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ABSTRACT

Transformer-based models generate hidden states that are difficult to interpret. In
this work, we analyze hidden states and modify them at inference, with a focus on
motion forecasting. We use linear probing to analyze whether interpretable features
are embedded in hidden states. Our experiments reveal high probing accuracy,
indicating latent space regularities with functionally important directions. Building
on this, we use the directions between hidden states with opposing features to
fit control vectors. At inference, we add our control vectors to hidden states and
evaluate their impact on predictions. Remarkably, such modifications preserve
the feasibility of predictions. We further refine our control vectors using sparse
autoencoders (SAEs). This leads to more linear changes in predictions when scaling
control vectors. Our approach enables mechanistic interpretation as well as zero-
shot generalization to unseen dataset characteristics with negligible computational
overhead.

1 INTRODUCTION

Accurately predicting sequential data in an interpretable way is desirable for many real-world
applications. However, these two objectives often conflict: methods achieving higher accuracy tend
to rely on the increased complexity of their underlying models (Kaplan et al., 2020; Bahri et al.,
2024). This, in turn, renders them difficult to interpret in terms of semantically meaningful concepts.

Interpretability methods aim to uncover how models process information, often by analyzing whether
learned features align with semantically meaningful concepts. The manifold hypothesis (Bengio et al.,
2013) suggests that high-dimensional data often lies on a lower-dimensional manifold. Deep learning
models learn representations that approximately capture the manifold’s geometry by mapping data
into a space where related inputs are closer together (Rifai et al., 2011). Therefore, we focus on the
structure of the learned representations to make predictions of the model’s behavior.

Deep learning models are trained with loss functions that encourage the clustering of data samples
in latent space (Papyan et al., 2020). Together with regularizers that prevent overfitting, clusters
become more distinct over the course of training, i.e. neural collapse (Galanti et al., 2022; Wu &
Papyan, 2024). Following Ben-Shaul et al. (2023), we use linear probes (Alain & Bengio, 2017) to
measure neural collapse toward interpretable features in hidden states. High probing accuracy implies
separability of features, which suggest functionally important directions in hidden states. Building
on the insight that interpretable features are embedded in hidden states, we fit control vectors to the
directions between hidden states with opposing features.

To further enhance this approach, we use sparse autoencoders to extract more distinct features
from hidden states (Bricken et al., 2023). We evaluate sparse autoencoders with fully-connected,
convolutional, and MLPMixer layers; and different activation functions. Our experiments with sparse
autoencoders of varying sparse intermediate dimensions show that enforcing sparsity leads to more
linear changes in prediction when scaling control vectors.

We apply our method to recent multimodal motion transformers (Nayakanti et al., 2023; Zhang et al.,
2023b; Wagner et al., 2024). They process features of past motion sequences (i.e., past positions,
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orientation, acceleration, and speed) and environment context (i.e., map data and traffic light states),
and transform them into future motion sequences. Like other transformer models, they rely on
learned representations of these features, resulting in hidden states that are difficult to interpret and
control. We focus on analyzing interpretable motion features that are physically measurable, such as
speed, acceleration, direction, and agent type. By leveraging these features, our approach enables
interpretable control over generated forecasts and facilitates zero-shot generalization.

Specifically, in this work:

• We argue that, to fit control vectors, latent space regularities with separable features are necessary.
We use linear probing and show that neural collapse toward interpretable features occurs in
hidden states of recent motion transformers, indicating a structured latent space.

• We fit control vectors using hidden states with opposing features. By modifying hidden states
at inference, we show that control vectors describe functionally important directions. Similar
to the vector arithmetic in word2vec, we obtain predictions consistent with the current driving
environment.

• We use sparse autoencoders to optimize our control vectors. Notably, enforcing sparsity leads
to more linear changes in predictions when scaling control vectors. We use linearity measures
to compare these results against a Koopman autoencoder and SAEs with various layers and
activation functions, including convolutional and MLPMixer layers.

2 RELATED WORK

Concept-based interpretability. Kim et al. (2018) propose explaining predictions with human-
interpretable concepts, rather than relying on sample-based raw features. They first choose a set of
examples that represent distinct concepts and measure the influence of high-level concepts on the
model’s decisions, thereby providing global explanations. In a recent text-to-image diffusion setting,
Conceptor (Chefer et al., 2024) decomposes a concept into a weighted combination of interpretable
elements.

Structure of the latent space. Mikolov et al. (2013) show that consistent regularities naturally
emerge from the training process of word embeddings. This phenomenon, commonly referred to
as the word2vec hypothesis, suggests that learned embeddings capture both semantic and syntactic
relationships between words through consistent vector offsets in latent space. While the observed
linear offsets naturally fit a flat latent space, non-Euclidean geometric models (e.g., Riemannian
manifolds) can better capture structural distortions (Arvanitidis et al., 2018). In those cases, “vector
arithmetic” can be seen as an approximation to geodesic operations on a curved latent space.

Neural collapse. A recent line of work (Papyan et al., 2020; Galanti et al., 2022; Wu & Papyan,
2024) introduces the term neural collapse to describe a desirable learning behavior of deep neural
networks for classification.1 It refers to the phenomenon that learned top-layer representations form
semantic clusters, which collapse to their means at the end of training. In addition, the cluster means
transform progressively into equidistant vectors when centered around the global mean. Therefore,
neural collapse facilitates classification tasks and is considered a desirable learning behavior for both
supervised (Papyan et al., 2020) and self-supervised learning (Ben-Shaul et al., 2023).

Hidden state activations. Transformers consist of attention blocks, followed by simple feed-forward
networks, whose hidden state activations are analyzed for interpretability. Elhage et al. (2022) explore
two key hypotheses that describe how these activations capture meaningful structures: the linear
representation hypothesis (Pennington et al., 2014) and the superposition hypothesis (Arora et al.,
2018). These hypotheses essentially state that the neural networks represent features as directions in
their activation space, and that representations can be decomposed into independent features.

Control vectors2 are used for a form of activation steering, where concept-based vectors are added
to activations (i.e., hidden states) of transformer models. In natural language processing (Zou et al.,

1Neural collapse is not to be confused with representation collapse (Hua et al., 2021; Barbero et al., 2024),
where learned representations across all classes collapse to redundant or trivial solutions (e.g., zero vectors).

2Also referred to as steering vectors (Subramani et al., 2022), style vectors (Konen et al., 2024), or activation
addition (Turner et al., 2024).
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2023; Subramani et al., 2022; Turner et al., 2024; Heo et al., 2025), control vectors allow targeted
adjustments to model outputs by modifying hidden states without the need for fine-tuning or prompt
engineering. Control vectors are a set of vectors that capture the difference of hidden states with
opposing concepts or features (Rimsky et al., 2023). This approach requires a well-structured latent
space, where samples are clustered according to classes or features (e.g., a high degree of neural
collapse, see Section 3.2).

Sparse autoencoders. A key goal of interpretability research is to decompose models and gain a
mechanistic interpretation of how their components function. Sparse autoencoders (SAEs) leverage
the linear representation hypothesis and approximate the model’s activations with a linear combination
of feature directions. By enforcing sparsity in latent space, they separate features into distinct,
interpretable representations (Bricken et al., 2023; Cunningham et al., 2024; Gao et al., 2025).
Related autoencoders linearize learned representations either by manifold flattening (Psenka et al.,
2024) or using Koopman operators (Lusch et al., 2019; Azencot et al., 2020).

Our method differs from prior works in several aspects. We measure neural collapse in multimodal
models for motion forecasting (i.e., regression) instead of unimodal image classifiers (Papyan et al.,
2020) or language models (Wu & Papyan, 2024). Unlike Conmy & Nanda (2024), we do not
manually suppress SAE features in control vectors. Furthermore, we do not use our SAEs during
inference (Bricken et al., 2023), but to optimize control vectors beforehand, resulting in negligible
computational overhead.

3 METHOD

3.1 MOTION FEATURE CLASSIFICATION USING NATURAL LANGUAGE

In contrast to natural language, where words naturally carry semantic meaning, motion lacks prede-
fined labels. Therefore, we identify human-interpretable motion features by quantizing them into
discrete subclasses as in natural language.

Initially, we classify motion direction using the cumulative sum of differences in yaw angles, as-
signing it to either left, straight, or right. Additionally, we introduce a stationary class
for stationary objects, where direction lacks semantic significance. We define further classes for
speed, dividing the speed values into four intervals: high, moderate, low, and backwards.
Lastly, we analyze the change in acceleration by comparing the integral of speed over time to the
projected displacement with initial speed. Accordingly, we classify acceleration profiles as either
accelerating, decelerating, or constant (see Figure 1a). Our thresholds for motion
features are based on insights from Ettinger et al. (2021); Seff et al. (2023). The threshold values are
detailed in Appendix A.3.

3.2 NEURAL COLLAPSE AS A METRIC OF INTERPRETABILITY

We use neural collapse as a metric of interpretability. Specifically, we focus on interpreting hidden
states (i.e., activations or latent representations) and evaluate whether hidden states embed inter-
pretable features. We measure how close abstract hidden states are related to interpretable semantics
using linear probing accuracy (Alain & Bengio, 2017).3 We train linear probes (i.e., linear classifiers
detached from the overall gradient computation) on top of hidden states (Hi,: in Figure 1). During
training, we track their accuracy in classifying our interpretable features on validation sets. Adapted
to motion forecasting, we choose the aforementioned motion features as interpretable semantics.

Besides linear probing accuracy, following Chen & He (2021), we use the mean of the standard
deviation of the ℓ2-normalized embedding to measure representation collapse. Representation
collapse refers to an undesirable learning behavior where learned embeddings collapse into redundant
or trivial representations (Hua et al., 2021; Barbero et al., 2024). Redundant representations have a
standard deviation close to zero. In a way, representing the opposite of neural collapse. As shown in
(Chen & He, 2021), rich representations have a standard deviation close to 1/

√
dim, where dim is the

hidden dimension.

3Ben-Shaul et al. (2023) show that linear probing accuracy is consistent with the accuracy of nearest class
center classifiers, which are typically used to measure neural collapse.
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Figure 1: Words in Motion. (a) We classify motion features in an interpretable way, as in natural
language. (b) We measure the degree to which these interpretable features are embedded in the hidden
states Hi,: of transformer models with linear probes. Furthermore, we use our discrete features and
sparse autoencoding to fit interpretable control vectors Vi,: that allow for modifying motion forecasts
at inference. The training of the sparse autoencoder is shown with red arrows (→) and the fitting of
control vectors with blue arrows (→).

3.3 INTERPRETABLE CONTROL VECTORS

We use our interpretable features to form pairs of opposing features. For each pair, we build a dataset
and extract the corresponding hidden states. Next, we compute the element-wise difference between
the hidden states of samples with these opposing features. Finally, following Zou et al. (2023) we
apply principal component analysis (PCA) with a single component as a pooling method. This
reduces the computed differences to a single scalar per hidden dimension to generate control vectors
(Vi,: in Figure 1b).

We optimize our control vectors using SAEs (Bricken et al., 2023). SAEs extract distinct features
in hidden states by encoding and reconstructing them from sparse intermediate representations
(Si,: in Figure 1b). We hypothesize that sparse intermediate representations enable a more linear
decomposition of our interpretable features, and hence, more distinct control vectors. Therefore,
we generate intermediate control vectors V ′

i,: by pooling the differences between hidden states with
opposing features (Hpos

i,: vs. Hneg
i,: ). Specifically, we compute

Spos
i,: = ReLU

(
Wenc

(
Hpos

i,: − bdec
)
+ benc

)
, (1)

where W and b denote weights and biases of the SAE. Similarly, we compute Sneg
i,: and obtain the

intermediate control vectors as

V ′
i,: = PCA

(
Spos
i,: − Sneg

i,:

)
. (2)

Leveraging the Johnson-Lindenstrauss Lemma,4 we use the SAE decoder to project the intermediate
control vectors back to the hidden dimension of the motion encoder

Vi,: = WdecV
′
i,: + bdec. (3)

This enables using sparse autoencoders of arbitrary sparse intermediate dimensions for generating
control vectors of fixed dimension. At inference, we scale the control vectors with a temperature
parameter (τ in Figure 1b) to control the strength of the corresponding features of a given sample.

4Johnson & Lindenstrauss (1984) state that a set of points in high-dimensional space can be projected into a
lower-dimensional space while approximately preserving the pairwise distances between points.

4



Published as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP

4.1 MOTION FORECASTING MODELS

We study three recent motion transformers for self-driving. Wayformer (Nayakanti et al., 2023)
and RedMotion (Wagner et al., 2024) models employ attention-based scene encoders to learn agent-
centric embeddings of past motion, map, and traffic light data. To efficiently process long sequences,
Wayformer uses latent query attention (Jaegle et al., 2021) for subsampling, RedMotion lowers
memory requirements via local-attention (Beltagy et al., 2020) and redundancy reduction. HPTR
(Zhang et al., 2023b) models learn pairwise-relative environment representations via kNN-based
attention mechanisms. For Wayformer, we use the implementation by Zhang et al. (2023b) and the
early fusion configuration. Therefore, we analyze the hidden states generated by an MLP-based input
projector for motion data, which consists of three layers. For RedMotion and HPTR, we use the
publicly available implementations. We configure RedMotion with a late fusion encoder for motion
data, and HPTR using a custom hierarchical fusion setup with a modality-specific encoder for past
motion with a shared encoder for environment context. Further details on model architectures and
fusion mechanisms are presented in Appendix A.4 and A.5.

4.2 LINEAR PROBES

We add linear probes for our quantized and interpretable motion features (see Section 3.1) to hidden
state of all models (H(m)

i,: in Figure 1, where m ∈ {0, 1, 2} is the module number and i is the
temporal index). These classifiers are learned during training using regular cross-entropy loss to
classify speed, acceleration, direction, and the agent classes from hidden states. We decouple this
objective from the overall gradient computation. Therefore, these classifiers do not contribute to the
alignment of hidden states, but exclusively measure neural collapse toward interpretable features.

4.3 CONTROL VECTORS

Using our interpretable motion features, we build pairs of opposing features. Specifically, we generate
speed control vectors representing the direction from low to high speed, acceleration control vectors
representing the direction from decelerating to accelerating, and direction control vectors representing
the direction from turning left to turning right, and agent control vectors representing the direction
from pedestrian to vehicle. For each pair, we use the hidden states H(m)

i,: from module m = 2 and
the last embedding per motion sequence (with i = −1), as it is closest to the start of the prediction.

4.4 TRAINING DETAILS AND HYPERPARAMETERS

Motion transformers. We provide Wayformer and HPTR models with the nearest 512 map polylines,
and RedMotion model with the nearest 128 map polylines. All models process a maximum of 48
surrounding traffic agents as environment context. For the Argoverse 2 Forecasting (abbr. AV2F)
dataset, we use past motion sequences with 50 time steps (representing 5 s) as input. For the Waymo
Open Motion (abbr. Waymo) dataset, we use past motion sequences with 11 steps (representing 1.1 s)
as input. For Wayformer and RedMotion, we use the unweighted sum of the negative log-likelihood
loss for positions modeled as mixture of Gaussians and cross-entropy for confidences as motion
forecasting loss. For HPTR, we additionally use the cosine loss for the heading angle and the Huber
loss for velocities. We use AdamW (Loshchilov & Hutter, 2019) in its default configuration as
optimizer and set the initial learning rate to 2× 10−4. All models have a hidden dimension of 128
and are configured to forecast k = 6 trajectories per agent. As post-processing, we follow Konev
(2022) and reduce the predicted confidences of redundant forecasts.

Sparse autoencoders. We train SAEs as an auxiliary model with sparse intermediate dimensions
of 512, 256, 128, 64, 32, and 16. The total loss combines ℓ2 reconstruction loss with an ℓ1 spar-
sity penalty: ℓ2 ensures accurate reconstruction, while ℓ1 promotes sparsity by minimizing small,
noise-like activations. The ℓ1 must be carefully scaled to avoid deadening important features (Ra-
jamanoharan et al., 2024a). We scale it scaled by 3 × 10−4. We optimize the models over 10 000
epochs using the Adam optimizer (Kingma & Ba, 2015) and a batch size of 528. The final loss values
are provided in Table 7 in the appendix.
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5 RESULTS

5.1 EXTRACTING INTERPRETABLE FEATURES FOR MOTION

Our approach relies on a well-structured latent space, where samples are clustered with respect to
interpretable features. First, we ensure that our features are not highly correlated, as confirmed by the
Spearman feature correlation analysis in Appendix A.6. Next, we report linear probing accuracy for
interpretable features during training on the AV2F and Waymo datasets.

Figure 2 shows the linear probing accuracies for our interpretable motion features for the AV2F
dataset. The scores are computed on the validation split over the course of training. All models
achieve similar accuracy scores, while the Wayformer model achieves slightly higher scores for
classifying acceleration and lower scores for agent classes. Overall, we measure high linear probing
accuracy for all intepretable features. This shows that all models likely exhibit neural collapse toward
interpretable features.
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Figure 2: Linear probing accuracies for RedMotion, Wayformer, and HPTR on the validation split of
the AV2F dataset.
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RedMotion, Wayformer, and HPTR.

The representation quality metric normalized standard de-
viation of embeddings is shown in Figure 3. Both HPTR
and RedMotion learn to generate embeddings with a nor-
malized standard deviation close to the desired value of
1/
√

dim, where dim is the hidden dimension. The scores
for Wayformer are lower, which reflects differences between
attention-based and MLP-based motion encoders.

Figure 4 shows the linear probing accuracies for our inter-
pretable features on the Waymo dataset. Here, we report the
scores for each of the three hidden states Hi in the RedMo-
tion model (i.e., after each module m in the motion encoder,
see Figure 1). Similar accuracy scores are reached for all
features at all three hidden states. The accuracies for the

speed and acceleration classes continuously improve, while those for direction classes reach 0.80
early on. Compared to the direction scores on the AV2F dataset, the scores on the Waymo dataset
“jump” earlier. We hypothesize that this is linked to the shorter input motion sequence on Waymo
(1.1 s vs. 5 s), which limits the amount possible movements. In contrast to the AV2F dataset, higher
accuracies are achieved for classifying speed. Overall, the highest scores are reached for classifying
agent types, as on the AV2F dataset.
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Figure 4: Linear probing accuracies at module 0, module 1 and module 2 for classfiying speed,
acceleration, direction, and agent type on the validation split of the Waymo dataset.
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In addition to linear probing, we measure neural collapse using class-distance normalized variance
(CDNV) (Galanti et al., 2022), see Appendix A.19. On the Waymo dataset, the within-class variance
values and the mean distance norm for RedMotion are 10.68 and 11.24, respectively, resulting in a
CDNV of 0.95. On the AV2F dataset, these values are 5.73 and 2.32, yielding a CDNV of 2.46. We
hypothesize that the higher CDNV value on AV2F is caused by the longer past motion sequence (i.e.,
5 s vs. 1.1 s on Waymo), allowing for a greater range of potential movements.

5.2 MODIFYING HIDDEN STATES OF MOTION TRANSFORMERS AT INFERENCE

Building on the insight that hidden states are likely collapsed toward our interpretable features, we fit
control vectors using opposing features. These control vectors allow for modifying motion forecasts
at inference. Specifically, we build pairs of opposing features for the AV2F and the Waymo dataset.
Then, we fit sets of control vectors (Vi in Figure 1) as described in Section 3.3. At inference, we add
the control vectors generated for the last temporal index (i = −1) to all embeddings (i ∈ {0, . . . , 49}
for AV2F, i ∈ {0, . . . , 10} for Waymo).

5.2.1 QUALITATIVE RESULTS

Figure 5 shows a qualitative example from the AV2F dataset, where we modify hidden states using
our control vector for acceleration scaled with different temperatures τ . Subfigure 5a shows the
default (i.e., non-controlled) top-1 (i.e., most likely) motion forecast. In subfigures 5b and 5c, we
apply our acceleration control vector with τ = −20 and τ = 100 to enforce a strong deceleration
and a moderate acceleration, respectively.

(a) Default motion forecast (b) Enforced strong deceleration (c) Enforced acceleration

Figure 5: Modifying hidden states to control a vehicle at an intersection. We add our acceleration
control vector scaled with τ = −20 and τ = 100 to enforce a strong deceleration and a moderate
acceleration. The focal agent is highlighted in orange, dynamic agents are blue, and static agents are
grey. Lanes are black lines and road markings are white lines.

Figure 6 shows a qualitative example from the Waymo dataset. Subfigure 6a shows the default motion
forecast. In subfigures 6b and 6c, we apply our speed control vector to decrease and increase the
driven speed of a vehicle. Both modifications affect the future speed in a similar manner, while
increasing the speed also changes the route to fit the given environment context (i.e., lanes).

(a) Default motion forecast (b) Speed controlled τ = −32 (c) Speed controlled τ = 100

Figure 6: Modifying hidden states to control a vehicle before a predicted right turn. In this
example, increasing the speed also changes the route to fit the given environment context (i.e., lanes).
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In Appendix A.8, we include an example of our direction control vector. Overall, these qualitative
results support the finding that the hidden states of motion sequences are arranged with respect to our
discrete sets of motion features.

5.2.2 SIMILARITY-BASED COMPARISON OF CONTROL VECTORS

In this section, we evaluate how control vectors obtained using SAEs differ from those derived via
plain PCA. For comparison, we train SAEs with varying sparse intermediate dimensions: 512, 256,
128, 64, 32, and 16. For each control vector, we calculate its pairwise angles with the control vectors
for controlling other features. Table 1 presents the angular distances between control vectors of speed,
acceleration, direction, and agent generated with plain PCA and our SAE with a sparse intermediate
dimension 128. As expected, the similarity between speed and acceleration, speed and agent, and
acceleration and agent is notably high, while the similarity involving direction and other vectors is
significantly lower. This result aligns with expectations, as positive speed and acceleration controls
lead to faster motion, and our agent control vector represents transition between agent types from
pedestrian to vehicle, which is associated with faster motion, as well. Angular-distance results for
the remaining SAE dimensions are in Table 6 in the appendix. The similarity of the control vectors
generated using the SAE with an intermediate dimension of 128 is the highest.

Table 1: Comparison of control vectors, with angles measured in degrees.

Plain PCA & Plain PCA speed acceleration direction agent

speed 0.0 11.5 122.6 10.9
acceleration 0.0 126.8 6.8
direction 0.0 128.7
agent 0.0

SAE & SAE speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

5.3 QUANTITATIVE EVALUATION OF SAES FOR OPTIMIZING CONTROL VECTORS

We empirically analyze the temporal-causal relationship between modifications on hidden states of
past motion and motion forecasts. Specifically, we measure the linearity of relative speed changes
in forecasts when scaling our speed control vectors. We use the Pearson correlation coefficient, the
coefficient of determination (R2), and the straightness index (S-idx) (Benhamou, 2004) as linearity
measures. Given the large range of scenarios in the Waymo dataset, we focus on relative speed changes
within a range of ±50% (see Appendix A.14). Higher linearity implies improved controllability.

We compute linearity measures for control vectors optimized using regular SAEs (Bricken et al.,
2023) with varying sparse intermediate dimensions. We achieve the highest scores using the SAE
with a dimension of 128 (see Table 2). Therefore, we use this dimension in the rest of our evaluations.

Table 2: Scaling sparse autoencoders.

Autoencoder Pearson R2 S-idx

SAE-512 0.990 0.974 0.984
SAE-256 0.990 0.974 0.985
SAE-128 0.993 0.984 0.988
SAE-64 0.991 0.976 0.985
SAE-32 0.990 0.959 0.985
SAE-16 0.982 0.770 0.958

In the following, we evaluate autoencoders with differ-
ent activation functions and layer types. Following Ra-
jamanoharan et al. (2024b), we use JumpReLU with a
threshold θ = 0.001 and regular ReLU activation func-
tions. Moreover, we evaluate regular SAEs with fully-
connected layers, with MLPMixer (Tolstikhin et al., 2021)
layers (Sparse MLPMixer), and with convolutional layers
(ConvSAE). For Sparse MLPMixer and ConvSAE, we
use large patch and kernel sizes to approximate the global
receptive fields of fully-connected hidden units in regular
SAEs. Furthermore, we evaluate a consistent Koopman

autoencoder (KoopmanAE) (Azencot et al., 2020) to include a method that models temporal dynamics
between embeddings (see Appendix A.15).

Table 3 presents linearity measures for different control vectors derived from both plain PCA pooling
and SAE methods. Overall, the regular SAEs (Bricken et al., 2023) achieve the highest Pearson and
R2 scores. JumpReLU activation functions improve the R2 scores marginally compared to ReLU
activation functions. The SAE version of Cunningham et al. (2024) does not improve the linearity
scores. We hypothesize that this is due to reduced decoding flexibility since they transpose the
encoder weights instead of learning the decoder weights (i.e., Wdec = W⊤

enc).

8



Published as a conference paper at ICLR 2025

The ConvSAE with a kernel size k = 64 and the KoopmanAE achieve the highest straightness
index, yet the lowest R2 scores. As shown in Figure 7 and Figure 16 in the appendix, the range
of temperatures τ is much higher for this ConvSAE and significantly lower for the KoopmanAE
than for e.g. the regular SAE. This lowers the R2 score but does not affect the straightness index.
For the ConvSAE, we hypothesize that this is due to strong activation shrinkage (Rajamanoharan
et al., 2024b). Therefore, the JumpReLU configuration of this SAE-type leads to a significantly
smaller τ range (see Appendix A.17), which in turn leads to higher R2 scores (see Table 3). For the
KoopmanAE, the opposite is likely, since activation shrinkage is caused by sparsity terms, which
are not included in the loss function of Azencot et al. (2020). Notably, activation steering with our
SAE-based control vector has an almost 1-to-1 ratio between τ and relative speed changes (i.e.,
τ = −50 corresponds to roughly −50%). This improves R2 scores and enables an intuitive interface.
Furthermore, improved controllability with SAEs indicates that sparse intermediate representations
capture more distinct features.

Table 3: Linearity measures for optimized control vectors: Pearson correlation coefficient, coefficient
of determination (R2), and straightness index (S-idx).

Autoencoder Activation function Pooling Patch/kernel size Pearson R2 S-idx
– – PCA – 0.988 0.969 0.981
SAE (Bricken et al., 2023) ReLU PCA – 0.993 0.984 0.988
SAE (Rajamanoharan et al., 2024b) JumpReLU PCA – 0.993 0.986 0.988
SAE (Cunningham et al., 2024) ReLU PCA – 0.987 0.971 0.980
Sparse MLPMixer ReLU PCA 64 0.992 0.980 0.986
Sparse MLPMixer JumpReLU PCA 64 0.992 0.981 0.986
Sparse MLPMixer ReLU PCA 32 0.990 0.978 0.985
Sparse MLPMixer JumpReLU PCA 32 0.991 0.980 0.986
ConvSAE ReLU PCA 64 0.986 0.383 0.991
ConvSAE JumpReLU PCA 64 0.987 0.861 0.978
ConvSAE ReLU PCA 32 0.988 0.622 0.986
ConvSAE JumpReLU PCA 32 0.989 0.623 0.986
KoopmanAE (Azencot et al., 2020) tanh PCA – 0.991 −0.057 1.000
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(c) ConvSAE k = 64

Figure 7: Calibration curves of plain PCA-based speed control vectors and control vectors optimized
using SAEs for relative speed changes in forecasts of ±50%.

In the appendix, we present an ablation study analyzing our method’s sensitivity to hidden states
from different modules (see Table 9) and to varying speed thresholds (see Table 10). Our method
performs best with a sparse intermediate dimension of 128 and hidden states from module m = 2;
and is more sensitive to low than to high speed thresholds.

5.4 RELATION OF PROBING ACCURACY TO LINEARITY MEASURES FOR CONTROL VECTORS

We train a RedMotion model on the AV2F dataset using the same trajectory lengths as in the Waymo
dataset (1.1 s past and 8 s future), while leaving all other hyperparameters as described in Section 4.4.
Table 4 shows the probing accuracy and linearity measures of a speed control vector for this model
(see Appendix A.16 for the calibration curve). Compared with a model trained on the Waymo dataset,
the AV2F model achieves both a lower probing accuracy and significantly lower linearity measures.
These results support our argument that latent space regularities with separable features are necessary
to fit precise control vectors.
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Table 4: Higher probing accuracy enables higher linearity measures. We train RedMotion models
on the Waymo and AV2F datasets using the same trajectory lengths. We report the probing accuracies
for speed classes and the linearity measures for the corresponding PCA-based control vectors.

Dataset Probing accuracy Pearson R2 S-idx
AV2F 0.753 0.877 0.275 0.891
Waymo 0.945 0.988 0.969 0.981

5.5 ZERO-SHOT GENERALIZATION WITH CONTROL VECTORS

Domain shifts between training and test data significantly degrade the performance of many learning
algorithms. Zero-shot generalization methods compensate for such domain shifts without further
training or fine-tuning (Kodirov et al., 2015; Xian et al., 2017; Mistretta et al., 2024). In motion
forecasting, common domain shifts are more or less aggressive driving styles that result in higher or
lower future speeds, respectively. We simulate this domain shift by reducing the future speed in the
Waymo validation split by approximately 50%. Specifically, we take the first half of future waypoints
and linearly upsample this sequence to the original length.

Table 5 shows the results of a RedMotion model trained on the regular training split on this vali-
dation split with domain shift. We provide an overview of the used motion forecasting metrics in
Appendix A.18. Without the use of our control vectors, high distance-based errors, miss, and overlap
rates are obtained. Using the calibration curve in Figure 7b, we compensate for this domain shift
by applying our SAE-128 control vector with a temperature τ = −50. This significantly reduces
the distance-based errors, the overlap, and the miss rates without further training. In addition, we
show the results of applying our control vector with a temperature of τ = −30 and τ = −70, which
improves all scores over the baseline as well.

Table 5: Zero-shot generalization to a Waymo dataset version with reduced future speeds. Best scores
are bold, second best are underlined.

Control vector Temperature τ minADE ↓ Brier minADE ↓ minFDE ↓ Brier minFDE ↓ Overlap rate ↓ Miss rate ↓
None 3.271 6.547 4.617 8.933 0.220 0.580
SAE-128 −30 1.685 4.838 2.870 8.429 0.179 0.224
SAE-128 −50 1.174 2.759 1.798 4.329 0.174 0.236
SAE-128 −70 1.808 3.576 2.035 3.676 0.189 0.302

6 CONCLUSION

In this work, we take a step toward mechanistic interpretability and controllability of motion trans-
formers. We analyze “words in motion” by examining the representations associated with quantized
motion features. Specifically, we show that neural collapse toward interpretable classes of features
occurs in recent motion transformers. The high degree of neural collapse indicates a well-separated
latent space, that enables to fit precise control vectors to opposing features and modify predictions
at inference. We further refine this approach by optimizing our control vectors using sparse autoen-
coding, resulting in higher linearity. Finally, we compensate for domain shift and enable zero-shot
generalization to unseen dataset characteristics. Our findings highlight the effectiveness of sparse
dictionary learning and the use of SAEs for improving interpretability.

We assumed a flat latent space and relied on vector arithmetic. We leave a detailed investigation
of how SAE parameterization might help address potential latent space curvature for future work.
Furthermore, we have empirically shown a connection between neural collapse and the structure
of the latent space for using control vectors, although our analysis remained limited to probing
accuracy and class-distance normalized variance. Our findings enable new applications in robotics
and self-driving. We identify safety validation in latent space as a promising direction, particularly for
end-to-end driving. Using control vectors to modify internal representations and adjust trajectories
via instruction-based inputs is also a valuable application. Finally, future work can explore the use of
other embedding methods (e.g., Schneider et al. (2023)), as well as incorporate features from other
modalities by capturing both static and dynamic scene elements.
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A APPENDIX

A.1 TITLE ORIGIN

The title of our work “words in motion” is inspired by our quantization method using natural language
and by a common notion in the computer architecture. In computer architecture, a word is a basic unit
of data for a processing unit (e.g., CPU or GPU). In our work, words are classes of motion features
that are embedded in the hidden states of motion sequences processed by motion transformers.

A.2 NATURAL LANGUAGE AS AN INTERFACE FOR MODEL INTERACTION

Linking learned representations to natural language and using it as an interface for model interaction
has gained significant attention (e.g., Radford et al. (2021); Alayrac et al. (2022); Liu et al. (2024)).
Broadly, approaches incorporating language in models can be categorized into four types. We present
these approaches along with applications in robotics and self-driving below.

Conditioning. Numerous works use natural language to condition generative models in diverse tasks
such as image synthesis (Ramesh et al., 2021; Zhang et al., 2023a), video generation (Blattmann et al.,
2023), and 3D modeling (Tevet et al., 2022; Wu et al., 2023). Tan et al. (2023); Zhong et al. (2023)
generate dynamic traffic scenes based on user-specified descriptions expressed in natural language.

Prompting. Some works use language as an interface to interact with models, enabling users to
request assistance or information. This includes obtaining explanations of underlying reasoning, and
human-centric descriptions of model behavior (Brown et al., 2020; Sanh et al., 2022). Kuo et al.
(2022) generate linguistic descriptions of predicted trajectories during decoding, capturing essential
information about future maneuvers and interactions. More recent works employ large language
models (LLMs) to analyze driving environments in a human-like manner, providing explanations
of driving actions and the underlying reasoning (Xu et al., 2024; Fu et al., 2024; Sima et al., 2024;
Wayve Technologies Ltd., 2023). This offers a human-centric description of the driving environment
and the model’s decision-making capabilities.

Enriching. Another line of work leverages LLMs’ generalization abilities to enrich context embed-
dings, providing additional information for better prediction and planning (Guan et al., 2023). Zheng
et al. (2024) integrate the enriched context information of LLMs into motion forecasting models.
Wang et al. (2023b) use LLMs for data augmentation to improve out-of-distribution generalization.
Others use pre-trained LLMs for better generalization during decision-making (Mao et al., 2024; Wen
et al., 2024; Shao et al., 2024).

Instructing. Natural language can be used to issue explicit commands for specific tasks, distinct
from conditioning (Ouyang et al., 2022; Brooks et al., 2023). The main challenge is connecting
the abstractions and generality of language with environment-grounded actions (Raad et al., 2024).
Shridhar et al. (2021) enable robotic control through language-based instruction. Zitkovich et al.
(2023) incorporate web knowledge, enriching vision-language-action models for more generalized
task performance. Huang et al. (2024) demonstrate the use of instructions to guide task execution in
self-driving, with experiments in simulation environments.

Although these works align learned text representations with embeddings of other modalities, in
contrast to our work, they do not measure the functional importance of features. To our knowledge,
no prior work has explored the mechanistic interpretability of transformers in robotics applications.

A.3 PARAMETERS FOR CLASSIFYING MOTION FEATURES

We classify motion trajectories with a sum less than 15◦ degrees as straight. When the cumulative
angle exceeds this threshold, a positive value indicates right direction, while a negative value –
exceeding the threshold in absolute terms – indicates a left direction. We classify speeds between
25 kmh−1 and 50 kmh−1 as moderate, speeds above this range as high, those below as low, and
negative speeds as backwards. For acceleration, we classify trajectories as decelerating, if
the integral of speed over time to projected displacement with initial speed is less than 0.9 times. If
this ratio is greater than 1.1 times, we classify them as accelerating. For all other values, we
classify the trajectories as having constant speed. We determine all threshold values by analyzing
the distribution of the dataset.
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Figure 8: Distributions of our motion features for the Argoverse 2 Forecasting (abbr. AV2F) and the
Waymo Open Motion (abbr. Waymo) datasets. All numbers are percentages.

Figure 8 presents the distribution of motion subclasses across the datasets. Both datasets predomi-
nantly capture low-speed scenarios, with 62% of Waymo instances and 53% of AV2F instances falling
into this category. Furthermore, a notable difference lies in the proportion of stationary vehicles, with
AV2F exhibiting a significantly higher percentage (51%) compared to Waymo (28%). The Waymo
dataset predominantly features vehicles with constant acceleration (65%) and traveling straight (49%),
while the AV2F dataset has a higher proportion of accelerating instances (52%). Additionally, AV2F
has a much larger proportion of instances involving backward motion (24%) compared to Waymo
(4%). This disparity in motion characteristics highlights that the two datasets capture different driving
environments and scenarios, with Waymo potentially focusing on highway or structured urban driving,
while AV2F contains more diverse traffic situations.

A.4 META-ARCHITECTURE OF MULTIMODAL MOTION TRANSFORMERS

We study multimodal motion transformers (Nayakanti et al., 2023; Wagner et al., 2024; Zhang et al.,
2023b), which process motion, lane and traffic light data. The meta-architecture of these models
is shown in Figure 9. These models generate motion Mi, map Kj , and traffic light Tk embeddings
using MLPs. Modality-specific encoders aggregate information from multiple embeddings with
attention mechanisms (e.g., across multiple past timesteps for motion embeddings). Afterwards, in
the motion decoder, learned motion queries Q (i.e., a form of learned anchors) cross-attend to M ,
K, and T . Finally, an MLP projects the last hidden state of Q into multiple motion forecasts, which
are represented as 2D Gaussians for future positions in bird’s-eye-view, along with their associated
confidences. The differences between the models lie in the type of attention and fusion mechanisms
they employ, as well as the used reference frames.

Motion MLP

Map MLP

Traffic light MLP

Mi

Kj

Tk

Motion encoder

Map encoder

Traffic light enc.

Motion
decoder

Q0 Q1 Q2 Q3

F0

F1

F2

F3

MLP

Figure 9: Motion transformer meta architecture of RedMotion, Wayformer, and HPTR.

A.5 EARLY, HIERARCHICAL AND LATE FUSION IN MOTION ENCODERS

Fusion types for motion transformers are defined based on the information they process in the first
attention layers. In early fusion, the first attention layers process motion data of the modeled agent,
other agents, and environment context. In hierarchical fusion, they process motion data of the modeled
agent, and other agents. In late fusion, they exclusively process motion data of the modeled agent.
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A.6 FEATURE CORRELATION
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Figure 10: Heatmap representing Spearman correlation between feature cluster means for the
Waymo Open Motion dataset. The values in the matrix indicate pairwise distances between clusters,
normalized by the largest distance.
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Figure 11: Heatmap representing Spearman correlation between feature cluster means for the
Argoverse 2 Forecasting dataset. The values in the matrix indicate pairwise distances between
clusters, normalized by the largest distance.
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A.7 EXPLAINED VARIANCE
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Figure 12: Explained variance for SAE across hidden latent dimensions 512, 256, 128, 64, 32, 16.
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Figure 13: Explained variance for Plain-PCA.
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A.8 ADDITIONAL QUALITATIVE RESULTS

Figure 14 shows a qualitative example for our direction control vector from the Argoverse 2 Forecast-
ing dataset. The left control leads to accelerated future motion, which is consistent with the common
driving style of slowing down in front of a curve and accelerating again when exiting the curve. A
strong right control makes the focal agent stationary. We hypothesize that it cancels out the actually
driven left turn, resulting in a virtually stationary past.

(a) Default motion forecast (b) Left control τ = 10 (c) Right control τ = 100

Figure 14: Modifying hidden states to control a left turning vehicle. In subfigure (b) and (c),
we apply our left-direction control vector and right-direction control vector. The focal agent is
highlighted in orange, dynamic agents are blue, and static agents are grey. Lanes are black lines and
road markings are white lines.

(a) τ = −100 (b) τ = −75 (c) τ = −50

(d) τ = −25 (e) Default motion forecast (f) τ = 25

(g) τ = 50 (h) τ = 75 (i) τ = 100

Figure 15: Control vectors applied to all agents, showing consistent multi-agent behavior.
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A.9 COMPARISON OF CONTROL VECTORS USING PLAIN PCA AND SAE ACROSS VARIOUS
SPARSE INTERMEDIATE DIMENSIONS

Table 6: Comparison of control vectors obtained with and without SAEs across sparse intermediate
dimensions (512, 256, 128, 64, 32, 16). The tables on the left represent the pairwise angular distances
between control vectors of the same SAE model, whereas those on the right represent the angular
distances between control vectors of SAE and those derived from plain PCA. The control vector with
a sparse intermediate dimension of 128 achieves the highest overall similarity.

SAE-512 & SAE-512 speed acceleration direction agent

speed 0.0 10.2 121.8 7.6
acceleration 0.0 123.7 7.6
direction 0.0 126.9
agent 0.0

Plain PCA & SAE-512 speed acceleration direction agent

speed 20.7 28.6 123.8 23.4
acceleration 19.1 23.0 128.5 18.6
direction 115.9 116.6 13.7 120.8
agent 19.4 24.4 130.2 18.3

SAE-256 & SAE-256 speed acceleration direction agent

speed 0.0 9.9 120.9 7.9
acceleration 0.0 123.7 7.2
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-256 speed acceleration direction agent

speed 21.5 26.8 123.8 23.3
acceleration 20.3 21.0 128.7 18.7
direction 114.7 116.9 13.7 120.1
agent 20.8 23.1 130.2 18.7

SAE-128 & SAE-128 speed acceleration direction agent

speed 0.0 9.5 120.6 7.8
acceleration 0.0 122.9 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-128 speed acceleration direction agent

speed 19.7 25.3 124.3 21.6
acceleration 19.2 20.0 128.8 17.5
direction 115.2 117.1 12.1 120.5
agent 19.5 21.8 130.4 17.1

SAE-64 & SAE-64 speed acceleration direction agent

speed 0.0 9.7 121.0 8.0
acceleration 0.0 123.2 7.5
direction 0.0 126.3
agent 0.0

Plain PCA & SAE-64 speed acceleration direction agent

speed 18.1 23.7 124.7 19.3
acceleration 19.3 19.9 128.9 16.5
direction 115.0 116.6 13.3 120.5
agent 19.8 21.9 130.5 16.4

SAE-32 & SAE-32 speed acceleration direction agent

speed 0.0 9.8 120.3 8.3
acceleration 0.0 122.8 7.0
direction 0.0 125.8
agent 0.0

Plain PCA & SAE-32 speed acceleration direction agent

speed 14.7 18.8 126.4 15.5
acceleration 18.0 15.5 130.3 14.1
direction 114.4 116.9 10.9 120.2
agent 18.1 17.6 132.0 13.4

SAE-16 & SAE-16 speed acceleration direction agent

speed 0.0 9.5 124.1 9.3
acceleration 0.0 125.2 7.5
direction 0.0 129.3
agent 0.0

Plain PCA & SAE-16 speed acceleration direction agent

speed 23.5 25.1 126.6 21.8
acceleration 28.4 26.0 128.9 23.5
direction 110.2 111.9 24.6 116.6
agent 28.0 26.8 131.0 22.5

A.10 LOSS METRICS FOR SAES

We report the results for the epoch with the lowest total loss = ℓ2-loss + 3 × 10−4 · ℓ1-loss. Note
that the ℓ2 reconstruction loss is computed as the average of all partial losses for all embeddings,
while the ℓ1 sparsity loss is computed as the sum of all partial losses.

Table 7: Loss metrics for SAEs across sparse intermediate dimensions, trained for 10.000 epochs.

Dim Best epoch Total loss ℓ2 reconstruction loss ℓ1 sparsity loss

512 9805 4.01 1.52 8270.70
256 9845 3.72 1.38 7823.98
128 9820 4.14 1.56 8608.95
64 9348 4.56 1.89 8894.97
32 9864 7.14 3.90 10 795.54
16 9956 17.44 13.37 13 576.57
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A.11 INFERENCE LATENCY

Table 8 shows inference latency measurements of a RedMotion model on the Waymo Open Motion
dataset with and without activation steering with our control vectors. Our activation steering adds
only about 1ms to the total inference latency. Since most datasets are recorded at 10Hz (e.g., Wilson
et al. (2023); Ettinger et al. (2021)), it is common to define the threshold for real-time capability of
self-driving stacks as ≤100ms . Considering the inference latency of recent 3D perception models
(e.g., approx. 40ms for Wang et al. (2023a)), which must be called before motion forecasting,
activation steering should not add significantly to the forecasting latency.

Table 8: Inference latency without and with activation steering with our control vectors. We
measure the inference latency on one A6000 GPU using the PyTorch Lightning profiler and plain
eager execution. We report the mean of 1000 iterations per configuration for the predict_step,
including pre- and post-processing.

Activation steering Focal agents Inference latency

False 8 50.21 ms
True 8 51.08 ms

A.12 CONTROL VECTORS ACROSS MODULES IN SPARSE AUTOENCODERS

Table 9: Generating control vectors for hidden states of different modules. Control vectors for
speed generated in earlier modules achieve lower linearity scores for activation steering. Linearity
measures for controlling: Pearson correlation coefficient, coefficient of determination (R2), and
straightness index.

Autoencoder Module m Pearson R2 S-idx

SAE-128 2 0.993 0.984 0.988
SAE-128 1 0.992 0.980 0.987
SAE-128 0 0.959 0.654 0.933

A.13 SENSITIVITY ANALYSIS FOR VARIOUS SPEED THRESHOLDS

Table 10: Generating speed control vectors with different thresholds for low and high speed.
Decreasing the threshold for high speed marginally improves linearity scores, while increasing the
threshold for low speed significantly worsens the linearity scores.

Autoencoder Low speed High speed Pearson R2 S-idx

SAE-128 < 25kmh−1 > 50kmh−1 0.993 0.984 0.988

SAE-128 < 25kmh−1 25 to 50kmh−1 0.994 0.987 0.989

SAE-128 25 to 50kmh−1 > 50kmh−1 0.355 −0.734 0.533

A.14 CHOOSING A RANGE OF RELATIVE CHANGES IN FUTURE SPEED

Given the large range of scenarios in the Waymo dataset, we focus on relative speed changes
within a range of ±50% to capture the most relevant speed variations (see Figure 3 in Ettinger et al.
(2021)). Considering the approximated mean and standard deviation for each agent type (vehicles:
µ ≈ 12m s−1, σ ≈ 5m s−1, pedestrians: µ ≈ 1.5m s−1, σ ≈ 0.7m s−1, and cyclists: µ ≈ 7m s−1,
σ ≈ 3m s−1) the ±50% range corresponds to speeds within approximately ±1σ of the mean for
each agent type.
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A.15 EVALUATING A KOOPMAN AUTOENCODER

A consistent Koopman autoencoder (KoopmanAE) (Azencot et al., 2020) is a bidirectional method
that models temporal dynamics between embeddings. The learned latent space approximates a
Koopman-invariant space where dynamics evolve linearly. Adapted to the SAE configurations,
we train an encoder and a decoder with one layer each and a latent dimension of 128. We use
learned linear projections to decode Koopman operator approximations C,D ∈ R128×128 from
intermediate representations. For the first 10 time steps, we encode the embedding and predict the
next embedding using C, while for the last 10 time steps, we encode the embedding and predict the
previous embedding using D.

Afterwards, we use the KoopmanAE instead of an SAE to fit control vectors (see Section 3.3).
Figure 16 shows the calibration curve for the resulting speed control vector. The range of τ values is
approximately 100× smaller than for the SAE-based control vector shown in Figure 7b.
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Figure 16: Calibration curve for a speed control vector optimized using the KoopmanAE. The
range of τ values is significantly lower than for plain PCA and SAE-based control vectors (cf.
Figure 7), yielding lower R2 scores as shown in Table 3.

A.16 PLAIN PCA-BASED SPEED CONTROL VECTOR FOR THE AV2F DATASET

Figure 17 shows the calibration curve for a plain PCA-based speed control vector for a RedMotion
model trained on the AV2F dataset (cf. Section 5.4). To suppress the effects of different trajectory
lengths, we trained this model on a configuration of the AV2F dataset with the same trajectory lengths
as in the Waymo dataset. In contrast to the control vectors for the Waymo dataset, this control vector
cannot reduce the speed by more than 3%. Therefore, we center the range of τ values instead of the
range of relative speed changes to compare this control vector with those for the Waymo dataset.
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Figure 17: Calibration curve for a plain PCA-based speed control vector for the AV2F dataset.
In contrast to the control vectors for the Waymo dataset, this control vector cannot reduce the speed
by more than 3%.

Moreover, we used the low and moderate speed classes to fit this control vector, as the low and high
speed classes did not yield good results. We hypothesize that this is due to the different distributions
of the datasets shown in Figure 8.
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A.17 JUMPRELU COMPENSATES ACTIVATION SHRINKAGE IN CONVSAES
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(a) ConvSAE k = 64

−80 −60 −40 −20 0 20 40 60
−50

−25

0

25

50

τ

re
la

tiv
e

sp
ee

d
ch

an
ge

in
%

Calibration curve
Linear reference

(b) ConvSAE k = 64 JumpReLU

Figure 18: JumpReLU compensates activation shrinkage as reflected in a smaller range of τ values
for the same range of relative speed changes.

The range of temperatures is much higher for the ConvSAE than for the JumpReLU version of this
sparse autoencoder (ConvSAE k = 64 JumpReLU). We hypothesize that this is due to activation
shrinkage (Rajamanoharan et al., 2024b). Therefore, the JumpReLU configuration of this SAE-type
leads to a significantly smaller τ range, which in turn leads to higher R2 scores (see Table 3).

A.18 MOTION FORECASTING METRICS

Following Wilson et al. (2023); Ettinger et al. (2021), we use the average displacement error (mi-
nADE), the final displacement error (minFDE), and their respective Brier variants, which account
for the predicted confidences. Furthermore, we compute the miss rate, and overlap rate to evaluate
motion forecasts. All metrics are computed using the minimum mode. Accordingly, the metrics for
the trajectory closest to the ground truth are measured.

A.19 NEURAL COLLAPSE

Neural collapse metrics capture structural patterns in feature representations, focusing on clustering,
geometry, and alignment. Class-distance normalized variance (CDNV), also referred to as “NC1”,
quantifies the degree to which features form class-wise clusters by measuring the variance within
feature clusters of each class c relative to the distances between class means. CDNV provides a
robust alternative to methods that compare between- and within-cluster variation for assessing feature
separability (Galanti et al., 2022).

NC1CDNV
c,c′ =

σ2
c + σ2

c′

2∥µc − µ′
c∥22

, ∀c ̸= c′
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