = 3 m = 4 m = 8

zipnerf nyc RTE@30 0.59 0.09 0.09 0.09 0.10
RTA@3 98.59 99.45 99.45 99.45 99.45

zipnerf alameda RTE@30 0.32 0.14 0.13 0.09 0.09
RTA@3 97.90 98.28 98.29 98.40 98.39

tnt Train RTE@30 1.40 0.02 0.02 0.02 0.29
RTA@3 97.15 99.62 99.64 99.61 99.08

tnt Lighthouse RTE@30 1.98 0.01 0.01 0.02 0.01
RTA@3 96.82 99.26 99.23 99.34 99.33

dploy ruins3 RTE@30 1.23 0.66 0.67 0.92 0.69
RTA@3 92.70 94.56 94.44 94.06 93.77

dploy house4 RTE@30 3.82 0.83 1.00 0.83 0.83
RTA@3 93.00 96.92 95.69 97.48 95.48

Table 13. Ablation of multiple translation initializations on se-
lected scenes. The results are obtained right after translation align-
ment and before epipolar adjustment. We bold the RTE@30 en-
tries for m = 1 and m = 2 initializations to highlight its effect.

B.7. Sparse Reconstruction

After pose estimation, we do a sparse reconstruction of
the scene by triangulating the matched keypoint pairs from
track completion. The 3D points corresponding to the same
track are merged by averaging. To eliminate outliers, after
merging the 3D points, we compute the re-projection error
for each 2D keypoint, and mark those with large errors to be
outlier keypoints. A 3D point is dropped if the number of
inlier keypoints in the track is smaller than 3. We also filter
out a 3D point if the maximal triangulation angle is smaller
than some threshold.

B.8. Data Ground Truth

With the exception of Tanks and Temples, each of the
datasets we evaluate on includes author-provided reference
camera poses. These reference poses are obtained through
different means, including COLMAP (for MipNeRF360,
ZipNeRF, NeRF-OSR), PixSfM [35] (for Mill-19 and Ur-
banscene3D), and commercial software (for DroneDeploy
and Eyeful Tower). In the case of Urbanscene3D, we use
the poses provided by Turki et al. [61]. For Tanks and Tem-
ples, we use COLMAP poses provided by Kulhanek and
Sattler [31]. On one of the scenes from Tanks and Temples
(Courthouse), we found that the reference poses are obvi-
ously inconsistent with the images, but decided to still treat
them as ground-truth.

B.9. Additional Ablation Study

B.9.1 Track completion

In Table 14 we show the final performance of the FASTMAP
with and without augmented point pairs from track comple-
tion (Sec. B.4). Track completion significantly improves
performance for MipNeRF360 scenes and some but not all
ZipNeRF scenes.

AUC@3 AUC@10 RTA@1 RTA@5 RRA@3

m360 (9)
FASTMAP 97.2 99.1 99.8 100.0 100.0
w/o epipolar adjustment 75.0 90.8 85.5 99.5 94.5
w/o track completion 80.4 86.4 83.3 91.4 83.6

alameda
FASTMAP 95.2 98.1 99.0 99.3 99.9
w/o epipolar adjustment 86.7 95.5 94.9 99.2 99.8
w/o track completion 94.8 98.1 99.0 99.4 99.9

berlin
FASTMAP 81.6 93.2 92.8 99.2 97.5
w/o epipolar adjustment 70.4 89.5 82.4 98.8 95.7
w/o track completion 60.4 81.3 70.4 90.8 90.3

london
FASTMAP 96.6 98.8 99.6 99.9 99.7
w/o epipolar adjustment 90.1 96.6 97.8 99.7 99.3
w/o track completion 96.1 98.7 99.6 99.9 99.8

nyc
FASTMAP 94.6 98.1 99.2 99.6 99.6
w/o epipolar adjustment 89.7 96.7 97.0 99.7 99.6
w/o track completion 93.9 98.0 99.4 99.8 99.8

Table 14. Epipolar adjustment and track completion ablation on
the MipNeRF360 [4] and ZipNeRF [5] datasets. Results for Mip-
NeRF360 are averaged over all the scenes, and for ZipNeRF each
scene is listed separately.

B.9.2 Multiple translation initializations

As shown in Table 13, while a single initialization is prone
to large-error outliers (see RTE@30 defined as 100.0 -
RTA@30), increasing the number of initalizations improves
performance. However, the effect plateaus with increased
initializations and does not completely fix the outlier prob-
lem.

B.9.3 Epipolar adjustment

Table 14 also presents the performance of FASTMAP with
and without the final epipolar adjustment step. On all met-
rics, epipolar adjustment consistently improves over the
poses from global translation alignment. The improvement
is more prominent for stricter metrics (RTA@1), but less so
for more tolerant metrics like RTA@5. This suggests that
after translation alignment the cameras are already roughly
in place, and epipolar adjustment continues to squeeze as
much precision as it can.

C. Limitations
Sparse Views. Our method assumes that the input im-
ages densely cover the 3D scene. Many components in the
pipeline implicitly assume that the coverage is dense so that
the negative effect of outlier image or point pairs will be
averaged out. If the coverage is sparse, the pipeline will
be sensitive to outliers and likely break down. We tested
our method on the ETH3D MVS (DSLR) [54], where each
scene only contains a small number of images, and show the
results in Tab. 15. While FASTMAP still succeeds on many
scenes, it is less robust than GLOMAP.
Intrinsics Estimation. The intrinsics estimation algorithms
in our method can fail under certain cases. Since the inter-
val search used in both distortion and focal length estima-
tion requires at least one image pair of images with shared

16



ATE→ RTA@3↑ AUC-R&T @ 3 ↑ AUC-R&T @ 1 ↑

n imgs FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP

botanical garden 30 8.2e-3 4.3e-4 86.9 100.0 68.3 94.3 52.0 83.8
boulders 26 6.7e-4 1.4e-4 99.1 100.0 91.2 97.0 76.2 91.0
bridge 110 1.3e-2 2.0e-5 92.9 100.0 85.3 97.7 73.3 93.1
courtyard 38 3.8e-2 1.8e-4 18.9 100.0 6.9 96.0 2.2 88.2
delivery area 44 8.4e-2 8.1e-5 23.6 100.0 13.9 97.8 6.1 93.3
door 7 - 1.2e-4 - 100.0 - 98.0 - 94.1
electro 45 7.5e-2 3.0e-2 86.3 95.2 76.9 91.1 61.6 84.1
exhibition hall 68 7.0e-2 6.9e-2 2.8 45.1 0.9 40.9 0.1 34.3
facade 76 6.5e-2 9.7e-5 71.0 100.0 66.8 97.4 60.8 92.4
kicker 31 5.9e-4 1.6e-2 98.5 93.8 86.6 91.7 65.0 88.1
lecture room 23 3.0e-2 2.5e-4 84.2 100.0 71.7 95.0 55.3 85.7
living room 65 1.3e-4 8.4e-5 99.7 99.8 95.3 96.2 86.8 89.2
lounge 10 9.6e-2 9.5e-2 33.3 33.3 32.3 32.7 30.2 31.4
meadow 15 1.4e-1 1.4e-1 13.3 86.7 7.7 80.2 4.9 68.2
observatory 27 6.5e-3 5.8e-4 94.9 99.1 76.5 86.5 48.5 63.9
office 26 9.7e-3 7.6e-4 54.8 95.7 43.9 82.7 34.5 61.2
old computer 54 6.8e-2 5.6e-2 21.7 65.3 16.0 60.9 9.8 53.5
pipes 14 5.8e-4 2.6e-4 98.9 100.0 92.5 97.4 79.8 92.3
playground 38 8.3e-4 1.1e-4 99.4 99.9 89.4 97.1 70.8 91.7
relief 31 6.1e-3 7.2e-5 77.8 100.0 62.1 98.4 48.9 95.2
relief 2 31 3.7e-4 7.9e-5 99.8 100.0 94.5 98.4 84.3 95.1
statue 11 5.5e-5 2.3e-5 100.0 100.0 99.5 99.7 98.5 99.0
terrace 23 2.1e-4 1.2e-4 100.0 100.0 97.5 97.7 92.5 93.1
terrace 2 13 2.6e-4 2.2e-4 100.0 100.0 96.6 96.9 89.9 90.8
terrains 42 1.3e-3 2.1e-4 94.4 99.8 70.9 94.6 39.3 84.6

Table 15. Per scene camera pose metrics on ETH3D.

Recall@1m↑ AUC@1m↑ AUC@5m↑

FASTMAP GLOMAP FASTMAP GLOMAP FASTMAP GLOMAP

CAB 4.77 11.6 4.32 4.7 4.74 16.9
HGE 5.94 48.4 5.26 22.2 5.70 50.3
LIN 7.16 87.3 3.95 46.7 7.96 85.6

Table 16. Per scene camera pose metrics on LaMAR.

intrinsics to begin with, it will not work if all the images
have different intrinsics. It is also not robust if the number
of images for each distinct camera is small. In addition, the
focal length extraction method relies entirely on fundamen-
tal matrices, and is unreliable when the scene is dominated
by homographies.
Homography. Apart from the impact on focal length esti-
mation, too many homography image pairs can also jeop-
ardize relative pose decomposition. Both essential and ho-
mography decomposition produce four different solutions,
and they are usually disambiguated with a cheirality check.
But for some homography and keypoint pairs, cheirality
check is not enough for determining a unique solution. Our
current strategy is to simply pick the solution with the low-
est index if there is a tie. This has potential issues if there
are too many homography image pairs.
Repetitive Patterns and Symmetric Structures Non-
learning based keypoint features and matching are not ro-
bust in the cases of repetitive patterns and symmetric struc-
tures in the scene. These wrong matches are hard to fil-
ter because they can have a lot of inlier point pairs with a
very consistent two-view geometric model. Most traditional
SfM methods are more or less impacted by these erroneous
matches, and so is ours. In our experiments this problem
is most prominent in the advanced split of the Tanks and
Temples dataset (Tab. 8).
Degenerate Motions One important reason why bundle
adjustment is popular in previous SfM methods is that it

can utilize 3D points to resolve some ambiguities in global
translation estimation. For example, when all the cam-
eras are aligned in the same line, optimization methods that
solely rely on relative motions or epipolar errors might fail
because there is no way to uniquely (up to scale) determine
the distance of any pair of cameras. Bundle adjustment uses
tracks to impose extra constraints to solve this problem.
This scenario is commonly seen in SLAM-like datasets. We
tested our method on the large-scale LaMAR [52] dataset
and show the results in the Tab. 16. Each scene in LaMAR
consists of multiple trajectories of a moving VR headset or
hand-held phone. These trajectories contain many straight
and forward motions, and different trajectories only over-
lap sparsely. Our method does not work well compared to
GLOMAP.
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