
Container: Context Aggregation Network

Anonymous Author(s)
Affiliation
Address
email

Appendix1

A Experimental setups2

A.1 ImageNet Classification3

ImageNet-1k is an image classification dataset with 1000 object categories. We use the basic4

architecture explained in Section ??. All models are trained with the same setting as DeiT. Depthwise5

convolution, MLP and CONTAINER-LIGHT are trained with 8 16G V100 GPU with each GPU6

processing 128 images. Transformer and CONTAINER are trained with 8 80G A100 GPU and each7

GPU processes 128 images. Color jitter, random erase and mixup are used as data-augmentation8

strategies. We use the adamW optimizer. Learning rates are calculated using the following equation:9

lr =
lrbase ×Batch×NGPU

512
(1)

where base learning rate is chosen to be 5× e−4. We use cosine learning schedule and warm up the10

model in the first 5 epochs and train for 300 epochs in total.11

A.2 Detection with RetinaNet12

RetinaNet is a one-stage dense object detector using a feature pyramid network and focal loss. It is13

trained for 12 epochs, starting with a learning rate of 0.0001 which decreases by 10 at epoch 8 and14

11. We use adamW optimizer and set weight decay to 0.05. No gradient clip is applied. We warm up15

for the first 500 iterations. Models are trained with 8 V100 GPU and each GPU holds 2 images. We16

freeze the batch normalization parameter similar to DETR.17

A.3 Detection and Segmentation with Mask-RCNN18

Mask-RCNN is a multi-task framework for object detection and instance segmentation. Mask-RCNN19

models are trained with 8 GPUs and each GPU hold 2 images. Mask-RCNN models are optimized by20

AdamW with a learning rate of 0.0001 and weight deacy of 0.05. We warm up the first 500 iterations.21

BN parameters are frozen for all layers.22

A.4 Detection with DETR23

DETR is an encoder-decoder transformer for end-to-end object detection. To improve the convergence24

speed and performance of DETR, SMCA-DETR propose a spatial modulated co-attention mechanism25

which can increase the convergence speed of DETR. Deformable DETR achieve fast convergence26

through deformable encoder and decoder. We compare CONTAINER-LIGHT with ResNet 50 on27

DETR without dilation, SMCA without multi scale and Deformable DETR without multi scale.28

DETR and SMCA DETR are optimized with 8 GPUs and 2 images per GPU, where as Deformable29

DETR uses 8 GPUs and 4 images per GPU. All models are optimzied with AdamW optimizer and30

weight clipping. DETR, SMCA DETR and Deformable DETR all use the default parameter setting31

in the original code release.32

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Method Backbone mAP APS APM APL

DETR [1] ResNet50 32.3 10.7 33.8 53.0
DETR [1] CONTAINER-LIGHT 38.9 16.5 42.2 60.3

SMCA w/o
multi-scale [2] ResNet50 41.0 21.9 44.3 59.1

SMCA w/o
multi-scale [2] CONTAINER-LIGHT 44.2 23.8 47.9 63.1

DDetr w/o
multi-scale [3] ResNet50 39.3 19.8 43.5 56.1

DDetr w/o
multi-scale [3] CONTAINER-LIGHT 43.0 23.3 46.3 61.2

Table A.1: Comparison with DETR model over training epochs, mAP, inference time and GFLOPs.

A.5 Self-supervised Learning DINO33

DINO is a recently proposed self-supervised learning framework. We adopt the default training setup34

in DINO to test the performance of CONTAINER-LIGHT on self-supervised learning. We compare35

with ViT-S/16 model using DINO. Baseline model and CONTAINER-LIGHT are trained using 10036

epoches with cosine schedule for learning rate and weight decay. Learning rate at the end of warmup37

is 0.0005 while weight decay at the end will be kept constant to 0.4. Batch size per GPU is set to 64.38

We report kNN accuracy as a metric to evaluate the performance of self-supervised model.39

B 1 line code change for Container-PAM40

Listing 1: With just 1 line of code change in the forward pass of the Attention module within ViT,
one can implement CONTAINER-PAM and obtain a +0.5 improvement on ImageNet top-1 accuracy.

41
class Attention(nn.Module):42

def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop43

=0., proj_drop=0., seq_l=196):44

45

super().__init__()46

self.num_heads = num_heads47

head_dim = dim // num_heads48

self.scale = qk_scale or head_dim ** -0.549

50

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)51

52

#Uncomment this line for Container-PAM53

#self.static_a =54

#nn.Parameter(torch.Tensor(1, num_heads, 1 + seq_l , 1 + seq_l))55

#trunc_normal_(self.static_a)56

57

self.attn_drop = nn.Dropout(attn_drop)58

self.proj = nn.Linear(dim, dim)59

self.proj_drop = nn.Dropout(proj_drop)60

61

def forward(self, x):62

B, N, C = x.shape63

qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).64

permute(2, 0, 3, 1, 4)65

q, k, v = qkv[0], qkv[1], qkv[2]66

67

attn = (q @ k.transpose(-2, -1)) * self.scale68

attn = attn.softmax(dim=-1)69

70

#Uncomment this line for Container-PAM71

#attn = attn + self.static_a72

73

attn = self.attn_drop(attn)74

2

75

x = (attn @ v).transpose(1, 2).reshape(B, N, C)76

x = self.proj(x)77

x = self.proj_drop(x)78

return x7980

The attention code is borrowed from the TIMM library 1. The one-line code addition in the forward81

pass for CONTAINER-PAM is implemented (and commented) in red. This code also requires enabling82

an additional parameter (also shown in red).83

References84

[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey85

Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020. 286

[2] Peng Gao, Minghang Zheng, Xiaogang Wang, Jifeng Dai, and Hongsheng Li. Fast convergence of detr with87

spatially modulated co-attention. arXiv, 2021. 288

[3] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable89

transformers for end-to-end object detection. In ICLR, 2021. 290

1https://github.com/rwightman/pytorch-image-models/tree/master/timm

3

