
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GAN-BASED NERF NOISE SIMULATION IN MESH DE-
NOISING TASK

Anonymous authors
Paper under double-blind review

A APPENDIX

A.1 CALCULATE DISTANCE BETWEEN POINT AND MESH

In this section we present an algorithm for quick calculation of distance between point and triangle
mesh. The three-dimensional space around a mesh is described as a Voronoi diagram constructed
for different classes of geometric primitives that mesh consists of: facets, edges, and vertices.

Consider the point Q and calculate the distance from Q to the mesh. The algorithm consists of the
following steps:

• Find a vertex of the mesh A closest to the point Q. This can be done, for example, using
a kd-tree calculated previously for all vertices of the mesh. We denote by V1, . . . , Vn the
vertices that are adjacent to vertex A. We also denote by C1, . . . , Cn the centroids of facets
adjacent to the vertex A.

• Denote vector AQ by ā. Next vectors AV 1, . . . , AV n we denote by v̄1, . . . , v̄n. Finally we
denote vectors AC1, . . . , ACn by c̄1, . . . , c̄n.

• First we should check if point Q is in the reference cone of A.

The article clearly describes that the three-dimensional space above/below a mesh can be described
as a Voronoi diagram constructed for different classes of geometric primitives. The classical Voronoi
diagram is a partition of space into regions, where each region of it forms a set of points closer to
one of the elements of a certain set than to any other element of the set. A mesh consists of three
types of geometric primitives: facet, edge, and vertex.

The space in which the mesh is represented is transformed into a Voronoi diagram for the facets,
edges, and vertices of the mesh. Drawing from the article:

In the figure, red indicates the areas where the points are closest to one of the facets than to any other
facet or any of the edges or vertices. Similarly, blue indicates the areas where the points are closest
to some edge, and yellow indicates some vertex.

If you want to find the shortest distance from an arbitrarily taken point to the mesh surface, then you
need to take into account this feature of dividing the space around the mesh, since the distance from
a point to a flat triangle in 3D is not calculated in the same way as the distance from a point to a
segment or from a point to a point. It is important to understand which of the geometric primitives
is closest to the point before calculating the distance.

The algorithm for finding the shortest distance can be implemented without constructing a Voronoi
diagram, but with the assumption that the surface to which the distance needs to be calculated is
sufficiently convex.

Suppose you want to calculate the distance from the point Q to the mesh. The algorithm consists of
the following steps:

1. Search for the vertex of the mesh A closest to the point Q. This can be done, for example, using a
kd-tree calculated previously for all vertices of the mesh. Denote by V1, . . . , Vn the vertices that are
adjacent to vertex A. We also denote by C1, . . . , Cn the centroids of facets adjacent to the vertex A;
2. Check whether the point Q lies in the reference cone of this vertex (in the figure these cones are
indicated in yellow). To do this, take the vector connecting vertex A and point Q, that is, vector AQ.
Next, you need to calculate the scalar products of the vector AQ with the vectors AC1, . . . , ASp. If

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

all these scalar products are strictly less than zero, then the point Q belongs to the support cone. In
this case, the desired distance is the length of the vector AQ. If at least one of the scalar products is
greater than or equal to zero, then the distance is calculated according to the algorithm in paragraph
3; 3. For each facet k adjacent to vertex A, calculate the vectors L1Ck, L2Ck, L3Ck, where L1,
L2, L3 are the midpoints of the facet edges. We also calculate the vectors L1Q, L2Q, L3Q, then
calculate the scalar products (LiCk, LiQ), i = 1, 2, 3. If all three scalar products are greater than
or equal to zero, then the minimum distance from the point Q to the mesh is equal to the distance
to the facet k. If otherwise, the distance is calculated according to the algorithm in paragraph 4; 4.
Calculate the scalar product of the vector (AQ,AVk), k = 1, . . . , n. Important: each of the vectors
Vk must be normalized before calculating the scalar products. Let’s define k for which the scalar
product (AQ,AVk) is maximal. An edge with index k is the nearest edge to the point Q. In this
case, the minimum distance from the point Q to the mesh is equal to the distance to the edge k.

A.2 OBJAVERSE-XL SHAPES HASHES

Table 1: Each objaverse-XL shape has a unique hash that identifies it in this dataset.

Name Train or test Objaverse ID
bottle Train 00b2c8c60d2f45a893ee73fd1f107e27
bird Train 02c81d18c4f04b9b9275fde41d0e715b
sphere Train f8c97f11180440ccae5bc156ef087014
key Train 4bdab6b1e3194045ab6362e4c6cda222
doll Test 0e30fca3637e4083863e1240d6d1f1bf
spiral Test 1d6ad3e20daa4873a3b1a0ab6c0ea8d1

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A.3 FULL RESULTS

Table 2: Basic models results: DPSR + MC, KNN, MLP, U-Net. Experiments show the best results
in KL div. for a specific test shape and all shapes highlighted in green and dark green, respectively.
Our GAN-based approach performs significantly better for the rest of the metrics which are shown
in Table 5.

Test shape Metrics
KL div. ↓ Cosine ↓ Linear ↓ Manh. ↓ Nuclear ↓

D
PS

R
+

M
C

Bird 0.44385 0.02214 0.29057 8.13646 0.79620
Bottle 0.49276 0.05177 0.57202 9.93406 1.60127
Key 0.06330 0.06551 0.63861 13.24510 2.26182
Sphere 0.35360 0.13064 0.69201 20.95043 1.80963
Doll 0.52423 0.09685 0.62921 19.19287 1.61193
Spiral 0.49276 0.07408 0.52683 15.96581 1.38656

K
N

N
-r

eg
re

ss
or Bird 0.44349 0.01495 0.24551 6.37309 0.59441

Bottle 0.48912 0.03381 0.44590 9.42089 1.32781
Key 0.06630 0.04790 0.48711 11.63991 1.53463
Sphere 0.35994 0.08495 0.56878 16.45870 1.43616
Doll 0.52934 0.03354 0.38112 10.68838 1.02367
Spiral 0.48815 0.00552 0.14572 3.93982 0.44374

M
L

P

Bird 0.45572 0.05788 0.59004 14.28690 2.03749
Bottle 0.50096 0.16061 1.43471 30.53953 5.69239
Key 0.06677 0.04867 0.61003 12.47303 2.51558
Sphere 0.36640 0.11959 1.04522 25.71050 3.72137
Doll 0.54231 0.16903 0.80894 23.71446 3.58923
Spiral 0.50105 0.06661 0.61870 14.49724 2.14522

U
-N

et

Bird 0.45791 0.12729 0.94130 18.56488 3.52717
Bottle 0.48909 0.05028 0.56939 10.86997 1.68377
Key 0.07039 0.27131 2.28507 40.40780 11.84921
Sphere 0.36845 0.08761 0.73039 14.87120 2.56812
Doll 0.54249 0.13434 1.06966 22.07343 4.16051
Spiral 0.50067 0.13567 1.06968 24.73850 4.13640

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 3: GAN training results. Five train datasets: bird, bottle, key, sphere, all. Two test datasets:
doll, spiral. The best results for a specific test shape are highlighted in green. The best metrics
for all shapes are highlighted with dark green. The GAN results for the KL div. are slightly lower,
however they are comparable to the rest of the approaches. The GAN results for other metrics are
significantly better than others.

Train shape Test shape Metrics
KL div. ↓ Cosine ↓ Linear ↓ Manh. ↓ Nuclear ↓

In
do

m
ai

n Bird Bird 0.45106 0.00597 0.18472 5.28831 0.60968
Bottle Bottle 0.49516 0.01402 0.26539 5.96482 0.79997
Key Key 0.06589 0.01937 0.32343 5.68141 1.17867
Sphere Sphere 0.35953 0.00557 0.15620 3.67948 0.47831

O
ut

of
do

m
ai

n

Bottle Bird 0.45183 0.00671 0.17695 4.63796 0.55543
Key Bird 0.45828 0.02109 0.32092 7.61674 1.07289
Sphere Bird 0.45269 0.00251 0.10487 2.84228 0.32697
All Bird 0.45327 0.00601 0.16738 4.50107 0.53778
Bird Bottle 0.49573 0.01846 0.32097 6.18145 1.00624
Key Bottle 0.50158 0.03387 0.43412 8.31266 1.36748
Sphere Bottle 0.49697 0.01151 0.24423 5.57860 0.79836
All Bottle 0.49770 0.00951 0.21888 5.25660 0.68357
Bird Key 0.06479 0.02679 0.37076 6.79448 1.27395
Bottle Key 0.06527 0.06527 0.34457 6.19686 1.22980
Sphere Key 0.06415 0.03881 0.44968 8.66565 1.49396
All Key 0.06473 0.03096 0.40012 7.69379 1.39265
Bird Sphere 0.35944 0.00183 0.09029 2.37248 0.32119
Bottle Sphere 0.36089 0.00613 0.17313 4.32524 0.51328
Key Sphere 0.36573 0.01888 0.32437 8.69921 0.97167
All Sphere 0.36108 0.00282 0.10764 2.65000 0.36230

Te
st

do
m

ai
n

Bird Doll 0.53548 0.01027 0.22929 5.39447 0.67479
Bottle Doll 0.53560 0.01730 0.28424 7.04564 0.79888
Key Doll 0.54289 0.02074 0.32903 7.94347 1.14373
Sphere Doll 0.53638 0.00625 0.16130 4.68518 0.46974
All Doll 0.53805 0.00936 0.19859 5.59246 0.55628
Bird Spiral 0.49832 0.00642 0.18521 5.28779 0.51220
Bottle Spiral 0.49747 0.01647 0.29413 7.96902 0.83973
Key Spiral 0.50192 0.03417 0.44514 11.57165 1.42135
Sphere Spiral 0.49742 0.00368 0.12526 3.60572 0.31796
All Spiral 0.49609 0.00976 0.21889 6.00135 0.60933

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A.4 NERF-LIKE NOISE EXAMPLES

(a) Artificial NeRF noise (b) Real NeRF noise

Figure 1: The real NeRF noise is is compared with artificial noise generated by our pipeline.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A.5 DENOISING ILLUSTRATION

(a) GT (b) GAN-based noisy (c) Trained on Syn-
thetic

(d) Trained on Ours

Figure 2: GT and noisy meshes are prepared for denoising tests as explained in Section 7.1. The
denoising was performed with the Cascaded Regression model which was trained on the dataset pro-
duced by our GAN-based pipeline. We have trained Cascaded Regression on the dataset produced
by KNN-based pipeline for comparison to our method. It can be seen that Cascaded Regression
trained on GAN-based dataset performs better.

6


	Appendix
	Calculate distance between point and mesh
	Objaverse-XL shapes hashes
	Full results
	NeRF-like noise examples
	Denoising illustration


