Under review as a conference paper at ICLR 2025

GAN-BASED NERF NOISE SIMULATION IN MESH DE-
NOISING TASK

Anonymous authors
Paper under double-blind review

A APPENDIX

A.1 CALCULATE DISTANCE BETWEEN POINT AND MESH

In this section we present an algorithm for quick calculation of distance between point and triangle
mesh. The three-dimensional space around a mesh is described as a Voronoi diagram constructed
for different classes of geometric primitives that mesh consists of: facets, edges, and vertices.

Consider the point) and calculate the distance from () to the mesh. The algorithm consists of the
following steps:

* Find a vertex of the mesh A closest to the point). This can be done, for example, using
a kd-tree calculated previously for all vertices of the mesh. We denote by Vi, ..., V,, the
vertices that are adjacent to vertex A. We also denote by C', . .., C,, the centroids of facets
adjacent to the vertex A.

* Denote vector AQ by a. Next vectors AVq,..., AV, we denote by 01, . . ., Uy, Finally we
denote vectors ACy, ..., AC,, by ¢y, ...,Cp.

* First we should check if point () is in the reference cone of A.

The article clearly describes that the three-dimensional space above/below a mesh can be described
as a Voronoi diagram constructed for different classes of geometric primitives. The classical Voronoi
diagram is a partition of space into regions, where each region of it forms a set of points closer to
one of the elements of a certain set than to any other element of the set. A mesh consists of three
types of geometric primitives: facet, edge, and vertex.

The space in which the mesh is represented is transformed into a Voronoi diagram for the facets,
edges, and vertices of the mesh. Drawing from the article:

In the figure, red indicates the areas where the points are closest to one of the facets than to any other
facet or any of the edges or vertices. Similarly, blue indicates the areas where the points are closest
to some edge, and yellow indicates some vertex.

If you want to find the shortest distance from an arbitrarily taken point to the mesh surface, then you
need to take into account this feature of dividing the space around the mesh, since the distance from
a point to a flat triangle in 3D is not calculated in the same way as the distance from a point to a
segment or from a point to a point. It is important to understand which of the geometric primitives
is closest to the point before calculating the distance.

The algorithm for finding the shortest distance can be implemented without constructing a Voronoi
diagram, but with the assumption that the surface to which the distance needs to be calculated is
sufficiently convex.

Suppose you want to calculate the distance from the point () to the mesh. The algorithm consists of
the following steps:

1. Search for the vertex of the mesh A closest to the point). This can be done, for example, using a
kd-tree calculated previously for all vertices of the mesh. Denote by V1, ..., V,, the vertices that are
adjacent to vertex A. We also denote by C', ..., C), the centroids of facets adjacent to the vertex A;
2. Check whether the point () lies in the reference cone of this vertex (in the figure these cones are
indicated in yellow). To do this, take the vector connecting vertex A and point (), that is, vector AQ.
Next, you need to calculate the scalar products of the vector AQ) with the vectors ACY, ..., AS,. If

Under review as a conference paper at ICLR 2025

all these scalar products are strictly less than zero, then the point () belongs to the support cone. In
this case, the desired distance is the length of the vector AQ. If at least one of the scalar products is
greater than or equal to zero, then the distance is calculated according to the algorithm in paragraph
3; 3. For each facet k adjacent to vertex A, calculate the vectors L;Cy, LoCy, L3Cy, where Ly,
Lo, L3 are the midpoints of the facet edges. We also calculate the vectors L@, L2Q, L3Q, then
calculate the scalar products (L;Cy, L;Q),i = 1,2,3. If all three scalar products are greater than
or equal to zero, then the minimum distance from the point) to the mesh is equal to the distance
to the facet k. If otherwise, the distance is calculated according to the algorithm in paragraph 4; 4.
Calculate the scalar product of the vector (AQ, AVy),k = 1,...,n. Important: each of the vectors
Vi must be normalized before calculating the scalar products. Let’s define k for which the scalar
product (AQ, AV}) is maximal. An edge with index k is the nearest edge to the point Q. In this
case, the minimum distance from the point () to the mesh is equal to the distance to the edge k.

A.2 OBJAVERSE-XL SHAPES HASHES

Table 1: Each objaverse-XL shape has a unique hash that identifies it in this dataset.

Name | Train or test | Objaverse ID

bottle | Train 00b2c8c60d2f45a893ee73td1£107e27

bird Train 02c81d18c4f04b9b9275fde41d0e715b
sphere | Train £8c97f11180440ccaeSbc156ef087014

key Train 4bdab6b1e3194045ab6362e4cb6cda222
doll Test 0e30fca3637e4083863e1240d6d1{1bf
spiral | Test 1d6ad3e20daa4873a3bla0ab6cOea8dl

Under review as a conference paper at ICLR 2025

A.3 FULL RESULTS

Table 2: Basic models results: DPSR + MC, KNN, MLP, U-Net. Experiments show the best results
in KL div. for a specific test shape and all shapes highlighted in green and dark green, respectively.
Our GAN-based approach performs significantly better for the rest of the metrics which are shown
in Table 5.

Test shape . . Metrlcs
KL div. | Cosine| Linear | Manh.| Nuclear |
o Bird 0.44385 0.02214 0.29057 8.13646 0.79620
S | Bottle 0.49276 0.05177 0.57202 9.93406 1.60127
+ | Key IOI06330) 0.06551 0.63861 13.24510 2.26182
54) Sphere 0.35360 0.13064 0.69201 20.95043 1.80963
a | Doll 0.52423 0.09685 0.62921 19.19287 1.61193
A Spiral 0.49276 0.07408 0.52683 15.96581 1.38656
= | Bird 0.44349 0.01495 0.24551 6.37309 0.59441
ﬁ Bottle 0.48912 0.03381 0.44590 9.42089 1.32781
& | Key 0.06630 0.04790 0.48711 11.63991 1.53463
= Sphere 0.35994 0.08495 0.56878 16.45870 1.43616
Z | Doll 0.52934 0.03354 0.38112 10.68838 1.02367
é Spiral 0.48815 0.00552 0.14572 3.93982 0.44374
Bird 0.45572 0.05788 0.59004 14.28690 2.03749
Bottle 0.50096 0.16061 1.43471 30.53953 5.69239
5 Key 0.06677 0.04867 0.61003 12.47303 2.51558
S | Sphere 0.36640 0.11959 1.04522 25.71050 3.72137
Doll 0.54231 0.16903 0.80894 23.71446 3.58923
Spiral 0.50105 0.06661 0.61870 14.49724 2.14522
Bird 0.45791 0.12729 0.94130 18.56488 3.52717
Bottle 0.48909 0.05028 0.56939 10.86997 1.68377
E Key 0.07039 0.27131 2.28507 40.40780 11.84921
- Sphere 0.36845 0.08761 0.73039 14.87120 2.56812
Doll 0.54249 0.13434 1.06966 22.07343 4.16051
Spiral 0.50067 0.13567 1.06968 24.73850 4.13640

Under review as a conference paper at ICLR 2025

Table 3: GAN training results. Five train datasets: bird, bottle, key, sphere, all. Two test datasets:
doll, spiral. The best results for a specific test shape are highlighted in green. The best metrics
for all shapes are highlighted with dark green. The GAN results for the KL div. are slightly lower,
however they are comparable to the rest of the approaches. The GAN results for other metrics are
significantly better than others.

. Metrics
Train shape Test shape KL div. | Cosine| Linear | Manh.| Nuclear |
.5 | Bird Bird 0.45106 0.00597 0.18472 5.28831 0.60968
g Bottle Bottle 0.49516 0.01402 0.26539 5.96482 0.79997
S | Key Key 0.06589 | 0.01937 0.32343 5.68141 1.17867
S | Sphere Sphere 0.35953 0.00557 0.15620 3.67948 0.47831
Bottle Bird 0.45183 0.00671 0.17695 4.63796 0.55543
Key Bird 0.45828 0.02109 0.32092 7.61674 1.07289
Sphere Bird 0.45269 | 0.00251 0.10487 2.84228 0.32697
All Bird 0.45327 0.00601 0.16738 4.50107 0.53778
Bird Bottle 0.49573 0.01846 0.32097 6.18145 1.00624
= | Key Bottle 0.50158 0.03387 0.43412 8.31266 1.36748
g Sphere Bottle 0.49697 0.01151 0.24423 5.57860 0.79836
S| Al Bottle 049770 0.00951 0.21888 5.25660 0.68357
% | Bird Key 0.06479 0.02679 0.37076 6.79448 1.27395
5 | Bottle Key 0.06527 0.06527 0.34457 6.19686 1.22980
O | Sphere Key 0.06415 0.03881 0.44968 8.66565 1.49396
All Key 0.06473 0.03096 0.40012 7.69379 1.39265
Bird Sphere 0.35944 [0.00183 0.09029 2.37248 0.32119
Bottle Sphere 0.36089 0.00613 0.17313 4.32524 0.51328
Key Sphere 0.36573 0.01888 0.32437 8.69921 0.97167
All Sphere 0.36108 0.00282 0.10764 2.65000 0.36230
Bird Doll 0.53548 0.01027 0.22929 5.39447 0.67479
Bottle Doll 0.53560 0.01730 0.28424 7.04564 0.79888
- Key Doll 0.54289 0.02074 0.32903 7.94347 1.14373
‘5 | Sphere Doll 0.53638 = 0.00625 0.16130 4.68518 0.46974
g All Doll 0.53805 0.00936 0.19859 5.59246 0.55628
= | Bird Spiral 0.49832 0.00642 0.18521 5.28779 0.51220
é Bottle Spiral 0.49747 0.01647 0.29413 7.96902 0.83973
Key Spiral 0.50192 0.03417 0.44514 11.57165 1.42135
Sphere Spiral 049742 0.00368 0.12526 3.60572
All Spiral 0.49609 0.00976 0.21889 6.00135 0.60933

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

A.4 NERF-LIKE NOISE EXAMPLES

@t
i@

(a) Artificial NeRF noise (b) Real NeRF noise

Figure 1: The real NeRF noise is is compared with artificial noise generated by our pipeline.

(9}

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A.5 DENOISING ILLUSTRATION

0 O30 i
a0 O i
1 O0E Sy
1 W iy

(a) GT (b) GAN-based noisy (c) Trained on Syn- (d) Trained on Ours
thetic

Figure 2: GT and noisy meshes are prepared for denoising tests as explained in Section 7.1. The
denoising was performed with the Cascaded Regression model which was trained on the dataset pro-
duced by our GAN-based pipeline. We have trained Cascaded Regression on the dataset produced
by KNN-based pipeline for comparison to our method. It can be seen that Cascaded Regression
trained on GAN-based dataset performs better.

	Appendix
	Calculate distance between point and mesh
	Objaverse-XL shapes hashes
	Full results
	NeRF-like noise examples
	Denoising illustration

