
Under review as a conference paper at ICLR 2024

WHAT AND HOW DOES IN-CONTEXT LEARNING
LEARN? BAYESIAN MODEL AVERAGING, PARAME-
TERIZATION, AND GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we conduct a comprehensive study of In-Context Learning (ICL)
by addressing several open questions: (a) What type of ICL estimator is learned
by large language models? (b) What is a proper performance metric for ICL and
what is the error rate? (c) How does the transformer architecture enable ICL?
To answer these questions, we adopt a Bayesian view and formulate ICL as a
problem of predicting the response corresponding to the current covariate, given a
number of examples drawn from a latent variable model. To answer (a), we show
that, without updating the neural network parameters, ICL implicitly implements
the Bayesian model averaging algorithm, which is proven to be approximately
parameterized by the attention mechanism. For (b), we analyze the ICL perfor-
mance from an online learning perspective and establish a O(1/T) regret bound
for perfectly pretrained ICL, where T is the number of examples in the prompt. To
answer (c), we show that, in addition to encoding Bayesian model averaging via
attention, the transformer architecture also enables a fine-grained statistical analy-
sis of pretraining under realistic assumptions. In particular, we prove that the error
of pretrained model is bounded by a sum of an approximation error and a gener-
alization error, where the former decays to zero exponentially as the depth grows,
and the latter decays to zero sublinearly with the number of tokens in the pretrain-
ing dataset. Our results provide a unified understanding of the transformer and its
ICL ability with bounds on ICL regret, approximation, and generalization, which
deepens our knowledge of these essential aspects of modern language models.

1 INTRODUCTION

With the ever-increasing sizes of model capacity and corpus, Large Language Models (LLM) have
achieved tremendous successes across a wide range of tasks, including natural language understand-
ing (Dong et al., 2019; Jiao et al., 2019), symbolic reasoning (Wei et al., 2022c; Kojima et al.,
2022), and conversations (Brown et al., 2020; Ouyang et al., 2022). Recent studies have revealed
that these LLMs possess immense potential, as their large capacity allows for a series of emergent
abilities (Wei et al., 2022b; Liu et al., 2023). One such ability is In-Context Learning (ICL), which
enables an LLM to learn from just a few examples, without changing the network parameters. That
is, after seeing a few examples in the prompt, a pretrained language model seems to comprehend the
underlying concept and is able to extrapolate the understanding to new data points.

Despite the tremendous empirical successes, theoretical understanding of ICL remains limited.
Specifically, existing works fail to explain why LLMs the ability for ICL, how the attention mech-
anism is related to the ICL ability, and how pretraining influences ICL. Although the optimality of
ICL is investigated in Xie et al. (2021) and Wies et al. (2023), these works both make unrealistic
assumptions on the pretrained models, and their results cannot demystify the particular role played
by the attention mechanism in ICL.

In this work, we focus on the scenario where a transformer is first pretrained on a large dataset and
then prompted to perform ICL. Our goal is to rigorously understand why the practice of “pretraining
+ prompting” unleashes the power of ICL. To this end, we aim to answer the following three
questions: (a) What type of ICL estimator is learned by LLMs? (b) What are suitable performance

1

Under review as a conference paper at ICLR 2024

metrics to evaluate ICL accurately and what are the error rates? (c) What is the role played by
the transformer architecture during the pretraining and prompting stages? The first and the third
questions demand scrutinizing the transformer architecture to understand how ICL happens during
transformer prompting. The second question then requires statistically analyzing the extracted ICL
process. Moreover, the third question necessitates a holistic understanding beyond prompting — we
also need to characterize the statistical error of pretraining and how this error affects prompting.

To address these questions, we adopt a Bayesian view and assume that the examples fed into a pre-
trained LLM are sampled from a latent variable model parameterized by a hidden concept z∗ ∈ Z.
Moreover, the pretrained dataset contains sequences of examples from the same latent variable
model, but with the concept parameter z ∈ Z itself randomly distributed according to a prior distri-
bution. We mathematically formulate ICL as the problem of predicting the response of the response
corresponding to the current covariate, where the prompt contains t examples of covariate-response
pairs and the current covariate.

Under such a setting, to answer (a), we show that the perfectly pretrained LLMs perform ICL in the
form of Bayesian Model Averaging (BMA). That is, LLM first computes a posterior distribution
of z∗ ∈ Z given the first t examples, and then predicts the response of the (t + 1)-th covariate by
aggregating over the posterior (Proposition 4.1).

In addition, to answer (b), we adopt the online learning framework and define a notion called ICL
regret, which is the averaged prediction error of ICL on a sequence of covariate-response examples.
We prove that the ICL regret after prompting t examples is O(1/t) up to the statistical error of the
pretrained model (Theorem 6.2).

Finally, to answer (c), we elucidate the role played by the transformer architecture in prompting and
pretraining respectively. In particular, we show that a variant of attention mechanism encodes BMA
in its architecture, which enables the transformer to perform ICL via prompting. Such an attention
mechanism can be viewed as an extension of linear attention and coincides with the standard softmax
attention (Garnelo and Czarnecki, 2023) when the length of the prompt goes to infinity. And thus we
show that softmax attention Vaswani et al. (2017) approximately encodes BMA (Proposition 4.3).
Besides, the transformer architecture enables a fine-grained analysis of the statistical error incurred
by pretraining. In particular, applying the PAC-Bayes framework, we prove that the error of the
pretrained language model, measured via total variation, is bounded by a sum of approximation
error and generalization error (Theorem 5.3). The approximation error decays to zero exponentially
fast as the depth of the transformer increases (Proposition 5.4), while the generalization error decays
to zero sublinearly with the number of tokens in the pretraining dataset. This features the first
pretraining analysis of transformers in total variation distance, which also takes the approximation
error into account. Furthermore, as an interesting extension, we also study the misspecified case
where the response variables of the examples fed into the LLM are perturbed. We provide sufficient
conditions for ICL to be robust to the perturbations and establish the finite-sample statistical error
(Proposition H.4).

In sum, by addressing questions (a)–(c), we provide a unified understanding of the ICL ability of
LLMs and the particular role played by the attention mechanism. Our theory provides a holistic
theoretical understanding of the regret, approximation, and generalization errors of ICL.

2 RELATED WORK

In-Context Learning. After Brown et al. (2020) showcased the in-context learning (ICL) capacity
of GPT-3, there has been a notable surge in interest towards enhancing and comprehending this par-
ticular ability (Dong et al., 2022). The ICL ability has seen enhancements through the incorporation
of extra training stages (Min et al., 2021; Wei et al., 2021; Iyer et al., 2022), carefully selecting and
arranging informative demonstrations (Liu et al., 2021; Kim et al., 2022; Rubin et al., 2021; Lu et al.,
2021), giving explicit instructions (Honovich et al., 2022; Zhou et al., 2022b; Wang et al., 2022),
and prompting a chain of thoughts (Wei et al., 2022c; Zhang et al., 2022b; Zhou et al., 2022a). In
efforts to comprehend the mechanisms of ICL ability, researchers have also conducted extensive
work. Empirically, Chan et al. (2022) demonstrated that the distributional properties, including the
long-tailedness, are important for ICL. Garg et al. (2022) investigated the function class that ICL
can approximate. Min et al. (2022) showed that providing wrong mappings between the input-output

2

Under review as a conference paper at ICLR 2024

pairs in examples does not degrade the ICL. Theoretically, Akyürek et al. (2022), von Oswald et al.
(2022), Bai et al. (2023), and Dai et al. (2022) indicated that ICL implicitly implements the gradient
descent or least-square algorithms from the function approximation perspective. However, the first
three works only showed that transformers are able to approximate these two algorithms, which may
not align with the pretrained model. The last work ignored the softmax module, which turns out to
be important in practical implementation. Feng et al. (2023) derived the impossibility results of
ICL and the advantage of chain-of-thought for the function approximation. Li et al. (2023) viewed
ICL from the multi-task learning perspective and derived the generalization bound. Hahn and Goyal
(2023) built the linguistic model for sentences and used the description length to bound the ICL
error with this model. Xie et al. (2021) analyzed ICL within the Bayesian framework, assuming the
access to the nominal language distribution and that the tokens are generated from Hiddn Markov
Model (HMM)s. However, the first assumption hides the relationship between pretraining and ICL,
and the second assumption is restrictive. Following this thread, Wies et al. (2023) relaxed the HMM
assumption and assumed access to a pretrained model that is close to the nominal distribution con-
ditioned on any token sequence, which is also unrealistic. Two recent works Wang et al. (2023), and
Jiang (2023) also provide the Bayesian analysis of ICL. Unfortunately, these Bayesian works cannot
explain the importance of the attention mechanism for ICL and clarify how pretraining is related to
ICL. In contrast, we prove that the attention mechanism enables BMA by encoding it in the network
architecture and we relate the pretraining error of transformers to the ICL regret.

3 PRELIMINARY

Notation. We denote {1, · · · , N} as [N]. For a Polish space S, we denote the collection of all
the probability measures on it as ∆(S). The total variation distance between two distributions
P,Q ∈ ∆(S) is TV(P,Q) = supA⊆S |P (A) −Q(A)|. The ith entry of a vector x is denoted as xi

or [x]i. For a matrix X ∈ RT×d, we index its ith row and column as Xi,: and X:,i respectively. The
ℓp,q norm of X is defined as ∥X∥p,q = (

∑d
i=1 ∥X:,i∥qp)1/q , and the Frobenius norm of it is defined

as ∥X∥F = ∥X∥2,2.
Attention and Transformers. Attention mechanism has been the most powerful and popular neural
network module in both Computer Vision (CV) and Natural Language Processing (NLP) communi-
ties, and it is the backbone of the LLMs (Devlin et al., 2018; Brown et al., 2020). Assume that we
have a query vector q ∈ Rdk . With T key vectors in K ∈ RT×dk and T value vectors in V ∈ RT×dv ,
the attention mechanism maps the query vector q to attn(q,K, V) = V ⊤softmax(Kq), where
softmax normalizes a vector via the exponential function, i.e., for x ∈ Rd, [softmax(x)]i =

exp(xi)/
∑d

j=1 exp(xj) for i ∈ [d]. The output is a weighted sum of V , and the weights re-
flect the closeness between W and q. For t query vectors, we stack them into Q ∈ Rt×dk . At-
tention maps these queries using the function attn(Q,K, V) = softmax(QK⊤)V ∈ Rt×dv ,
where softmax is applied row-wisely. In the practical design of transformers, practitioners usu-
ally use Multi-Head Attention (MHA) instead of single attention to express sophisticated functions,
which forwards the inputs through h attention modules in parallel and outputs the sum of these
sub-modules. Here h ∈ N is a hyperparameter. Taking X ∈ RT×d as the input, MHA outputs
mha(X,W) =

∑h
i=1 attn(XWQ

i , XWK
i , XWV

i), where W = (WQ
i ,WK

i ,WV
i)hi=1 is the pa-

rameters set of h attention modules, WQ
i ∈ Rd×dh , WK

i ∈ Rd×dh , and WV
i ∈ Rd×d for i ∈ [h] are

weight matrices for queries, keys, and values, and dh is usually set to be d/h (Michel et al., 2019).
The transformer is the concatenation of the attention modules and the fully-connected layers, which
is widely adopted in LLMs (Devlin et al., 2018; Brown et al., 2020).
Large Language Models and In-Context Learning. Many LLMs are autoregressive, such as GPT
(Brown et al., 2020). It means that the model continuously predicts future tokens based on its own
previous values. For example, starting from a token x1 ∈ X, where X is the alphabet of tokens, a
LLM Pθ with parameter θ ∈ Θ continuously predicts the next token according to xt+1 ∼ Pθ(· |St)
based on the past St = (x1, · · · , xt) for t ∈ N. Here, each token represents a word and the position
of the word (Ke et al., 2020), and the token sequences St for t ∈ N live in the sequences space
X∗. LLMs are first pretrained on a huge body of corpus, making the prediction xt+1 ∼ Pθ(· |St)
accurate, and then prompted to perform downstream tasks. During the pretraining phase, we aim to
maximize the conditional probability Pθ(x |S) over the nominal next token x (Brown et al., 2020).

After pretraining, LLMs are prompted to perform downstream tasks without tuning parameters. Dif-
ferent from the finetuned models that learn the task explicitly (Liu et al., 2023), LLMs can implicitly

3

Under review as a conference paper at ICLR 2024

learn from the examples in the prompt, which is known as ICL (Brown et al., 2020). Concretely,
pretrained LLMs are provided with a prompt promptt = (c̃1, r1, . . . , c̃t, rt, c̃t+1) with t examples
and a query as inputs, where each pair (c̃i, ri) ∈ X∗ × X is an example of the task, and c̃t+1 is
the query, as shown in Figure 8 in Appendix E. For example, the promptt with t = 2 can be
“Cats are animals, pineapples are plants, mushrooms are”. Here c̃1 ∈ X∗ is a token sequence “Cats
are”, while r1 is the response “animals”. The query c̃t+1 is “mushrooms are”, and the desired
response is “fungi”. The prompts are generated from a hidden concept z∗ ∈ Z, e.g., z∗ can be
the classification of biological categories, where Z is the concept space. The generation process
is c̃i ∼ P(· | c̃1, r1, · · · , c̃i−1, ri−1, z∗) and ri ∼ P(· | prompti−1, z∗) for the nominal distribution
P and i ∈ [t]. Thus, when performing ICL, LLMs aim to estimate the conditional distribution
P(rt+1|promptt, z∗). It is widely conjectured and experimentally found that the pretrained LLMs
can implicitly identify the hidden concept z∗ ∈ Z from the examples, and then perform ICL by
outputting from P(rt+1|promptt, z∗). In the following, we will provide theoretical justifications for
this claim. We note that delimiters are omitted in our work, and our results can be generalized to
handle this case. Since LLMs are autoregressive, the definition of the notation P(· |S) with S ∈ X∗

may be ambiguous because the length of the subsequent tokens is not specified. Unless explicitly
specified, we let P(· |S) denote the distribution of the next single token conditioned on S.

4 IN-CONTEXT LEARNING VIA BAYESIAN MODEL AVERAGING

In this section, we show that LLMs perform ICL implicitly via BMA. Given a sequence S =
{(c̃t, rt)}Tt=1 with T examples generated from a hidden concept z∗ ∈ Z, we use St = {(c̃i, ri)}ti=1
to represent the first t ICL examples in the sequence. Here c̃t and rt respectively denote the ICL
covariate and response. During the ICL phase, a LLM is sequentially prompted with promptt =
(St, c̃t+1) for t ∈ [T − 1], i.e., the first t examples and the (t + 1)-th covariate. The prompted
LLM aims to predict the response rt+1 based on promptt = (St, c̃t+1) whose true distribution is
rt+1 ∼ P(· | promptt, z∗). For the analysis of ICL, we focus on the following latent variable model

rt = f(c̃t, ht, ξt), ∀t ∈ [T], (4.1)
where the hidden variable ht ∈ H determines the relation between ct and rt, ξt ∈ Ξ for t ∈ [T]
are i.i.d. random noises, and f : X × H × Ξ → X is a function that relates response rt to c̃t, ht,
and ξt. In the data generation process, a hidden concept z∗ ∈ Z is first generated from P(z).
The hidden variables {ht}Tt=1 are then a stochastic process whose distribution is determined by the
hidden concept z∗, that is

P(ht = · | c̃t, {rℓ, hℓ, c̃ℓ}ℓ<t) = gz∗(h1, . . . , ht−1, ζt)

for some function gz∗ parameterized by z∗, where {ζt}Tt=1 are exogenous noises. The response rt
is then generated according to (4.1). The model in (4.1) essentially assumes that the hidden concept
z∗ implicitly determines the transition of the conditional distribution P(rt = · | c̃t) by affecting the
evolution of the latent variables {ht}t∈[T], and it does not impose any assumption on the distribution
of c̃t. This model is quite general, and it subsumes the models in previous works. When f is the
emission function in HMM and ht = h for t ∈ [T] is the values of hidden states that depend on
z, model in (4.1) recovers the HMM assumption in Xie et al. (2021). When ht = z for t ∈ [T]
degenerate to the hidden concept, this recovers the casual graph model in Wang et al. (2023) and the
ICL model in Jiang (2023).

Assuming that the tokens follow the statistical model given in (4.1), during pretraining, we col-
lect Np independent trajectories by sampling from (4.1) with concept z randomly sampled from
P(z). Intuitively, during pretraining, by training in an autoregressive manner, the LLM approxi-
mates the conditional distribution P(rt+1 | promptt) = Ez∼P(z)[P(rt+1 | promptt, z)], which is the
conditional distribution of rt+1 given promptt, aggregated over the randomness of the concept z∗.

Under the model in (4.1), we will show that pretrained LLMs are able to perform ICL because they
secretly implement BMA (Wasserman, 2000) during prompting. For ease of presentation, we first
consider the setting where the LLM is perfectly pretrained, i.e., the conditional distribution induced
by the LLM is given by P(rt+1 | promptt). We relax this condition by analyzing the pretraining
error in Section 5.
Proposition 4.1 (LLMs Perform BMA). Under the model in (4.1), it holds that

P(rt+1 = · | promptt) =
∫

P(rt+1 = · | c̃t+1, St, z)P(z |St)dz. (4.2)

4

Under review as a conference paper at ICLR 2024

We note that the left-hand side of (4.2) is the prediction of the pretrained LLM given a prompt
promptt. Meanwhile, the right-hand side is exactly the prediction given by the BMA algorithm
that infers the posterior belief of the concept z∗ based on St and predicts rt+1 by aggregating the
likelihood in (4.1) with respect to the posterior P(z∗ = · |St). Thus, this proposition shows that per-
fectly pretrained LLMs are able to perform ICL because they implement BMA during prompting.
As mentioned, Proposition 4.1 is proved under a more general model than the previous works and
thus serves as a generalized result of some claims in the previous works. We note that the claim of
Proposition 4.1 is independent of the network structure. This partially explains why LSTMs demon-
strate ICL ability in Xie et al. (2021). In the next section, we will demonstrate how the attention
mechanism helps to implement BMA. The proof of Proposition 4.1 is in Appendix F.2.

Next, we study the performance of ICL from an online learning perspective. Recall that LLMs are
continuously prompted with St and aim to predict the (t + 1)-th covariate rt+1 for t ∈ [T − 1].
This can be viewed as an online learning problem. For any algorithm that generates a sequence of
density estimators {P̂(rt)}Tt=1 for predicting {rt}t∈[T], we consider the following ICL regret as its
performance metric:

regrett = t−1 sup
z

t∑
i=1

logP(ri | prompti−1, z)− t−1
t∑

i=1

log P̂(ri). (4.3)

This ICL regret measures the performance of the estimator P̂ compared with the best hidden concept
in hindsight. For the perfectly trained LLMs, the estimator is exactly P̂(rt) = P(rt+1 | promptt).
By building the equivalence of pretrained LLM and BMA, we have the following corollary, which
shows that predicting {rt}t∈[T] by iteratively prompting the LLM incurs a O(1/T) regret.

Corollary 4.2 (ICL Regret of Perfectly Pretrained Model). Under the model in (4.1), we have for
any t ∈ [T] that

t−1
t∑

i=1

logP(ri | prompti−1) ≥ sup
z∈Z

(
t−1

t∑
i=1

logP(ri | prompti−1, z) + t−1 logPZ(z)
)
.

Here PZ is the prior of the hidden concept z ∈ Z . When the hidden concept space Z is finite
and the prior PZ(z) is the uniform distribution on Z, we have that regrett ≤ log |Z|/t. When the
nominal concept z∗ satisfies that supz

∑t
i=1 P(ri | z, prompti−1) =

∑t
i=1 P(ri | z∗, prompti−1)

for any t ∈ [T], the regret is bounded as regrett ≤ log(1/PZ(z∗))/t.

This theorem states that the ICL regret of the perfectly pretrained model is bounded by
log(1/PZ(z∗))/t. This is intuitive since the regret is relatively large if the concept z∗ rarely ap-
pears according to the prior distribution. This corollary shows that, when given sufficiently many
examples, predicting {rt}t∈[T] via ICL is almost as good as the oracle method which knows true
concept z∗ and the likelihood function P(ri | prompti−1, z∗). The practical relevance of this result
is discussed in Appendix C. The proof of Corollary 4.2 is in Appendix F.3. In Section 5, we charac-
terize the deviation between the learned model and the underlying true model. Next, we show how
transformers parameterize BMA.

4.1 ATTENTION PARAMETERIZES BAYESIAN MODEL AVERAGING

In the following, we explore the role played by the attention mechanism in ICL. To simplify the
presentation, we consider the case where the covariate c̃t ∈ X∗ is a single token ct ∈ X in this
subsection. During the ICL phase, pretrained LLMs are prompted with promptt = (St, ct+1)
and tasked with predicting the (t + 1)-th response rt+1. The transformers first separately map the
covariates c̃i and responses ri for i ∈ [t] to the corresponding feature spaces, which are usually
realized by the fully connected layers. We denote these two learnable mappings as k : Rd → Rdk

and v : Rd → Rdv . Their nominal values are denoted as k∗ and v∗, respectively. The pretraining
of the transformer essentially learns the nominal mappings v∗ and k∗ with sufficiently many data
points. After these transformations, the attention module will take vi = v∗(ri) and ki = k∗(ci) for
i ∈ [t] as the value and key vectors to predict the result for the query qt+1 = kt+1 = k∗(ct+1). To
elucidate the role played by attention, we consider a Gaussian linear simplification of (4.1)

vt = z∗ϕ(kt) + ξt, ∀t ∈ [T], (4.4)

5

Under review as a conference paper at ICLR 2024

where ϕ : Rdk → Rdϕ refers to the feature mapping in some Reproducing Kernel Hilbert Space
(RKHS), z∗ ∈ Rdv×dϕ corresponds to the hidden concept, and ξt ∼ N(0, σ2I), t ∈ [T] are i.i.d.
Gaussian noises with covariance σ2I . Besides, we assume the prior of z∗ is P(z) is a Gaussian
distribution N(0, λI). Note that (4.4) can be written as

rt = v−1
∗

(
z∗ϕ

(
k∗(ct)

)
+ ξt

)
, (4.5)

which is a realization of (4.1) with ht = z, ξt = ϵt, and f(c, h, ξ) = v−1
∗ (hϕ(k∗(c)) + ξ). In other

words, (4.4), or equivalently (4.5), specifies a specialization of (4.1) where in the feature space, the
hidden concept z∗ represents a transformation between the value v and the key k. Here, we simply
take this as the transformation by a matrix, which can be easily generalized by building a bijection
between concepts z and complex transformations. In the following, to simplify the notation, let
K : Rdk × Rdk → R. denote the kernel function of the RKHS induced by ϕ. The stacks of the
values and keys are denoted as Kt = (k1, . . . , kt)

⊤ ∈ Rt×dk and Vt = (v1, . . . , vt)
⊤ ∈ Rt×dv ,

respectively. Consequently, the model in (4.4) implies that

P(vt+1 | promptt)=
∫

P(vt+1 | z, qt+1)P(z |St)dz ∝ exp
(
−
∥∥vt+1 − z̄tϕ(qt+1)

∥∥2
Σ−1

t

/
2
)
, (4.6)

where we denote by Σt the covariance of vt+1 ∼ P(· |St, qt+1), and the mean concept z̄t is

z̄t = Vt

(
ϕ(Kt)ϕ(Kt)

⊤ + λI
)−1

ϕ(Kt) = Vt

(
K(Kt,Kt) + λI

)−1
ϕ(Kt). (4.7)

Combining (4.6) and (4.7), we can see that z̄tϕ(qt+1) essentially measures the similarity between
the query and keys, which is quite similar to the attention mechanism defined in Section 3. However,
here the similarity is normalization according to (4.7), not by softmax. This motivates us to define a
new structure of attention and explore the relationship between the newly defined attention and the
original one. For any q ∈ Rdk , K ∈ Rt×dk , and V ∈ Rt×dv , we define a variant of the attention
mechanism as follows,

attn†(q,K, V) = V ⊤(K(K,K) + λI
)−1

K(K, q). (4.8)

From (4.6), (4.7), and (4.8), it holds that the response vt+1 for (t + 1)-th query is distributed as
vt+1 ∼ N(attn†(qt+1,Kt, Vt),Σt). We note that attn† bakes the BMA algorithm for the Gaus-
sian linear model in its architecture, by first estimating z̄t via (4.7) and deriving the final estimate
from the inner product between z̄t and qt+1. Here attn†(·) is an instance of the intention mechanism
studied in Garnelo and Czarnecki (2023) and can be viewed as a generalization of linear attention.
Recall that we define the softmax attention (Vaswani et al., 2017) for any q ∈ Rdk , K ∈ Rt×dk , and
V ∈ Rt×dv as attn(q,K, V) = V ⊤softmax(Kq). In the following proposition, we show that the
attention in (4.8) coincides with the softmax attention as the sequence length goes to infinity.
Proposition 4.3. We assume that the key-value pairs {(kt, vt)}Tt=1 are independent and identi-
cally distributed, and we adopt Gaussian RBF kernel KRBF. In addition, we assume that ∥kt∥2 =
∥vt∥ = 1. Then, it holds for an absolute constant C > 0 and any q ∈ Rdk with ∥q∥ = 1 that
limT→∞ attn†(q,KT , VT) = C · limT→∞ attn(q,KT , VT).

The proof is in Appendix F.4. Combined with the conditional probability of vt+1 in (4.6),
this proposition shows that softmax attention approximately encodes BMA in long token se-
quences (Wasserman, 2000), and thus is able to perform ICL when prompted after pretraining.

5 THEORETICAL ANALYSIS OF PRETRAINING

5.1 PRETRAINING ALGORITHM

In this section, we describe the pretraining setting. We largely follow the transformer structures in
Brown et al. (2020). The whole network is a composition of D sub-modules, and each sub-module
consists of a MHA and a Feed-Forward (FF) fully connected layer. Here, D > 0 is the depth of the
network. The whole network takes X(0) = X ∈ RL×d as its input. In the t-th layer for t ∈ [D], it
first takes the output X(t−1) of the (t − 1)-th layer as the input and forwards it through MHA with
a residual link and a layer normalization Πnorm(·) to output Y (t), which projects each row of the
input into the unit ℓ2-ball. Here we take dh = d in MHA, and the generalization of our result to

6

Under review as a conference paper at ICLR 2024

general cases is trivial. Then the intermediate output Y (t) is forwarded to the FF module. It maps
each row of the input Y (t) ∈ RL×d through the same single-hidden layer neural network with dF
neurons, that is ffn(Y (t), A(t)) = ReLU(Y (t)A

(t)
1)A

(t)
2 , where A

(t)
1 ∈ Rd×dF , and A

(t)
2 ∈ RdF×d

are the weight matrices. Combined with a residual link and layer normalization, it outputs the output
of layer t as X(t), that is

Y (t)=Πnorm

[
mha(X(t−1),W (t)) +γ

(t)
1 X(t−1)

]
, X(t)=Πnorm

[
ffn(Y (t),A(t)) +γ

(t)
2 Y (t)

]
. (5.1)

Here we allocate weights γ
(t)
1 and γ

(t)
2 to residual links only for the convenience of theoretical

analysis. In the last layer, the network outputs the probability of the next token via a softmax module,
that is Y (D+1) = softmax(I⊤LX(D)A(D+1)/(Lτ)) ∈ Rdy , where IL ∈ RL is the vector with all
ones, A(D+1) ∈ Rd×dy is the weight matrix, τ ∈ (0, 1] is the fixed temperature parameter, and dy is
the output dimension. The parameters of each layer are denoted as θ(t) = (γ

(t)
1 , γ

(t)
2 ,W (t), A(t)) for

t ∈ [D] and θ(D+1) = A(D+1), and the parameter of the whole network is the concatenation of these
parameters, i.e., θ = (θ(1), · · · , θ(D+1)). We consider the transformers with bounded parameters.
The set of parameters is

Θ =
{
θ |

∥∥A(D+1),⊤∥∥
1,2

≤ BA,max
{∣∣γ(t)

1

∣∣, ∣∣γ(t)
2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥WV,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. Here we only consider the
non-trivial case where these bounds are larger than 1, otherwise, the magnitude of the output in Dth

layer decreases exponentially with growing depth. The probability induced by the transformer with
parameter θ is denoted as Pθ.

The pretraining dataset consists of Np independent trajectories. For the n-th trajectory with
n ∈ [Np], a hidden concept zn ∼ PZ(z) ∈ ∆(Z) is first sampled, which is the hidden vari-
ables of the token sequence to generate, e.g., the theme, the sentiment, and the style. Then the
tokens are sequentially sampled from the Markov chain induced by zn as xn

t+1 ∼ P(· |Sn
t , z

n) and
Sn
t+1 = (Sn

t , x
n
t+1), where xn

t+1 ∈ X, and Sn
t , S

n
t+1 ∈ X∗. Here the Markov chain is defined with

respect to the state Sn
t , which obviously satisfies the Markov property since Sn

i for i ∈ [t − 1] are
contained in Sn

t . The pretraining dataset is DNp,Tp
= {(Sn

t , x
n
t+1)}

Np,Tp

n,t=1 where the concepts zn is
hidden from the context and thus unobserved. Here each token sequence is divided into Tp pieces
{(Sn

t , x
n
t+1)}

Tp

t=1. We highlight that this pretraining dataset collecting process subsumes those for
GPT, and Masked AutoEncoders (MAE) (Radford et al., 2021). For GPT, each trajectory corre-
sponds to a paragraph or an article in the pretraining dataset, and zn ∼ PZ(z) is realized by the
selection process of these contexts from the Internet. For MAE, we take Tp = 1, and Sn

1 and xn
2

respectively correspond to the image and the masked token.

To pretrain the transformer, we adopt the cross-entropy as the loss function, which is widely used in
the training of BERT and GPT. The corresponding pretraining algorithm is

θ̂ = argmin
θ∈Θ

− 1

NpTp

Np∑
n=1

Tp∑
t=1

logPθ(x
n
t+1 |Sn

t). (5.2)

We first analyze the population version of (5.2). In the training set, the conditional distribution
of xn

t+1 conditioned on Sn
t is P(xn

t+1 |Sn
t) =

∫
Z
P(xn

t+1 |Sn
t , z)PZ(z |Sn

t)dz, where the unob-
served hidden concept is weighed via its posterior distribution. Thus, the population risk of (5.2)
is Et[ESt

[KL(P(· |St)∥Pθ(· |St)) + H(P(· |St))]], where t ∼ Unif([Tp]), H(p) = −⟨p, log p⟩ is
the entropy, and St is distributed as the pertaining distribution. Thus, we expect that Pθ will con-
verge to P. For MAE, the network training adopts ℓ2-loss, and we defer the analysis of this case to
Appendix G.4.

5.2 PERFORMANCE GUARANTEE FOR PRETRAINING

We first state the assumptions for the pretraining setting.
Assumption 5.1. There exists a constant R > 0 such that for any z ∈ Z and St ∼ P(· | z), we have
∥S⊤

t ∥2,∞ ≤ R almost surely.

7

Under review as a conference paper at ICLR 2024

This assumption states that the ℓ2-norm of the magnitude of each token in the token sequence is
upper bounded by R > 0. This assumption holds in most machine learning settings. For BERT
and GPT, each token consists of word embedding and positional embedding. For MAE, each token
consists of a patch of pixels. The ℓ2-norm of each token is bounded in these cases.

Assumption 5.2. There exists a constant c0 > 0 such that for any z ∈ Z, x ∈ X and S ∈ X∗, we
have P(x |S, z) ≥ c0.

This assumption states that the conditional probability of x conditioned on S and z is lower bounded.
This comes from the ambiguity of language, that is, a sentence can take lots of words as its next word.
Similar regularity assumptions are also widely adopted in ICL literature (Xie et al., 2021; Wies et al.,
2023). To state our result, we respectively use ES∼D and PD to denote the expectation and the
distribution of the average distribution of Sn

t in DNp,Tp , i.e., ES∼D[f(S)] =
∑Tp

t=1 ESt [f(St)]/Tp

for any function f : X∗ → R.

Theorem 5.3. Let B̄ = τ−1RhBABA,1BA,2BQBKBV and D̄ = D2d(dF + dh + d) + d · dy .
Under Assumptions 5.1 and 5.2, the pretrained model Pθ̂ by the algorithm in (5.2) satisfies

ES∼D

[
TV

(
P(· |S),Pθ̂(· |S)

)]
=O

(
inf

θ∗∈Θ

√
ES∼DKL

(
P(·|S)∥Pθ∗(·|S)

)
+
t
1/4
mix log 1/δ

(NpTp)1/4︸ ︷︷ ︸
approximation error

+

√
tmix√
NpTp

(
D̄ log(1+NpTpB̄)+log

1

δ︸ ︷︷ ︸
generalization error

))

with probability at least 1 − δ, where tmix is the mixing time of the Markov chains induced by P,
formally defined in Appendix G.1.

We define the right-hand side of the equation as ∆pre(Np, Tp, δ). The first and the second terms in
the bound are the approximation error. It measures the distance between the nominal distribution
P and the distributions induced by transformers with respect to KL divergence. If the nominal model
P can be represented by transformers exactly, i.e., the realizable case, these two terms will vanish.
The third term is the generalization error, and it does not increase with the growing sequence
length Tp. This is proved via the PAC-Bayes framework.

This pretraining analysis is missing in most existing theoretical works about ICL. Xie et al. (2021),
Wies et al. (2023), and Jiang (2023) all assume access to an arbitrarily precise pretraining model. Al-
though the generalization bound in Li et al. (2023) can be adapted to the pretraining analysis, the risk
definition therein can not capture the approximation error in our result. Furthermore, their analysis
cannot fit the maximum likelihood algorithm in (5.2). Concretely, their result can only show that the
convergence rate of KL divergence is O((NpTp)

−1/2) with a realizable function class. Combined
with Pinsker’s inequality, this gives the convergence rate for total variation as O((NpTp)

−1/4) even
in the realizable case.

The deep neural networks are shown to be universal approximators for many function classes (Cy-
benko, 1989; Hornik, 1991; Yarotsky, 2017). Thus, the approximation error in Theorem 5.3 should
vanish with the increasing size of the transformer. To achieve this, we slightly change the structure
of the transformer by admitting a bias term in feed-forward modules, taking A

(t)
2 ∈ RdF×dF , and

admitting dF to vary across layers. This mildly affects the generalization error by replacing D · dF
by the sum of dF of all the layers in Theorem 5.3. We derive the approximation error bound when
the dimension of each word is equal to one, i.e., X ⊆ R. Our method can carry over the case d > 1.

Proposition 5.4 (Informal). Under certain smoothness conditions, if dF ≥ 16dy , BA,1 ≥ 16Rdy ,
BA,2 ≥ dF BA ≥

√
dy , and BV ≥

√
d, then for some constant C > 0, we have

inf
θ∗∈Θ

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− C ·D1/4√

logBA,1

))
.

The formal statement and proof are deferred to Appendix G.3. This proposition states that the
approximation error decays exponentially with the increasing depth. Combined with this result,
Theorem 5.3 provides the full description of the pretraining performance.

8

Under review as a conference paper at ICLR 2024

6 ICL REGRET UNDER PRACTICAL SETTINGS

6.1 ICL REGRET WITH AN IMPERFECTLY PRETRAINED MODEL

xIn Section 4, we study the ICL regret with a perfect pretrained model. In what follows, we charac-
terize the ICL regret when the pretrained model has an error. Note that the distribution DICL of the
prompts of ICL tasks can be different from that of pretraining. We impose the following assumption
on their relation.
Assumption 6.1. We assume that there exists an absolute constant κ > 0 such that for any ICL
prompt, it holds that PDICL

(prompt) ≤ κ · PD(prompt).

This assumption states that the prompt distribution is covered by the pretraining distribution. Intu-
itively, the pretrained model cannot precisely inference on the datapoint that is outside the support of
the pretraining distribution. For example, if the pretraining data does not contain any mathematical
symbols and numbers, it is difficult for the pretrained model to calculate 2× 3 in ICL precisely. We
then have the following theorem characterizing the ICL regret of the pretrained model.
Theorem 6.2 (ICL Regret of Pretrained Model). We assume that the underlying hidden concept
z∗ maximizes

∑t
i=1 logP(ri | prompti−1, z) for any t ∈ [T] and there exists an absolute constant

β > 0 such that log(1/p0(z∗)) ≤ β. Under Assumptions 5.1, 5.2, and 6.1, we have with probability
at least 1− δ that

Eprompt∼DICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑

t=1

logPθ̂(rt | promptt−1)
]

≤ O
(
β/T + κ · b∗ ·∆pre(Np, Tp, δ)

)
.

Here we denote by ∆pre(Np, Tp, δ) the pretraining error in Theorem 5.3.

Theorem 6.2 shows that the expected ICL regret for the pretrained model is upper bounded by the
sum of two terms: (a) the ICL regret for the underlying true model and (b) the pretraining
error. These two terms are separately bounded in Sections 4 and 5.

6.2 PROMPTING WITH WRONG INPUT-OUTPUT MAPPINGS

In the real-world implementations of ICL, the provided input-output examples may not conform to
the nominal distribution induced by z∗, and the outputs in examples can be perturbed. We tem-
porarily take concept space Z as a finite space, and our results can be generalized with a cover-
ing number argument. We denote the prompt considered in Section 4 as promptt = (St, c̃t+1),
St = (c̃1, r1, · · · , c̃t, rt) ∈ X∗, and (c̃i+1, ri+1) ∼ P(· |Si, z∗) for i ∈ [t − 1]. Here, each input
c̃i ∈ Xl is a l-length token sequence, and each output ri ∈ X is a single token. The perturbed prompt
is then denoted as prompt′ = (S′

t, c̃t+1), where S′
t = (c̃1, r

′
1, · · · , c̃t, r′t) ∈ X∗, and r′i for i ∈ [t]

is the modified output. We denote the perturbed prompt distribution as P′. Then the performance of
ICL with wrong input-output mappings can be stated as follows.
Proposition 6.3 (Informal). Under certain assumptions, including the distinguishability assumption
(minz ̸=z∗ KLpair

(
P(· | z∗) ∥P(· | z)

)
> 2 log 1/c0), the pretrained model Pθ̂ in (5.2) predicts the

outputs with the prompt containing wrong mappings as

Eprompt′

[
KL

(
P(· | c̃t+1, z∗)∥Pθ̂(· |S

′
t, c̃t+1)

)]
=O

(
∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
with probability at least 1− δ.

The first term is the pretraining error in Theorem 5.3, which is related to the size of the pretraining
set and the capacity of the neural networks. The second term is the ICL error. Intuitively, this term
represents the concept identification error. If the considered task z∗ is distinguishable, i.e., satisfying
Assumption H.3, this term decays to 0 exponentially in

√
t. The required assumptions and formal

statement are in Appendix H.2.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Agarwal, A., Kakade, S., Krishnamurthy, A. and Sun, W. (2020). Flambe: Structural complexity
and representation learning of low rank MDPs. Advances in Neural Information Processing Sys-
tems, 33 20095–20107.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T. and Zhou, D. (2022). What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661.

Anthony, M., Bartlett, P. L., Bartlett, P. L. et al. (1999). Neural network learning: Theoretical foun-
dations, vol. 9. cambridge university press Cambridge.

Bai, Y., Chen, F., Wang, H., Xiong, C. and Mei, S. (2023). Transformers as statisticians: Provable
in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637.

Bartlett, P. L., Foster, D. J. and Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for
neural networks. Neural Information Processing Systems.

Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A. and Hjelm, D.
(2018). Mutual information neural estimation. In International Conference on Machine Learning.
PMLR.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A. et al. (2020). Language models are few-shot learners. Neural
Information Processing Systems.

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics.

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A., Richemond, P. H.,
McClelland, J. and Hill, F. (2022). Data distributional properties drive emergent few-shot
learning in transformers. arXiv preprint arXiv:2205.05055.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2 303–314.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z. and Wei, F. (2022). Why can GPT learn In-Context?
Language models secretly perform gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559.

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dong, L., Yang, N., Wang, W., Wei, F., Liu, X., Wang, Y., Gao, J., Zhou, M. and Hon, H.-W. (2019).
Unified language model pre-training for natural language understanding and generation. Advances
in neural information processing systems, 32.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J. and Sui, Z. (2022). A survey
for in-context learning. arXiv preprint arXiv:2301.00234.

Duchi, J. C. (2019). Information theory and statistics. Lecture Notes for Statistics, 311 304.

Edelman, B. L., Goel, S., Kakade, S. and Zhang, C. (2021). Inductive biases and variable creation
in self-attention mechanisms. arXiv preprint arXiv:2110.10090.

Elbrächter, D., Perekrestenko, D., Grohs, P. and Bölcskei, H. (2021). Deep neural network approxi-
mation theory. IEEE Transactions on Information Theory, 67 2581–2623.

Feng, G., Gu, Y., Zhang, B., Ye, H., He, D. and Wang, L. (2023). Towards revealing the mystery
behind chain of thought: a theoretical perspective. arXiv preprint arXiv:2305.15408.

Fukumizu, K. (2015). Nonparametric bayesian inference with kernel mean embedding. In Modern
Methodology and Applications in Spatial-Temporal Modeling. Springer, 1–24.

10

Under review as a conference paper at ICLR 2024

Garg, S., Tsipras, D., Liang, P. and Valiant, G. (2022). What can transformers learn in-context? A
case study of simple function classes. arXiv preprint arXiv:2208.01066.

Garnelo, M. and Czarnecki, W. M. (2023). Exploring the space of key-value-query models with
intention. arXiv preprint arXiv:2305.10203.

Gruver, N., Finzi, M., Qiu, S. and Wilson, A. G. (2023). Large language models are zero-shot time
series forecasters. arXiv preprint arXiv:2310.07820.

Hahn, M. and Goyal, N. (2023). A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971.

Honovich, O., Shaham, U., Bowman, S. R. and Levy, O. (2022). Instruction induction: From few
examples to natural language task descriptions. arXiv preprint arXiv:2205.10782.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4 251–257.

Hron, J., Bahri, Y., Sohl-Dickstein, J. and Novak, R. (2020). Infinite attention: NNGP and NTK for
deep attention networks. In International Conference on Machine Learning.

Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig, D., Yu, P., Shuster, K., Wang, T., Liu, Q.,
Koura, P. S. et al. (2022). OPT-IML: Scaling language model instruction meta learning through
the lens of generalization. arXiv preprint arXiv:2212.12017.

Jiang, H. (2023). A latent space theory for emergent abilities in large language models. arXiv
preprint arXiv:2304.09960.

Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F. and Liu, Q. (2019). Tinybert: Dis-
tilling bert for natural language understanding. arXiv preprint arXiv:1909.10351.

Ke, G., He, D. and Liu, T.-Y. (2020). Rethinking positional encoding in language pre-training. arXiv
preprint arXiv:2006.15595.

Kim, H. J., Cho, H., Kim, J., Kim, T., Yoo, K. M. and Lee, S.-g. (2022). Self-generated in-context
learning: Leveraging auto-regressive language models as a demonstration generator. arXiv
preprint arXiv:2206.08082.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. and Iwasawa, Y. (2022). Large language models are
zero-shot reasoners. arXiv preprint arXiv:2205.11916.

Ledent, A., Mustafa, W., Lei, Y. and Kloft, M. (2021). Norm-based generalisation bounds for deep
multi-class convolutional neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35.

Li, Y., Ildiz, M. E., Papailiopoulos, D. and Oymak, S. (2023). Transformers as algorithms: Gener-
alization and stability in in-context learning. arXiv preprint arXiv:2301.07067.

Liao, R., Urtasun, R. and Zemel, R. (2020). A pac-bayesian approach to generalization bounds for
graph neural networks. arXiv preprint arXiv:2012.07690.

Lin, S. and Zhang, J. (2019). Generalization bounds for convolutional neural networks. arXiv
preprint arXiv:1910.01487.

Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L. and Chen, W. (2021). What makes good in-context
examples for gpt-3? arXiv preprint arXiv:2101.06804.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. and Neubig, G. (2023). Pre-train, prompt, and pre-
dict: A systematic survey of prompting methods in natural language processing. ACM Computing
Surveys, 55 1–35.

Lu, Y., Bartolo, M., Moore, A., Riedel, S. and Stenetorp, P. (2021). Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

11

Under review as a conference paper at ICLR 2024

Malladi, S., Wettig, A., Yu, D., Chen, D. and Arora, S. (2022). A kernel-based view of language
model fine-tuning. arXiv preprint arXiv:2210.05643.

Michel, P., Levy, O. and Neubig, G. (2019). Are sixteen heads really better than one? Advances in
neural information processing systems, 32.

Min, S., Lewis, M., Zettlemoyer, L. and Hajishirzi, H. (2021). Metaicl: Learning to learn in context.
arXiv preprint arXiv:2110.15943.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H. and Zettlemoyer, L. (2022).
Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837.

Neyshabur, B., Bhojanapalli, S. and Srebro, N. (2017). A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564.

Noci, L., Anagnostidis, S., Biggio, L., Orvieto, A., Singh, S. P. and Lucchi, A. (2022). Signal prop-
agation in transformers: Theoretical perspectives and the role of rank collapse. arXiv preprint
arXiv:2206.03126.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A. et al. (2022). Training language models to follow instructions with human
feedback. Advances in Neural Information Processing Systems, 35 27730–27744.

Paulin, D. (2015). Concentration inequalities for markov chains by marton couplings and spectral
methods.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J. et al. (2021). Learning transferable visual models from natural language
supervision. In International conference on machine learning. PMLR.

Rubin, O., Herzig, J. and Berant, J. (2021). Learning to retrieve prompts for in-context learning.
arXiv preprint arXiv:2112.08633.

Song, L., Huang, J., Smola, A. and Fukumizu, K. (2009). Hilbert space embeddings of conditional
distributions with applications to dynamical systems. In International Conference on Machine
Learning.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace, B. C. and Bau, D. (2023). Function vectors
in large language models. arXiv preprint arXiv:2310.15213.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. and
Polosukhin, I. (2017). Attention is all you need. In Neural Information Processing Systems.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A. and
Vladymyrov, M. (2022). Transformers learn in-context by gradient descent. arXiv preprint
arXiv:2212.07677.

Vuckovic, J., Baratin, A. and Combes, R. T. d. (2020). A mathematical theory of attention. arXiv
preprint arXiv:2007.02876.

Wang, X., Zhu, W. and Wang, W. Y. (2023). Large language models are implicitly topic mod-
els: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D. and Hajishirzi, H. (2022).
Self-instruct: Aligning language model with self generated instructions. arXiv preprint
arXiv:2212.10560.

Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical
Psychology, 44 92–107.

Wei, C., Chen, Y. and Ma, T. (2022a). Statistically meaningful approximation: a case study on
approximating turing machines with transformers. Advances in Neural Information Processing
Systems, 35 12071–12083.

12

Under review as a conference paper at ICLR 2024

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M. and Le, Q. V.
(2021). Finetuned language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M.,
Zhou, D., Metzler, D. et al. (2022b). Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q. and Zhou, D. (2022c). Chain of
thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903.

Wies, N., Levine, Y. and Shashua, A. (2023). The learnability of in-context learning. arXiv preprint
arXiv:2303.07895.

Xie, S. M., Raghunathan, A., Liang, P. and Ma, T. (2021). An explanation of in-context learning as
implicit Bayesian inference. arXiv preprint arXiv:2111.02080.

Yang, G. (2020). Tensor programs II: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548.

Yarotsky, D. (2017). Error bounds for approximations with deep relu networks. Neural Networks,
94 103–114.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J. and Kumar, S. (2019). Are transformers univer-
sal approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R. and Smola, A. J. (2017).
Deep sets. Neural Information Processing Systems.

Zhang, F., Liu, B., Wang, K., Tan, V. Y., Yang, Z. and Wang, Z. (2022a). Relational reasoning via set
transformers: Provable efficiency and applications to MARL. arXiv preprint arXiv:2209.09845.

Zhang, Z., Zhang, A., Li, M. and Smola, A. (2022b). Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.03493.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Bousquet, O., Le, Q.
and Chi, E. (2022a). Least-to-most prompting enables complex reasoning in large language mod-
els. arXiv preprint arXiv:2205.10625.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S., Chan, H. and Ba, J. (2022b). Large language
models are human-level prompt engineers. arXiv preprint arXiv:2211.01910.

13

Under review as a conference paper at ICLR 2024

Appendix for
“What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization”

A CONCLUSION

In this paper, we investigated the theoretical foundations of ICL for the pretrained language models.
We proved that the perfectly pretrained LLMs implicitly implements BMA with regret O(1/t) over
a general response generation modeling, which subsumes the models in previous works. Based on
this, we showed that the attention mechanism parameterizes the BMA algorithm. Analyzing the
pretraining process, we demonstrated that the total variation between the pretrained model and the
nominal distribution consists of the approximation error and the generalization error. The combi-
nation of the ICL regret and the pretraining performance gives the full description of ICL ability of
pretrained LLMs. We mainly focus on the prompts that comprise several examples in this work and
leave the analysis of instruction-based prompts for future works.

B MORE RELATED WORKS

Transformers. Our work is also related to the works that theoretically analyze the performance of
transformers. For the analytic properties of transformers, Vuckovic et al. (2020) proved that attention
is Lipschitz-continuous via the view of interacting particles. Noci et al. (2022) provided the theoret-
ical justification of the rank collapse phenomenon in transformers. Yun et al. (2019) demonstrated
that transformers are universal approximators. For the statistical properties of transformers, Malladi
et al. (2022), Hron et al. (2020), and Yang (2020) analyzed the training of transformers within the
neural tangent kernel framework. Wei et al. (2022a) presented the approximation and generaliza-
tion bounds for learning boolean circuits and Turing machines with transformers. Edelman et al.
(2021) and Li et al. (2023) derived the generalization error bound of transformers. In our work, we
analyze transformers from both the analytic and statistical sides. We show that attention essentially
implements the BMA algorithm in the ICL setting. Furthermore, we derive the approximation and
generalization bounds for transformers in the pretraining phase.

Generalization. Our analysis of the pretraining is also related to the generalization analysis of the
neural networks. This topic has attracted a lot of interests for a long time. Anthony et al. (1999)
derived the uniform generalization bound for fully-connected neural networks with the help pf VC
dimension. Bartlett et al. (2017) sharpened this generalization bound for classification problem
by adopting the Dudley’s integral and calculating of the covering number of neural network class.
At the same time, Neyshabur et al. (2017) derived a similar as Bartlett et al. (2017) from PAC-
Bayes framework. Following this line, Liao et al. (2020) , Ledent et al. (2021) and Lin and Zhang
(2019) built the generalization bound for graph neural networks and convolutional neural network.
These results respected the underlying graph structure and the translation-invariance in the networks.
Edelman et al. (2021) established the generalization bound for transformer, but this result did not
reflect the permutation-invariance, still depending on the channel number. Our work focuses on
the analysis of Maximum Likelihood Estimate (MLE) with transformer function class, which is not
covered by previous works. Our bounds are sharper than that of Edelman et al. (2021) on the channel
number dependency.

C EXPERIMENTAL RESULTS

We conduct five experiments to verify our theoretical findings, including the Bayesian view (Propo-
sitions 4.1 and (4.7)), the regret upper-bounded in Corollary 4.2 and Theorem 6.2, and the constant
ratio between attn† and attn in Proposition 4.3. The implementation details are provided in Ap-
pendix D.

C.1 VERIFICATION OF THE BAYESIAN VIEW

To verify the Bayesian view that we adopt in the paper, we implemented two experiments. In
the first experiment, we explicitly construct the hidden concept vectors that are found by LLMs.

14

Under review as a conference paper at ICLR 2024

Figure 1: Accuracies of LLMs with and without
explicit hidden concepts.

Figure 2: Accuracy of LLMs to find the best arm
in the bandit instance with an informative arm.

Motivated by (4.7), we construct the hidden concept vector as the average sum over prompts of the
values of twenty selected attention heads, i.e., we compress the hidden concept into a vector with
dimension 4096. To demonstrate the effectiveness of the constructed hidden concepts, we add these
hidden concept vectors at a layer of LLMs when the model resolves the prompt with zero-shot.
In Figure. 1, “zs-hc” refers to the results of LLMs that infers with learned hidden concept vectors
and zero-shot prompt, and “ICL-i” refers to the results of LLMs prompted with i examples. We
consider the tasks of finding antonyms, finding the capitals of countries, and finding the past tense
of words. The results indicate that the LLMs with learned hidden concept vectors have comparable
performance with the LLMs prompted with several examples. This indicates that the learned hidden
concept vectors are indeed efficient compression of the hidden concepts, which proves that LLMs
deduce hidden concepts for ICL. This result strongly corroborates with (4.7).

In the second experiment, we aim to verify that LLMs implement inference with the Bayesian frame-
work, not with gradient descent (Akyürek et al., 2022; von Oswald et al., 2022; Bai et al., 2023) on
some tasks. We prompt the LLMs with the history data of a set of similar multi-armed bandit in-
stances with 100 arms, and let LLMs indicate which arm to pull in a similar new bandit instance. In
these similar bandit instances, there is an informative arm, whose reward is exactly the index of the
arm with the highest rewards. We also provide the side information that “Some arm may directly tell
you the arm with the highest reward, even itself does not have the highest reward”. In each example
provided in the prompt, there are the rewards of six arms, including the informative arm and the best
arm, in one bandit instance. As shown in Figure 2, the LLMs can efficiently implement ICL even
with only 6 examples. We note that the gradient descent algorithms in the previous works cannot
explain this performance, since the gradient descent algorithms need at least 100 data points, where
each data point is the reward of one arm, to learn. In contrast, the Bayesian view can clearly explain
Figure 2, where LLMs make use of the side information to calculate a better posterior for ICL.

C.2 VERIFICATION OF THE REGRET BOUND

To verify Corollary 4.2 and Theorem 6.2, we implement experiments to evaluate the regret in two
settings. In the first setting, the LLMs is trained for the linear regression task from scratch, which
is a representative setting studied in Garg et al. (2022); Akyürek et al. (2022). The examples in
the prompt are {(xi, yi)}Ni=1, where xi ∈ Rd, d = 20 and yi = wTxi for some w sampled from
Gaussian distribution. Given the Gaussian model, we adopt the squared error to approximate the
logarithm of the probability. Then the t× regret of the LLMs can be well approximated by the sum
of the squared error till time t. The results in Figure 3 strongly corroborate our theoretical findings.
First, the results verify our claim in Corollary 4.2 and Theorem 6.2 that t · regret can be upper
bounded by a constant. Second, the line of squared error indicates that the ICL of LLMs only has
a significant error when T ≤ d, i.e., the regret only increases in this region. Thus, the regret of the
ICL by LLMs is at most linear in O(d/T). From the view of our theoretical result, discretizing the
set {z ∈ Rd | ∥z∥2 ≤ d} with approximation error δ > 0 will result in a set with (C/δ)d elements,
where C > 0 is an absolute constant. Corollary 4.2 and Theorem 6.2 imply that the regret is the sum
of the log |Z|/T = d log(C/δ)/T and the pretraining error, which matches the simulation results.

15

Under review as a conference paper at ICLR 2024

Figure 3: Squared error and re-
gret of LLMs trained for linear
regression.

Figure 4: Cumulative negative
log-likelihoods of pretrained
LLMs for function value pre-
diction.

Figure 5: The ratio between
attn† and attn.

In the second experiment, we directly evaluate the regret of pretrained LLMs on the function value
prediction task. The prompt consists of the values of a function on the points with fixed inter-
vals. Since the values are real numbers, we adopt the method in Gruver et al. (2023) to transfer a
real number to a token sequence. For the pretrained model, we cannot calculate P(ri | prompti−1, z)
due to the unknown nominal distributions. Thus, we calculate the cumulative negative log-likelihood
CNLLt = −

∑t
i=1 P̂(ri | prompti−1), and CNLLt/t is an upper bound of the regret. In Figure 4,

we indicate the cumulative negative log-likelihoods of predicting the values of five functions. The
results show that the cumulative negative log-likelihoods are stepped, which means that the cumu-
lative negative log-likelihoods are upper-bounded by constants in a long period. This corroborates
with Corollary 4.2 and Theorem 6.2. In addition to the mentioned property, we also observe that
there are connections between the cumulative negative log-likelihood and the prediction error. We
let the LLMs to predict the value given the prompt that contains the past values. Figures 6 and 7
show that the larger cumulative negative log-likelihood implies a larger prediction error.

C.3 VERIFICATION OF THE CONSTANT RATIO BETWEEN attn† AND attn

To verify Proposition 4.3, we directly calculate the ratio between attn† and attn. We consider the
case dv = 1 and dk = d for some d > 0. The entries in K of (4.8) are i.i.d. samples of Gaussian
distribution, and the i−th entry of V is calculated as the inner product between a Gaussian vector
and the i−th column. Figure 5 shows the results for d = 2 and d = 3. It shows that the ratio
between attn† and attn will converge to a constant. This constant depends on the dimension d,
which originates from Proposition F.1.

D IMPLEMENTATION DETAILS OF EXPERIMENTS

In this section, we provide the implementation details of the experiments. In the hidden concepts
construction experiment, we explicitly calculate the hidden concept vector for Llama2-7b with the
method in Todd et al. (2023). Given the prompts generated from the same hidden concept, we
calculate the average value of each attention head by prompting the LLM with different prompts.
Then we select the attention head according to its average indirect effect, which is defined in Todd
et al. (2023). The hidden concept vector is the sum of the average value of the selected attention
heads. We test the performance of the learned hidden concept vectors on tasks: (1) Antonym: Given
an input word, generate the word with the opposite meaning. (2) Country-Capital. Given a country
name, generate the capital city. (3) Present-Past. Given a verb in the present tense, generate the
verb’s simple past inflection. To test the effectiveness of the learned hidden concept vector, we
prompt the LLM only with the query, i.e., the zero-shot case, and set the attention head values at
some layer as the learned hidden concept vector.

In the bandit experiment, we ask GPT-4 for the procedures to find the arm with the highest reward.
In each bandit instance, there is an informative arm, whose reward is exactly the index of the best
arm. When prompting models, we provide the historical data of several bandit instances that share
the same informative arm and ask models to specify how we should play in a similar bandit instance.
A prompt sample with two examples is provided as follows.

16

Under review as a conference paper at ICLR 2024

Figure 6: Cumulative negative log-likelihood
and the prediction values for y = x.

Figure 7: Cumulative negative log-likelihood
and the prediction values for y = exp(x2/2) ·
sin(x).

Your goal is to find the index of the arm with the highest reward, but the pulled arm
may not have the highest reward. I will provide you with the past pull history on other
bandits. The format of the history data on each bandit is [arm, reward]. Different pulls are
separated by a comma. For example, [5,6] indicates that arm 5 will give us a reward of 6
by pulling it.
You should learn from history and tell me which arm to pull in the current bandit to find
the arm with the highest reward. The history data is as follows.
Bandit:
[77, 871], [95, 613], [75, 655], [17, 449], [31, 13], [13, 1028]
Bandit:
[40, 698], [44, 88], [80, 147], [94, 265], [24, 1063], [31, 24]
Different bandits can have different rewards for each arm, but all bandits share a common
pattern. Some arm may directly tells you the arm with the highest reward, even itself
does not have the highest reward. Now I am playing a new bandit. This bandit will have
different rewards than the bandits in history, but they share the same pattern. Tell me
which arm to pull to find the arm with the highest reward. Tell me the final answer that
only contains the index of the arm in a single line without any additional text.

In the above prompt, the arm 31 always returns the index of the best arm. Thus, we expect LLMs
to tell us to pull arm 31 to find the best arm. The number of arms in each instance is 100, and
each example only provides information about six arms in each instance. We repeat the prompt with
different data ten times to plot Figure 2.

For the linear regression task, the model is trained with the loss

L(f) =
1

T

T∑
t=1

(
yt − f(promptt)

)2
,

where promptt = (x1, y1, · · · , xt−1, yt−1, xt), yt = wTxt, {xt}Tt=1 and w are i.i.d. samples of
Gaussian distribution (Garg et al., 2022). The model is designed based on GPT-2, and we add linear
layers as the first and last layers to accommodate it for the value prediction task. In the testing phase,
we sample w∗ and {xt}Tt=1 from the Gaussian distribution and let the model predict the response
value of a query xt+1 given the previous examples {xi, yi}ti=1. We reuse the code and model in
Garg et al. (2022) for the experiments. The error bar in Figure 3 is derived from 90% confidence
intervals over 1000 bootstrap trials.

In the function value prediction task, we adopt the method in Gruver et al. (2023) to transfer the real
number into tokens. We separate the digits with spaces and add commas ’,’ between the function
values at different times. We calculate the negative likelihood of text-DaVinci-003 by extracting the
probability value in the last layer of it. We note that the negative likelihood in Figure 4 takes every
token into account, including the separating spaces between the digits.

In the experiment about the ratio between attn† and attn, we set WQ, WK and WV in attn all
as the identity matrix. The entries in the K of (4.8) are i.i.d. samples of the normal distribution,
and the i−th entry of V is calculated as the inner product between a Gaussian vector and the i−th
column. The Gaussian vector is sampled from N (0, I). The error bar in Figure 3 is derived from
75th and 25th percentiles over 500 trials.

17

Under review as a conference paper at ICLR 2024

E FIGURE FOR PRETRAINING AND ICL

Figure 8: To form the pretraining dataset, a hidden concept z is first sampled according to PZ, and a
document is generated from the concept. Taking the token sequence St up to position t ∈ [T] as the
input, the LLM is pretrained to maximize the next token xt+1. During the ICL phase, the pretrained
LLM is prompted with several examples to predict the response of the query.

F PROOFS FOR SECTION 4.1

F.1 INTRODUCTION OF CONDITIONAL MEAN EMBEDDING

Let Hk and Hv be the two RKHSs over the spaces Q and V with the kernels K and L, respectively.
We denote by ϕ : Q → ℓ2 and φ : V → ℓ2 the feature mappings associated with Hk and Hv ,
respectively. Here l2 is the space of the square-integrable function class. Then it holds for any
k, k′ ∈ Q and v, v′ ∈ V that

ϕ(k)⊤ϕ(k′) = K(k, k′), φ(v)⊤φ(v) = L(v, v′). (F.1)
Let PK,V be the joint distribution of the two random variables K and V taking values in Q and
V, respectively. Then the conditional mean embedding CME(q,PK,V) ∈ Hv of the conditional
distribution PV |K is defined as

CME(q,PK,V) = E
[
L(V, ·)

∣∣K = q
]
.

The conditional mean embedding operator CV |K : Hk → Hv is a linear operator such that

CV |KK(q, ·) = CME(q,PK,V),

for any q ∈ Q. We define the (uncentered) covariance operator CKK : Hk → Hk and the (uncen-
tered) cross-covariance operator CVK : Hk → Hv as follows,

CKK = E
[
K(K, ·)⊗ K(K, ·)

]
, CVK = E

[
L(V, ·)⊗ K(K, ·)

]
.

Here ⊗ is the tensor product. Song et al. (2009) shows that CV |K = CVKC
−1
KK. Thus, we have that

CME(c,PK,V) = CVKC
−1
KKK(c, ·). (F.2)

For i.i.d. samples {(kℓ, vℓ)}ℓ∈[L] of PK,V , ∥·∥HS denotes the Hilbert-Schmidt norm, we write
ϕ(K) = (ϕ(k1), . . . , ϕ(kL))⊤ ∈ RL×dϕ and φ(V) = (ϕ(v1), . . . , ϕ(vL))⊤ ∈ RL×dφ . Then
the empirical covariance operator ĈKK and empirical cross-covariance operator ĈVK are defined as

ĈKK = L−1
L∑

ℓ=1

ϕ(kℓ)ϕ(kℓ)⊤ = L−1ϕ(K)⊤ϕ(K) ∈ Rdϕ×dϕ

ĈVK = L−1
L∑

ℓ=1

φ(vℓ)φ(kℓ)⊤ = L−1φ(V)ϕ(K)⊤ ∈ Rdφ×dϕ . (F.3)

The empirical version of the conditional operator is

Ĉλ
V |K = φ(Y)⊤ϕ(X)

(
ϕ(X)⊤ϕ(X) + λI

)−1
= ĈVK(ĈKK + L−1λI)−1 ∈ Rdφ×dϕ .

18

Under review as a conference paper at ICLR 2024

F.2 PROOF OF PROPOSITION 4.1

Proof. By (4.1), we have that

P(rt+1 | promptt) =
∫

P(rt+1 |ht+1, promptt)P(ht+1 | promptt)dht+1 (F.4)

=

∫
P(rt+1 | c̃t+1, ht+1)P(ht+1 |St)dht+1

=

∫
P(rt+1 | c̃t+1, ht+1)P(ht+1 |St, z)P(z |St)dht+1dz

=

∫
P(rt+1 | c̃t+1, ht+1, St, z)P(ht+1 |St, z)dht+1P(z |St)dz

=

∫
P(rt+1 | c̃t+1, St, z)P(z |St)dz, (F.5)

where the first inequality results from the Bayes rule, the second equality results from the fact that
rt+1 is conditionally independent with the previous history given ht+1, c̃t+1 and the fact that ht+1

only parameterizes the transition kernel of rt+1 given ct+1 in (4.1), the fourth equality results from
the fact that rt+1 is conditionally independent with the other variables given ht+1, c̃t+1, and the last
equality results from the Bayes’ rule.

F.3 PROOF OF COROLLARY 4.2

Proof. Note that

P(z |St) =
P(St | z)PZ(z)∫

P(St | z′)PZ(z′)dz′
=

∏t
i=1 P(ri | z, St, ci)PZ(z)∫ ∏t

i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′
,

where the second equality results from the fact that the hidden variable z only parameterizes the
conditional probability of rt given ct, ct and z are independent. Then, by Bayesian model
averaging, we have the following density estimation,

P(rt+1 |St, ct+1) =

∫
P(rt+1 | z, St, ct+1)P(z |St)dz

=

∫ ∏t+1
i=1 P(ri | z, Si−1, ci)PZ(z)dz∫ ∏t

i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′
.

Thus, it holds that

−
T∑

t=0

logP(rt+1 | ct+1, St) = −
t∑

i=1

(
log

∫ t+1∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz − log

∫ t∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz

)

= − log

∫ T∏
t=0

P(ri | z, Si−1, ci)PZ(z)dz

= inf
q
Ez∼q

[
−

T+1∑
i=1

logP(ri | z, Si−1, ci)

]
+ Ez∼q

[
log

q(z)

PZ(z)

]
,

where the second equality results from the fact that P(rt+1 | ct+1, St) =
∫
P(r1 | c1,z)P(z)dz

1 ., and the
last equality results from the standard Lagrangian arguments.

We consider q to be in the class of all Dirac measures. Then, we have that

− 1

T

T∑
t=1

logP(rt | ct, St−1) ≤
1

T
inf
z

(
−

T∑
t=1

logP(rt | z, St−1, ct)− logPZ(z)
)
.

Thus, the statistical convergence rate of the Bayesian posterior averaging is O(1/T).

19

Under review as a conference paper at ICLR 2024

F.4 PROOF OF PROPOSITION 4.3

Proof. The proof of Proposition 4.3 mainly involves two steps

• Build the relationship between attn† and conditional mean embedding.

• Build the relationship between the attn and conditional mean embedding.

Step 1: Build the relationship between attn† and conditional mean embedding.

In the following, we adopt Hk and Hv to denote the RKHSs for the key and the value with the kernel
functions K and L, respectively. Also, we use ∥ · ∥ to denote the norm of RKHS for an element in
the corresponding RKHS and the operator norm of the operators that transform elements between
RKHSs. For the value space, we adopt the Euclidean kernel L(v, v′) = v⊤v′, and the feature
mapping φ is the identity mapping. Recall the definition of the empirical covariance operator and
the empirical cross-covariance operator in Appendix F.1. For keys and values, we correspondingly
define them as

ĈKK = L−1ϕ(K)⊤ϕ(K), ĈVK = L−1φ(V)⊤ϕ(K), ĈVV = L−1φ(V)⊤φ(V),

where ϕ(K) = (ϕ(k1), . . . , ϕ(kL))⊤ ∈ RL×dϕ and φ(V) = (φ(v1), . . . , φ(vL))⊤ ∈ RL×dφ By
the definition of the newly defined attention in Section 4.1, we have that

attn†(q,K, V) = ĈVK(ĈKK + L−1λI)−1ϕ(q),

which implies that attn† recovers the empirical conditional mean embedding. By (F.2), it holds
that ∥∥attn†(q,K, V)− CME(q,PK,V)

∥∥
≤

∥∥ĈVK(ĈKK + L−1λI)−1ϕ(q)− CVK(CKK + L−1λI)−1ϕ(q)
∥∥︸ ︷︷ ︸

(i)

+
∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC

−1
KKK(q, ·)

∥∥︸ ︷︷ ︸
(ii)

. (F.6)

Upper bounding term (i) of (F.6). Following the proof from Song et al. (2009), we only need to
upper bound ∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1∥. It holds that∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥ (F.7)

≤
∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1

∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.
Considering the first term on the right-hand side of (F.7), we have the operator decomposition
ĈVK = Ĉ

1/2
VV WĈ

1/2
KK for W such that ∥W∥ ≤ 1. This decomposition implies that∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1

∥∥
≤ ∥ĈVV∥1/2 ·

∥∥Ĉ1/2
KK(ĈKK + L−1λI)−1/2

∥∥ ·
∥∥(ĈKK + L−1λI)−1/2

∥∥ ·
∥∥(ĈKK − CKK)(CKK + L−1λI)−1

∥∥
≤ (L−1λ)−1/2 ·

∥∥(ĈKK − CKK)(CKK + L−1λI)−1
∥∥, (F.8)

where the last inequality follows from the fact that

∥ĈVV∥2 = L−1
L∑

ℓ=1

∥vℓ∥22 ≤ 1, ĈKK(ĈKK + L−1λI)−1 ≤ I, (ĈKK + L−1λI)−1 ≤ (L−1λ)−1I.

Combining (F.8) and (F.7), we have∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥ (F.9)

≤ (L−1λ)−1/2 ·
∥∥(ĈKK − CKK)(CKK + L−1λI)−1

∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.
20

Under review as a conference paper at ICLR 2024

In the following, we will upper bound the second term on the right-hand side of (F.9) with Lemma
J.1. For this purpose, we define ξ : Rdp × Rd → Hk ⊗Hv as follows,

ξ(k, v) = φ(v)ϕ(k)⊤(CKK + L−1λI)−1.

Since the operator norm of (CKK + L−1λI)−1 is upper bounded by (L−1λ)−1, we have that∥∥ξ(k, v)∥∥ =
∥∥(CKK + L−1λI)−1

∥∥ ·
∥∥φ(v)∥∥ ·

∥∥ϕ(k)∥∥ ≤ C · (L−1λ)−1,

where C > 0 is an absolute constant. Additionally, we can bound the expectation of the squared
norm of ξ(k, v) as

E
[∥∥ξ(k, v)∥∥2] = E

[∥∥ϕ(k)⊤(CKK + L−1λI)−1
∥∥2 · ∥∥φ(v)∥∥2]

≤ E
[∥∥(CKK + L−1λI)−1ϕ(k)

∥∥2]
≤ (L−1λ)−1 · E

[〈
(CKK + L−1λI)−1ϕ(k), ϕ(k)

〉]
.

Using the definition of the trace operator, we have

E
[∥∥ξ(k, v)∥∥2] ≤ E

[
tr
(
(CKK + L−1λI)−2ϕ(k)ϕ(k)⊤

)]
≤ (L−1λ)−1 · tr

(
(CKK + L−1λI)−1CKK

)
= (L−1λ)−1 · Γ(L−1λ).

Here Γ(L−1λ) is the effective dimension of CKK in Caponnetto and De Vito (2007), which is defined
as follows,

Γ(L−1λ) = tr
(
(CKK + L−1λI)−1CKK

)
.

We apply Lemma J.1 with B = C(L−1λ)−1 and σ2 = (L−1λ)−1 · Γ(L−1λ), then we have that
with probability at least 1− δ, the following holds∥∥ĈVK(CKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥ ≤ C ·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
, (F.10)

where C > 0 is an absolute constant. Similarly, we can prove that with probability at least 1 − δ,
the following holds∥∥ĈKK(CKK + L−1λI)−1 − CKK(CKK + L−1λI)−1

∥∥ ≤ C ′ ·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
.

(F.11)

Here C ′ > 0 is an absolute constant. Combining (F.9), (F.10), and (F.11), we have with probability
at least 1− δ that ∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥
≤ C ′′ ·

√
L

λ
·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
. (F.12)

Upper bounding term (ii) of (F.6). We follow the procedures in the proof from Fukumizu (2015).
For any g ∈ Hk, we have that

⟨CVK(g), CVK(g)⟩ = E
[
L(V, V̄)g(K)g(K̄)

]
=

〈
(CKK ⊗ CKK)E

[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
, g ⊗ g

〉
.

Similarly, for any q ∈ Rdp and any g ∈ Hk, we have that〈
CVK,E

[
L(V, ·)

∣∣K = q
]〉

=
〈
E
[
L(V, V̄)

∣∣K = q,K = ‡
]
, CKKg

〉
=

〈
(I ⊗ CKK)E

[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
,L(·, q)⊗ g

〉
.

21

Under review as a conference paper at ICLR 2024

Taking g = (CKK + L−1λI)−1K(q, ·), we have that∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC
−1
KKK(q, ·)

∥∥2
=

〈(
(CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
,K(q, ·)⊗ K(q, †)

〉
.

We note that E[L(v, v̄) | k = ·, k̄ = ‡] ∈ Hk ⊗Hk is in the range spanned by CKK ⊗ CKK. Thus,
we can define C̃ ∈ Hk × Hk such that (CKK ⊗ CKK)C̃ = E[L(v, v̄) | k = ·, k̄ = ‡]. Let {λi}∞i=1
and {φi}∞i=1 be the eigenvalues and eigenvectors of CKK, respectively. We then have that∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC

−1
KKK(q, ·)

∥∥4
≤

∥∥∥∥((CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]∥∥∥∥2

=
∑
i,j

(
λiλj(L

−1λ)2

(λi + L−1λ)(λj + L−1λ)

)2

· ⟨φi ⊗ φj , C̃⟩2

≤ (L−1λ)4 · ∥C̃∥2.

Thus, we have ∥∥CVK(CKK + λI)−1K(q, ·)− CVKC
−1
KKK(q, ·)

∥∥
2
≤ C · λL−1, (F.13)

where C > 0 is an absolute constant.

Combining (F.6), (F.12), and (F.13), we have with probability at least 1− δ, the following holds∥∥attn†(q,K, V)− CME(q,PK,V)
∥∥ ≤ O

(√
L

λ
·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

1

δ
+ λL−1

)
. (F.14)

Since K is Gaussian RBF kernel, we have that Γ(L−1λ) = O(L/λ).

Step 2: Build the relationship between the attn and conditional mean embedding.

We achieve our goal in two sub-steps. In the first step, we prove that there exists a constant C > 0
such that

attnSM(q,K, V) = C

∫
Sd−1

vP̂K
V |K(v | q)dv, (F.15)

where Sd−1 is the (d − 1)-dimensional unit sphere. Here P̂K
V |K is the kernel conditional density

estimation of PV |K defined as follows,

P̂K
V |K(v | q) =

∑L
ℓ=1 K(k

ℓ, q) · K(vℓ, v)∑L
ℓ=1 K(k

ℓ, q)
,

where ι = 1/
∫
Sd−1 K(k, q)dq is a normalization constant. Note that ι does not depend on the value

of k by symmetry. We transform the right-hand side of this equality as∫
vP̂K

V |K(v | q)dv = ι ·
∫
Sd−1

v ·
∑L

ℓ=1 K(k
ℓ, q) · K(vℓ, v)∑L

ℓ=1 K(k
ℓ, q)

dv

=
ι ·

∑L
ℓ=1 K(k

ℓ, q) ·
∫
Sd−1 v · K(vℓ, v)dv∑L

ℓ=1 K(k
ℓ, q)

. (F.16)

Thus, it suffices to calculate the integration term
∫
Sd−1 v · K(vℓ, v)dv. To this end, we have the

following lemma.

22

Under review as a conference paper at ICLR 2024

Proposition F.1. Let K(a, b) = exp(a⊤b/γ) be the exponential kernel with a fixed γ > 0. It holds
for any b ∈ Sd−1 that ∫

Sd−1

a · K(a, b)da = C1 · b,

where C1 > 0 is an absolute constant.

Proof. See Section I.1 for a detailed proof.

Thus, it holds for the right-hand side of (F.16) that

ι · C1 ·
∑L

ℓ=1 K(k
ℓ, q) · vℓ∑L

ℓ=1 K(k
ℓ, q)

= ι · C1 · V ⊤softmax(Kq/γ) = ι · C1 · attnSM(q,K, V),

where the first equality follows from the definition of the softmax function and the second equality
follows from the definition of the softmax attention.

The second step is to relate the right-hand side of (F.15) to conditional mean embedding. In fact,
under the condition that P̂K

V |K(v | q) → P(v | q) uniformly for any q ∈ Sdp−1 as L → ∞, we have∫
vP̂K

V |K(v | q)dv → E[V |K = q] as L → ∞.

Thus, we have that

attnSM(q,K, V) → C · E[V |K = q] as L → ∞ (F.17)

for some constant C > 0. Combining (F.17) and (F.14) and choosing λ = L3/4, we complete the
proof of Proposition 4.3.

G APPENDIX FOR SECTION 5

G.1 SUPPLEMENTAL DEFINITIONS FOR MARKOV CHAINS

We follow the notations in Paulin (2015). Let Ω be a Polish space. The transition kernel for a time-
homogeneous Markov chain {Xi}∞i=1 supported on Ω is a probability distribution P(x, dy) for every
x ∈ Ω. Given X1 = x1, · · · , Xt−1 = xt−1, the conditional distribution of Xt equals P(xt−1,dy).
A distribution π is said to be a stationary distribution of this Markov chain if

∫
x∈Ω

P(x, dy)π(dx) =
π(dy). We adopt Pt(x, ·) to denote the distribution of Xt conditioned on X1 = x. The mixing time
of the chain is defined by

d(t) = sup
x∈Ω

TV
(
P t(x, ·), π

)
, tmix(ε) = min{t | d(t) ≤ ε}, tmix = tmix(1/4).

G.2 PROOF OF THEOREM 5.3

Proof of Theorem 5.3. Our proof mainly involves three steps.

• Error decomposition with the PAC-Bayes framework.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition with the PAC-Bayes framework.

For ease of notation, we temporarily write Tp and Np as T and N , respectively. Recall that the
pretraining dataset is D = {(Sn

t , x
n
t+1)}

N,T
n,t=1, which consists of N trajectories (essays), and each

essay have T + 1 words. Given Sn
t , the next word is generated as xn

t+1 ∼ P(· |Sn
t), and Sn

t+1 =

23

Under review as a conference paper at ICLR 2024

(Sn
t , x

n
t+1). Here, we construct a ghost sample D̃ = {(S̃n

t , x̃
n
t+1)}

N,T
n,t=1 as S̃n

t = Sn
t and x̃n

t+1 ∼
P(· | S̃n

t) independently from D. We define function g(θ) = L(θ,D) − logED̃[exp(L(θ, D̃)) | D],
where

L(θ, D̃) = −1

4

N∑
n=1

T∑
t=1

log
P(x̃n

t+1 |Sn
t)

Pθ(x̃n
t+1 |Sn

t)
.

For distributions Q,P ∈ ∆(Θ), where P can potentially depends on D, Lemma J.3 shows that

EP

[
g(θ)

]
≤ KL(P∥Q) + logEQ

[
exp

(
g(θ)

)]
.

Substituting the definition of g(θ) and taking expectation with respect to the distribution of D on the
both sides of the inequality, we can derive that

ED

[
exp

{
EP

[
L(θ,D)− logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
− KL(P ∥Q)

}]
≤ 1.

With Chernoff inequality, we can show that with probability at least 1− δ, the following holds

−Eθ∼P

[
logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
≤ −EP

[
L(θ,D)

]
+ KL(P ∥Q) + log

1

δ
. (G.1)

We first cope with the left-hand side of (G.1).

− EP

[
logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
≥ −1

2
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
P(x̃n

t+1 |Sn
t)

Pθ̂(x̃
n
t+1 |Sn

t)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]

= −1

2

N∑
n=1

T∑
t=1

logEx̃n
t+1∼P(· |Sn

t)

[
exp

(
− 1

2
log

P(x̃n
t+1 |Sn

t)

Pθ̂(x̃
n
t+1 |Sn

t)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]

≥ 1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2 − 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]
,

(G.2)

where the first inequality results from the definition of L(θ,D) and Cauchy-Schwarz inequality, the
equality results from that the transitions of x̃n

t+1 are independent given D, and the last inequality
results from Lemma J.5. The second term in the right-hand side of (G.2) can be controlled if the
distribution P is chosen to concentrate around θ̂. This will be done in Step 2. Now we consider the
right-hand side of (G.1). For any θ∗ ∈ Θ, we can decompose it as

− EP

[
L(θ,D)

]
= EP

[
1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
+ log

Pθ∗(xn
t+1 |Sn

t)

Pθ̂(x
n
t+1 |Sn

t)
+ log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]

≤ 1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
+

1

4

N∑
n=1

T∑
t=1

EP

[
log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]
, (G.3)

where the inequality results from the fact that θ̂ maximizes the likelihood. We will choose θ∗ as
the projection of P onto {Pθ | θ ∈ Θ}, i.e., P∗

θ is the best approximation of P with respect to the
KL divergence. Thus, the first term in the right-hand side of (G.3) is the approximation error. The

24

Under review as a conference paper at ICLR 2024

second term in the right-hand side of (G.3) can be controlled in the same way as the second term in
the right-hand side of (G.2). Combining inequalities (G.1), (G.2), and (G.3), we have that

1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2

≤ 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x

n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

) ∣∣∣∣D]]
+

1

4

N∑
n=1

T∑
t=1

EP

[
log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]
︸ ︷︷ ︸

(I)

+
1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)︸ ︷︷ ︸
(II)

+ KL(P ∥Q)︸ ︷︷ ︸
(III)

+ log
1

δ
, (G.4)

where term (I) is the fluctuation error induced by θ ∼ P , term (II) is the approximation error, and
term (III) is the KL divergence between P and Q.

Step 2: Control each term in the error decomposition.

We first consider term (I). Since θ̂ is a deterministic function of D and that
log(Pθ̂(x

n
t+1 |Sn

t)/Pθ(x
n
t+1 |Sn

t)) is close to 0 if θ is close to θ̂, we need to design P for
any θ̂ ∈ Θ such that θ ∼ P is close to θ̂ almost surely.

We need to quantify the fluctuation of Pθ when θ is changing, i.e., how Pθ is close to Pθ̂ when θ is
close to θ̂.

Proposition G.1. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

TV
(
Pθ(· |X),Pθ̃(· |X)

)
≤ 2

τ

∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥
1,2

+

D∑
t=1

αt(βt + ιt + κt + ρt),

where

αt =
2

τ
BA(1 +BA,1 ·BA,2)

(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)
2 − γ̃

(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)

1 − γ̃
(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥WV,(t)
i − W̃

V,(t)
i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑

i=1

BK · ∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F +BQ · ∥WK,(t+1)

i − W̃
K,(t+1)
i ∥F

for all t ∈ [D].

Proof of Proposition G.1 . See Appendix I.3.

Proposition G.1 implies that the difference between Pθ and Pθ̃ can be upper-bounded by the dif-
ference between the parameters of each layer. Thus, for any θ ∈ D, we set the distribution P as
uniform distribution on the neighborhood of parameters, and the radius of the neighborhood is set
proportional to 1/NT shown in Figure 9.

25

Under review as a conference paper at ICLR 2024

Figure 9: The distribution P in (G.5) is the uniform distribution on the neighborhood of θ with
radius proportional to 1/NT , and Q in (G.8) is the uniform distribution on Θ.

P =

D+1∏
t=1

LP

(
θ(t)

)
(G.5)

LP

(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥1,2

))
LP

(
θ(t)

)
= Unif

(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A

(t)) · LP (W
(t))

LP (A
(t)) = Unif

(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W

(t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))
for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥·∥) = {x | ∥x−a∥ ≤ r}
denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = R−1(1 +BA,1 ·BA,2)

−1α−1
t /NT, r

(t)
γ,2 = R−1α−1

t /NT

r
(t)
A,1 = R−1B−1

A,2α
−1
t /NT, r

(t)
A,2 = R−1B−1

A,1α
−1
t /NT,

r
(t)
V = R−1h−1(1 +BA,1 ·BA,2)

−1α−1
t /NT, r

(t)
Q = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

K α−1
t /NT

r
(t)
K = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

Q α−1
t /NT, r(D+1) = τB−1

A /NT.

Under this assignment, we now bound | logPθ̂(x |S)/Pθ(x |S)| for any S ∈ RL×d and x ∈ Rdy .
We first note that

Pθ̂(x |S) ≥ by = (1 + dy exp(BA/τ))
−1 (G.6)

for any S and x, which results from the softmax layer defined below (5.1). This results from the fact
that the last layer of the transformer is softmax with inverse temperature parameter τ and that∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1)

∥∥∥∥
1

≤
∥∥A(D+1),⊤∥∥

1,2
≤ BA.

If TV(Pθ(· |S),Pθ̃(· |S)) = ε ≤ by/2, some basic calculations show that

by
by + ε

≤
Pθ̂(x |S)
Pθ(x |S)

≤ 1 +
2ε

by
.

Thus, if we set the distribution P as the uniform distribution on the neighborhood around θ̂ with
radius proportional to 1/NT , i.e., (G.5), then for θ ∼ P we have that∣∣∣∣ log Pθ̂(x |S)

Pθ(x |S)

∣∣∣∣ ≤ 2ε

by
= O

(
1

NT

)
for P a.s.

Based on this, we conclude that

(I) = O(1). (G.7)

26

Under review as a conference paper at ICLR 2024

Next, we control term (III) in (G.4). In order to upper bound KL(P ∥Q), we need to make sure
that the support of P is a subset of that of Q. Thus, we take Q as the uniform distribution on the
parameter space.

Q =

D+1∏
t=1

LQ

(
θ(t)

)
(G.8)

LQ

(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥1,2

))
LQ

(
θ(t)

)
= Unif

(
B
(
1/2, 1/2, | · |

))
· Unif

(
B
(
1/2, 1/2, | · |

))
· LQ(A

(t)) · LQ(W
(t))

LQ(A
(t)) = Unif

(
B
(
0, BA,1, ∥ · ∥F

))
· Unif

(
B
(
0, BA,2, ∥ · ∥F

))
LQ(W

(t)) =

h∏
i=1

Unif
(
B
(
0, BQ, ∥ · ∥F

))
· Unif

(
B
(
0, BK , ∥ · ∥F

))
· Unif

(
B
(
0, BV , ∥ · ∥F

))
.

Then the KL divergence between P and Q is

KL(P ∥Q) = O
(
(D2 · d · (dF + dh + d) + d · dy) · log

(
1 +NTτ−1RhBABA,1BA,2BQBKBV

))
.

(G.9)

Finally, we control term (II) in (G.4). This term can be controlled as

1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)

=
1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)

+
1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)
.

The first two terms in the right-hand side of the equality is the generalization error, which can be
bounded with Lemma J.4. With Assumption 5.2, we note that∣∣∣∣ log P(x |S)

Pθ∗(x |S)

∣∣∣∣ ≤ b∗ = logmax{c−1
0 , b−1

y }, (G.10)

so the function satisfies the condition in Lemma J.4 with ci = 2b∗. Using the moment generating
function bound in Lemma J.4 and Chernoff bound, we have that

1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)
≤

√
tminb∗,2

2NT
log

1

δ

(G.11)
with probability at least 1− δ.

Step 3: Conclude the proof.

Combining inequalities (G.4), (G.7), (G.9), and (G.11), we have that

1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)

≤

√√√√ 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2

= O
(

t
1/4
min

(NT)1/4
log

1

δ
+

√
D2d(dF + dh + d) + d · dy√

NT
· log

(
1 +NTB̄

)
+ inf

θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
))

,

27

Under review as a conference paper at ICLR 2024

where we take θ∗ as the best approximation parameters. Finally, we will change the left-hand side
of this inequality to the expectation of it. In fact, we have that
Proposition G.2. Let F be the collection of functions of f : Rn → R, and we assume that |f | ≤ b

for any function f ∈ F . For a Markov chain X = (X1, ·, XN), we define f(X) =
∑N

i=1 f(Xi)/N .
The mixing time of this Markov chain is denoted as tmix(ε). Given a distribution Q on F , with
probability at least 1− δ, we have∣∣∣EP

[
EX

[
f(X)

]
− f(X)

]∣∣∣ ≤
√

b2 · tmin

2 log 2N

[
KL(P ∥Q) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1− δ, where

tmin = inf
0≤ε<1

tmix(ε) ·
(
2− ε

1− ε

)2

.

Proof of Proposition G.2. See Appendix I.2.

We note that Proposition G.2 is indeed an uniform convergence bound, since it holds simultaneously
for all P . Thus, we can set P and Q as those in equalities (G.5) and (G.8), then we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Sn

t),Pθ̂(· |S
n
t)
)]

− 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)

= O
(√

tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

))
.

Thus, we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Sn

t),Pθ̂(· |S
n
t)
)]

= O
(

t
1/4
min

(NT)1/4
log

1

δ
+

√
tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

)

+ inf
θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
))

.

We conclude the proof of Theorem 5.3.

G.3 FORMAL STATEMENT AND PROOF OF PROPOSITION 5.4

Denote the alphabet of the language as X ⊆ R (d = 1), then the conditional distribution P∗ can be
viewed as a function g∗ : XL → Rdy , where L is the maximal length of a sentence, and the output
is the distribution of the next word. Since A is finite, Theorem 2 in Zaheer et al. (2017) shows that
there exist ρ∗ : R → Rdy and ϕ∗ : X → R such that

g∗(X) = ρ∗
(
1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a function f
defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of the real-valued
smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of the smooth functions with
bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .

28

Under review as a conference paper at ICLR 2024

Figure 10: The construction in Proposition G.4 mainly consists of three parts: the approximation of
ϕ∗, the approximation of ρ∗, and the realization of 1

L

∑L
i=1.

Assumption G.3. There exists B > 0 such that ϕ∗, τ log ρ∗i ∈ SB for i ∈ [dy].

This assumption states that the function g∗ is smooth enough for transformers to approximate.

Proposition G.4. Under Assumptions 5.2 and G.3, if dF ≥ 16dy , BA,1 ≥ 16Rdy , BA,2 ≥ dF
BA ≥

√
dy , and BV ≥

√
d, then

max
∥S⊤∥2,∞≤R

KL
(
P∗(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
,

for some constant C > 0.

Proof of Proposition G.4. Our proof mainly involves three steps.

• The high-level introduction of transformer approximator for g∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

Step 1: The high-level introduction of transformer approximator for g∗.

Without loss of generality, we assume that B > 1 in Assumption G.7. We would like to first
introduce our construction in a high-level way. As shown in Figure 10, we will construct Ψϕ∗ and
Ψρ∗ to respectively approximate ϕ∗ and τ log ρ∗.

To approximate ϕ∗ with Ψϕ∗ , we will make use of the universal approximation property of the
fully-connected networks and ignore the attention module in the transformer by setting W

V,(t)
i = 0,

γ
(t)
1 = 1, γ(t)

2 = 0 for all i ∈ [h]. We further set A(t)
2 = IdF

∈ RdF×dF , which is the identity
matrix. The network structure for Ψϕ∗ is

X(t+1) = Πnorm

[
ReLU(X(t)A

(t+1)
1 + b(t+1) · IL)

]
,

where b(t+1) ∈ R is the bias term. In Step 2, we will use this fully-connected network to approximate
ϕ∗.

To approximate the average 1
L

∑L
i=1 ϕ

∗(xi), we take W
Q,(t)
i = 0, WK,(t)

i = 0, and W
V,(t)
i = Id,

γ
(t)
1 = 0, γ(t)

2 = 1, A(t)
2 = 0.

After this average aggregation, we still take W
V,(t)
i = 0, γ(t)

1 = 1, γ(t)
2 = 0 for all i ∈ [h] and

A
(t)
2 = IdF

∈ RdF×dF to approximate ρ∗i for i ∈ [dy]. We stack the approximators for τ log ρ∗i to
approximate τ log ρ∗, multiplying the width of the networks by dF .

29

Under review as a conference paper at ICLR 2024

Step 2: Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

In the first and the Dth layer, we take A
(1),′
1 = A

(1)
1 /R and A

(D),′
1 = A

(D)
1 · R to normalize and

retrieve the magnitudes of inputs, where R is the range of the inputs. This will keep the magnitudes
of the intermediate outputs small. Next, we will use Lemma J.9 to construct the networks. In the
proof of Lemma J.9, the norm of the outputs of the intermediate layers do not excess the range of the
inputs, so the layer normalization in our networks will not influence the constructed approximators.
In this case, we can respectively approximate ϕ∗ and τ log ρ∗i with fully-connected networks Ψϕ∗

and Ψρ∗
i

for i ∈ [dy] as

∥ϕ∗ −Ψϕ∗∥∞ ≤ εϕ, ∥τ log ρ∗i −Ψρ∗
i
∥∞ ≤ ερ for i ∈ [dy],

where the depth D(·), the width W (·), and the maximal weight B(·) of the networks satisfy that

D′ = D(Ψϕ∗) ≤ C ·B · (log ε−1
ϕ)2 + logB, D′′ = max

i∈[dy]
D(Ψρ∗

i
) ≤ C ·B · (log ε−1

ρ)2 + logB,

W (Ψϕ∗) ≤ 16, W (Ψρ∗
i
) ≤ 16, B(Ψϕ∗) ≤ 1, B(Ψρ∗

i
) ≤ 1

for some constant C > 0. The bounds for width and maximal weight require that dF ≥ 16dy and
BA,1 ≥

√
dF · dF ≥ 16dy . Then we have that for any X = (x1, · · · , xL)∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

))∥∥∥∥
1

≤
∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

))∥∥∥∥
1

+

∥∥∥∥softmax(1

τ
Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

))
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

))∥∥∥∥
1

≤ dyερ + C ′ · dy · (BA,1)
D′′

· εϕ, (G.12)

where C ′ > 0 is a constant, the first inequality results from the triangle inequality, (BA,1)
D′′

in
the second inequality results from the error propagation through a depth-D′′ network and the Lip-
schitzeness of softmax in Lemma J.6. This bound reflects that the later modules will amplify the
approximation error in the previous modules. In the following, we will balance the depths of dif-
ferent modules to handle the amplification. Lemma J.9 indicates the approximation error ε of a
fully-connected network will depth D can be upper bounded as

ε ≤ exp(−
√

D − logB

B
).

Thus, defining the left-hand side of (G.12) as approx err, we have that

approx err ≤ dy exp

(
−
√

D′′ − logB

B

)
+ dyB

D′′

A,1 exp

(
−

√
D′ − logB

B

)
.

We note the fact that: for any l > 0, c > 0, we have exp(−l
√
x− c) = O(exp(−l

√
x)), which

follows from the direct calculation. Then we can further upper bound the approximation error as

approx err = O

(
dy exp

(
−
√

D′′

B

)
+ dy exp

(
1√
B

[
D′′

√
B logBA,1 −

√
D′

]))
.

To handle the second term in the right-hand side of this inequality, we require that

k ·D′′ −
√
D′ ≤ −

√
D′′,

where k =
√
B logBA,1. This is equivalent to

D′ ≥ (k ·D′′ +
√
D′′)2.

Since D′ +D′′ ≤ D, where D is the depth of the whole network, we can set

D′′ =
√
D/(2

√
B logBA,1), D′ = D − 1−D′′ ≥ D/2 +D3/4

30

Under review as a conference paper at ICLR 2024

when D is large. This assignments ensure that D′ ≥ (k ·D′′ +
√
D′′)2. Thus, we have that

approx err = O

(
dy exp

(
−
√

D′′

B

))
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
for some constant C > 0. Here we relax the dependency on B a little for the notational clearness,
and the relaxation results from the fact that B ≥ 1 usually.

Step 3: Conclude the proof.

We denote Ψρ∗(
∑L

i=1 Ψϕ∗(xi)/L) as Pθ∗ . Then if TV(P(· |X),Pθ∗(· |X)) = ε ≤ c0/2, some basic
calculations show that

c0
c0 + ε

≤ P(x |S)
Pθ∗(x |S)

≤ 1 +
2ε

c0
.

Thus, we have

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
≤ 2ε

c0
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

G.4 PRETRAINING RESULTS FOR ℓ2 LOSS

G.4.1 PRETRAINING ALGORITHM WITH ℓ2 LOSS

Training with ℓ2 loss is common in the CV community, e.g. Radford et al. (2021). The net-
work structure is largely similar to those in Brown et al. (2020) and Devlin et al. (2018). Here,
we modify the network structure of the last layer. The network derives the final output as
Y (D+1) = 1

L I
⊤
LX

(D)A(D+1), where IL ∈ RL is the vector with all ones, A(D+1) ∈ Rd×dy . The
parameters in each layer are θ(t) = (γ

(t)
1 , γ

(t)
2 ,W (t), A(t)) for t ∈ [D], and θ(D+1) = A(D+1), and

the parameters of the whole network is θ = (θ(1), · · · , θ(D+1)). Similar to Section 5.1, we consider
the transformer with bounded weights. The set of parameters is

Θ =
{
θ |

∥∥A(D+1)
∥∥
F
≤ BA,max

{∣∣γ(t)
1

∣∣, ∣∣γ(t)
2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥WV,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. We only consider the non-
trivial case where these bounds are larger than 1, otherwise the magnitude of the output in Dth layer
decades exponentially with growing depth. We denote the transformer with parameter θ as fθ.

In such case, we focus on the pretraining setting in CV tasks, i.e., the pretraining set D =
{(Si, xi)}Ni=1 consists of i.i.d. pairs. The underlying distribution is denoted as (S, x) ∼ µ ∈
∆(X∗ × X). In such case, d = dy , i.e., the transformer directly predicts the musked token. The
training algorithm is

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

∥∥xi − fθ(S
i)
∥∥2
2

(G.13)

From the population version of (G.13), it is easy to see that the function f∗(S) = E[x |S] achieves
the minimal population error, where the conditional expectation is defined from µ. In the following,
we will quantify the error between fθ̂ and f∗.

G.4.2 PERFORMANCE GUARANTEE FOR PRETRAINING WITH ℓ2 LOSS

We first state the assumptions for the pretraining setting.

Assumption G.5. There exists a constant R > 0 such that for (S, x) ∼ µ, we have ∥S⊤∥2,∞ ≤ R
and ∥x∥2 ≤ Bx almost surely.

31

Under review as a conference paper at ICLR 2024

Then the performance guarantee for the pretraining result θ̂ can be derived as following.
Theorem G.6. Let B̄ = BxRhBABA,1BA,2BQBKBV and D̄ = D2d(dF + dh + d) + d · dy . If
Assumption G.5 holds, the pretrained model fθ̂ by the algorithm in (G.13) satisfies

ES,x

[∥∥f∗(S)− fθ̂(S)
∥∥2
2

]
≤ 3

2
min
θ∈Θ

E
[∥∥f∗(S)− fθ(S)

∥∥2
2

]
︸ ︷︷ ︸

approximation error

+O
(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
︸ ︷︷ ︸

generalization error

with probability at least 1− δ.

The first term is the approximation error. It measures the proximity between the nominal function
f∗ and the functions induced by the parameter set Θ. The second term is the generalization error.
Similar as Theorem 5.3, the generalization error is independent of the token sequence length.

Since the neural networks are universal approximators, we will explicitly approximate f∗ from the
transformer function class. Theorem 2 in Zaheer et al. (2017) shows that there exist ρ∗ : R → Rdy

and ϕ∗ : R → R such that

f∗(X) = ρ∗
(
1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a function f
defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of the real-valued
smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of the smooth functions with
bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .
Assumption G.7. There exists B > 0 such that ϕ∗, ρ∗i ∈ SB for i ∈ [dy].

This assumption states that the function f∗ is smooth enough. Then we have that
Proposition G.8. Under G.7, if dF ≥ 16dy , BA,1 ≥ 16Rdy , BA,2 ≥ dF BA ≥

√
dy , and

BV ≥
√
d, then

max
∥S⊤∥2,∞≤R

∥∥f∗(S)− fθ∗(S)
∥∥
2
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
for some constant C > 0.

G.4.3 PROOF OF THEOREM G.6

Proof of Theorem G.6. For ease of notation, we respectively define the empirical risk and the popu-
lation risk as

L̂(f,D) =
1

N

N∑
i=1

∥∥xi − fθ(S
i)
∥∥2
2
, L(f) = ES,x

[∥∥x− fθ(S)
∥∥2
2

]
.

The our proof mainly involves three steps.

• Error decomposition for the excess population risk.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition for the excess population risk. The excess population risk for the
estimate θ̂ can be decomposed to the sum of the generalization error and the approximation error as
L(fθ̂)− L(f∗)

= L(fθ̂)− L(f∗)− 2
(
L̂(fθ̂,D)− L̂(f∗,D)

)
+ 2

(
L̂(fθ̂,D)− L̂(fθ∗ ,D)

)
+ 2

(
L̂(fθ∗ ,D)− L̂(f∗,D)

)
≤ L(fθ̂)− L(f∗)− 2

(
L̂(fθ̂,D)− L̂(f∗,D)

)︸ ︷︷ ︸
generalization error

+2
(
L̂(fθ∗ ,D)− L̂(f∗,D)

)︸ ︷︷ ︸
approximation error

, (G.14)

32

Under review as a conference paper at ICLR 2024

where θ∗ = argminθ∈Θ L(fθ), and the inequality results from that θ̂ achieves the minimal empirical
risk.

Step 2: Control each term in the error decomposition.

We first consider the generalization error and will adapt Lemma J.2 to bound it. Define the function

g(S, x, θ) =
∥∥x− fθ(S)

∥∥2
2
−

∥∥x− f∗(S)
∥∥2
2
.

To verify the conditions in Lemma J.2, we notice that |g(S, x, θ)| ≤ (Bx +Bf)
2 and that

E
[
g(S, x, θ)

]
= E

[∥∥x− fθ(S)
∥∥2
2
−

∥∥x− f∗(S)
∥∥2
2

]
= E

[∥∥f∗(S)− fθ(S)
∥∥2
2

]
E
[(
g(S, x, θ)− E

[
g(S, x, θ)

])2] ≤ E
[(
g(S, x, θ)

)2]
≤ E

[∥∥2x− f∗(S)− fθ(S)
∥∥2
2
·
∥∥f∗(S)− fθ(S)

∥∥2
2

]
≤ (3Bx +Bf)

2 · E
[∥∥f∗(S)− fθ(S)

∥∥2
2

]
,

where the second equality results from the definition of f∗, the second inequality results from
Cauchy–Schwarz inequality, and the last inequality result from the boundedness of x, f∗, and fθ.
Then Lemma J.2 shows that for a distribution Q ∈ ∆(Θ) and 0 < λ ≤ 1/(2(Bx + Bf)

2), the
following holds with probability at least 1− δ simultaneously for all P ∈ ∆(Θ)∣∣∣∣Eθ∼P

[
E
[
g(S, x, θ)

]
− 1

N

N∑
i=1

g(Si, xi, θ)

]∣∣∣∣
≤ λ(3Bx +Bf)

2Eθ∼P

[
E
[
g(S, x, θ)

]]
+

1

Nλ

[
KL(P ∥Q) + log

2

δ

]
.

Taking λ = 1/(2(3Bx +Bf)
2), we have∣∣∣∣Eθ∼P

[
L(fθ)− L(f∗)−

(
L̂(fθ,D)− L̂(f∗,D)

)]∣∣∣∣
≤ 1

2
Eθ∼P

[
L(fθ)− L(f∗)

]
+

2(3Bx +Bf)
2

N

[
KL(P ∥Q) + log

2

δ

]
.

Next, we will take proper P and Q to relate this equation and the generalization error. For this pur-
pose, we quantify how the perturbation of network parameters influence the output of the network.

Proposition G.9. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

∥fθ(X)− fθ̃(X)∥2 ≤
∥∥A(D+1) − Ã(D+1)

∥∥
F
+

D∑
t=1

αt(βt + ιt + κt + ρt),

where

αt = BA(1 +BA,1 ·BA,2)
(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)
2 − γ̃

(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)

1 − γ̃
(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥WV,(t)
i − W̃

V,(t)
i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑

i=1

BK · ∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F +BQ · ∥WK,(t+1)

i − W̃
K,(t+1)
i ∥F

for all t ∈ [D].

33

Under review as a conference paper at ICLR 2024

Proof of Proposition G.9 . See Appendix I.4.

With the help of Proposition G.9, we set the distribution P as

P =

D+1∏
t=1

LP

(
θ(t)

)
(G.15)

LP

(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥F

))
LP

(
θ(t)

)
= Unif

(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A

(t)) · LP (W
(t))

LP (A
(t)) = Unif

(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W

(t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))
for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥·∥) = {x | ∥x−a∥ ≤ r}
denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = (Bx +Bf)

−1R−1(1 +BA,1 ·BA,2)
−1α−1

t /N, r
(t)
γ,2 = (Bx +Bf)

−1R−1α−1
t /N

r
(t)
A,1 = (Bx +Bf)

−1R−1B−1
A,2α

−1
t /N, r

(t)
A,2 = (Bx +Bf)

−1R−1B−1
A,1α

−1
t /N,

r
(t)
V = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1α−1

t /N, r(D+1) = (Bx +Bf)
−1B−1

A /N,

r
(t)
K = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1B−1

V B−1
Q α−1

t /N,

r
(t)
Q = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1B−1

V B−1
K α−1

t /N.

Under this assignment, we now bound Eθ∼P [∥x− fθ(S)∥22 − ∥x− fθ̂(S)∥
2
2] as∣∣∣∣Eθ∼P

[∥∥x− fθ(S)
∥∥2
2
−
∥∥x− fθ̂(S)

∥∥2
2

]∣∣∣∣ ≤ 2(Bx +Bf)

∣∣∣∣Eθ∼P

[∥∥fθ(S)− fθ̂(S)
∥∥
2

]∣∣∣∣ = O
(
Bx +Bf

N

)
,

where the inequality results from Cauchy-Schwarz inequality, and the equality results from Propo-
sition G.9. Thus, we have that

L(fθ̂)− L(f∗)−
(
L̂(fθ̂,D)− L̂(f∗,D)

)
≤ 1

2

(
L(fθ̂)− L(f∗)

)
+O

(
Bx +Bf

N

)
+

2(3Bx +Bf)
2

N

[
KL(P ∥Q) + log

2

δ

]
. (G.16)

To access to the value of KL(P ∥Q), we take Q as the distribution in (G.8) except that

LQ

(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥F

))
. (G.17)

Then the KL divergence between P and Q is

KL(P ∥Q) = O
(
(D2 · d · (dF + dh + d) + d · dy) · log

(
1 +NBxRhBABA,1BA,2BQBKBV

))
.

Combining this equality with (G.16), we have that with probability at least 1− δ, the generalization
error can be bounded as

L(fθ̂)− L(f∗)− 2
(
L̂(fθ̂,D)− L̂(f∗,D)

)
= O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
. (G.18)

Next we control the approximation error in (G.14).

L̂(fθ∗ ,D)− L̂(f∗,D)

= L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
+

3

2

(
L(fθ∗)− L(f∗)

)
= L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
+

3

2
E
[∥∥f∗(S)− fθ∗(S)

∥∥2
2

]
, (G.19)

34

Under review as a conference paper at ICLR 2024

where the second equality results from the definition of f∗. To bound the first two terms in the
right-hand side of (G.19), we use Lemma J.2 and take P and Q as (G.15) and (G.17), replacing θ̂ by
θ∗. Then we have that

L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
= O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
. (G.20)

Step 3: Conclude the proof.

Combining inequalities (G.14), (G.18), (G.19), and (G.20), we have that

L(fθ̂)− L(f∗) =
3

2
E
[∥∥f∗(S)− fθ∗(S)

∥∥2
2

]
+O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
.

Thus, we conclude the proof of Theorem G.6.

G.4.4 PROOF OF PROPOSITION G.8

Proof of Proposition G.8. Our proof mainly involves three steps.

• Build the high-level transformer approximator for f∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

The first two steps follow the procedures of the proof of Proposition G.4 exactly. Now we present
the final step.

Step 3: Conclude the proof.

In the final layer, we just take A(D+1) = Idy
as the identity matrix. Denoting the derived parameters

as θ∗ we have that

max
∥X⊤∥2,∞≤R

∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− fθ∗(X)

∥∥∥∥
2

= O
(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

Thus, we conclude the proof of Proposition G.8.

H PROOFS AND FORMAL STATEMENTS FOR §6

H.1 PROOF OF THEOREM 6.2

Proof. By Corollary 4.2 and the fact that log(1/p0(z∗)) ≤ β, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | z∗, promptt−1)−
T∑

t=1

logP(rt | promptt−1)
]
≤ β/T. (H.1)

In addition, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | promptt−1)−
T∑

t=1

logPθ̂(rt | promptt−1)
]
= EDICL

[
KL

(
P(· | prompt)

∥∥∥Pθ̂(· | prompt)
)]
.

(H.2)

Similar to (G.10), we have that∣∣∣log(P(r | prompt)/Pθ̂(r | prompt)
)∣∣∣ ≤ b∗ = logmax{c−1

0 , b−1
y }.

By Lemma J.10, we have that

KL
(
P(· | prompt) ∥Pθ̂(· | prompt)

)
≤ (3 + b∗)/2 · TV

(
P(· | prompt),Pθ̂.(· | prompt)

)
. (H.3)

35

Under review as a conference paper at ICLR 2024

By Assumption 6.1, we have that PDICL
(prompt) ≤ κPD(prompt). Thus, by Theorem 5.3, we have

with probability at least 1− δ that

EDICL

[
KL

(
P(· | prompt) ∥Pθ̂(· | prompt)

)]
≤ C · b∗ · κ · ES∼D

[
TV

(
P(· |S),Pθ̂.(· |S)

)]
≤ C · b∗ · κ ·∆pre(N,T, δ). (H.4)

Combining (H.4), (H.1), and (H.2), we have with probability at least 1− δ that

EDICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑

t=1

logPθ̂(rt | promptt−1)
]

≤ β/T + ES∼D

[
KL

(
P(· |S) ∥Pθ̂(· |S)

)]
≤ O

(
β/T + b∗ · κ ·∆pre(N,T, δ)

)
, (H.5)

which completes the proof of Theorem 6.2.

H.2 ASSUMPTIONS AND FORMAL STATEMENT FOR PROMPTING WITH WRONG
INPUT-OUTPUT MAPPINGS

We first state assumptions for this setting.
Assumption H.1. Conditioned on any z ∈ Z, the input-output pairs are independent, i.e., for any
two input-output pair sequences St, S

′
t′ ∈ X∗, we have P((St, S

′
t′) | z) = P(St | z) · P(S′

t′ | z).
This assumption states that for any task z ∈ Z, the input-output pairs are independently generated.
This largely holds in realistic applications since the examples usually are independently produced.
It can be relaxed when there are more structures in the token generation process, e.g. the hidden
Markov model in Xie et al. (2021).
Assumption H.2. There exists a constant c1 > 0 such that PZ(z∗) ≥ c1.
This assumption states that the prior distribution of the hidden concept z∗ is strictly larger than 0, oth-
erwise this concept can never be deduced. For two concepts z, z′ ∈ Z, we define the KL divergence
between the conditional distributions of input-output pair on them as KLpair(P(· | z)∥P(· | z′)) =
EX,y∼P(· | z)[log(P(X, y | z)/P(X, y | z′))]. This divergence measures the distance between distri-
butions of input-output pairs conditioned on different tasks z and z′.
Assumption H.3. The concept z∗ satisfies that minz ̸=z∗ KLpair(P(· | z∗) ∥P(· | z)) > 2 log 1/c0,
where c0 is the constant in Assumption 5.2.
This distinguishability assumption requires that the divergence between z∗ and other concepts z is
large enough to infer the concept z∗ from the prompt. We denote the pretraining error in Theorem 5.3
as ∆pre(Np, Tp, δ), then we have the following result.
Proposition H.4. Under Assumptions 5.2, 6.1 H.1, H.2, and H.3, the pretrained model Pθ̂ in (5.2)
predicts the outputs with the prompt containing wrong mappings as

Eprompt′

[
KL

(
P(· | c̃t+1, z∗)∥Pθ̂(· |S

′
t, c̃t+1)

)]
=O

(
κ∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
with probability at least 1− δ.

H.3 PROOF OF PROPOSITION H.4

Proof of Proposition H.4. From Bayesian model averaging, the output distribution is
P(rt+1 |S′

t, c̃t+1)

=
∑
z∈Z

P(rt+1 | c̃t+1, z) · PZ(z |S′
t)

= P(rt+1 | c̃t+1, z
∗) +

∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z |S′

t)

= P(rt+1 | c̃t+1, z
∗) +

∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z

∗ |S′
t) ·

PZ(z) · P(S′
t | z)

PZ(z∗) · P(S′
t | z∗)

,

(H.6)

36

Under review as a conference paper at ICLR 2024

where the first equality results from Bayesian model averaging, the last equality results from Bayes’
theorem. Next, we upperbound the ratio P(S′

t | z)/P(S′
t | z∗) in the right-hand side of Eqn. (H.6).

We have that

1

t
log

P(S′
t | z)

P(S′
t | z∗)

=
1

t

t∑
i=1

log
P
(
(c̃i, r

′
i) | z

)
P
(
(c̃i, r′i) | z∗

) ≤ −2 log c0 +
1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) ,
where the equality results from Assumption H.1, and the inequality results from Assumption 5.2.
Assumption 5.2 also implies that | logP((c̃i, ri) | z)/P((c̃i, ri) | z∗)| ≤ (1 + l) log 1/c0. Hoeffding
inequality shows that with probability at least 1− δ, we have

1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) + KLpair
(
P(· | z∗) ∥P(· | z)

)
≤ (1 + l)√

t
log

1

c0
· log 1

δ
.

Thus, we have that with probability at least 1− δ, the following holds for all z ̸= z∗

P(S′
t | z)

P(S′
t | z∗)

≤ exp

(
− t

(
KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

))
.

Combining this inequality with Eqn. (H.6), we have that

TV
(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)

= O
(

1

c1
exp

(
− t

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

)))
.

(H.7)

Taking expectations with respect to the distribution of S′
t, c̃t+1 on the both sides in (H.7), we have

that

Eprompt′

[
TV

(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)]

= O
(

1

c1
exp

(
− t

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

)))
+ δ.

(H.8)

We set δ = |Z exp(−a
√
t/2b)|, where a = minz ̸=z∗ KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0, b =

−(1 + l) log c0. Then the right-hand side of (H.8) can be upper bounded as

Eprompt′

[
TV

(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)]

= O
(
exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
.

Let Eprompt′ [TV(P(· |S′
t, c̃t+1),Pθ̂(· |S

′
t, c̃t+1))] ≤ κ∆pre(Np, Tp, δ), where ∆pre(Np, Tp, δ) is the

bound in Theorem 5.3. Then we have that

Eprompt′

[
KL

(
P(· | c̃t+1, z

∗)∥Pθ̂(· |S
′
t, c̃t+1)

)]
≤ O

(
Eprompt′

[
TV

(
Pθ̂(· |S

′
t, c̃t+1),P(· | c̃t+1, z

∗)
)])

= O
(
κ∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
,

where the first equality results from Assumption 5.2. Thus, we conclude the proof of Proposi-
tion H.4.

I PROOF OF SUPPORTING PROPOSITIONS

I.1 PROOF OF PROPOSITION F.1

Proof. Let a, b be two vectors in the (d − 1)-dimensional unit sphere Sd−1. We first define the
following vector,

c = (a⊤b) · b−
(
a− (a⊤b) · b

)
∈ Sd−1. (I.1)

37

Under review as a conference paper at ICLR 2024

By direct calculation, we have the following property of c defined in (I.1),

c⊤b = (a⊤b) · ∥b∥22 − a⊤b+ (a⊤b) · ∥b∥22 = a⊤b. (I.2)

By (I.1) and (I.2), we have that

a+ c = 2(a⊤b) · b = 2(c⊤b) · b = (a⊤b) · b+ (c⊤b) · b. (I.3)

We now calculate the desired integration. Note that∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da+

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da. (I.4)

For the second term on the right-hand side of (I.4), it follows from (I.1) and (I.2) and (I.3) that∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
c− (c⊤b) · b

)
· exp(c⊤b)dc, (I.5)

where the equality follows from the fact that dc = 2∥b∥22da− da = da. By replacing c by a on the
right-hand side of (I.5), we have∫

Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = 0 (I.6)

Finally, by plugging (I.6) into (I.4), we obtain that∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da.

Thus, by setting

C1 =

∫
Sd−1

(a⊤b) exp(a⊤b)da, ∀b ∈ Sd−1,

we complete the proof of Proposition F.1. Note that here C1 is an absolute constant that does not
depend on b due to the symmetry on the unit sphere.

I.2 PROOF OF PROPOSITION G.2

Proof of Proposition G.2. We note that f(X) satisfies the condition in Lemma J.4 with ci = 2b/N
for i ∈ [N]. Then Lemma J.4 shows that

Ef∼P0

[
EX

(
exp

[
λ(f(X)− Ef(X))

])]
≤ exp

(
λ2 · b2 · tmin

2N

)
.

Take λ =
√
2N log 2/(b2tmin). The Markov inequality shows that

P

(
Ef∼P0

(
exp

[
λ(f(X)− Ef(X))

])
≥ 2

δ

)
≤ δ

for any 0 < δ < 1. We note that this probability inequality does not involve P . Take the function g
in Lemma J.3 as g(f) = λ(f(X)− Ef(X)), then it shows that

logEP0

[
exp

(
g(X)

)]
+ KL(P ∥P0) ≥ EP

[
g(X)

]
for any P simultaneously. Combining these inequalities, we have

∣∣∣EP

[
EX

[
f(X)

]
− f(X)

]∣∣∣ ≤
√

b2 · tmin

2 log 2N

[
KL(P ∥P0) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1 − δ. Thus, we conclude the
proof of Proposition G.2.

38

Under review as a conference paper at ICLR 2024

I.3 PROOF OF PROPOSITION G.1

Proof of Proposition G.1 . We analyze the error layer by layer in the neural network. Denote the
outputs of each layer in the networks parameterized by θ and θ̃ as X(t) and X̃(t), respectively. In
the final layer, we have that

TV
(
Pθ(· |X), Pθ̃(· |X)

)
≤ 2

∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1) − 1

Lτ
I⊤L X̃(D)Ã(D+1)

∥∥∥∥
∞

≤ 2

τ

[∥∥A(D+1),⊤∥∥
1,2

·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥

1,2

]
,

where the first inequality results from Lemma J.6, and the second inequality results from Lemma J.7
and that ∥X(D),⊤∥2,∞ ≤ 1 due to the layer normalization. In the following, we build the recursion
relationship between ∥X(t),⊤ − X̃(t),⊤∥2,∞ for t ∈ [D].

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞
≤

∥∥ffn(Y (t+1), A(t+1))⊤ − ffn(Ỹ (t+1), Ã(t+1))⊤
∥∥
2,∞ + |γ(t+1)

2 − γ̃
(t+1)
2 |+

∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥
2,∞

≤ |γ(t+1)
2 − γ̃

(t+1)
2 |+

∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥
2,∞ +BA,1 ·BA,2 · ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞

+BA,2 · ∥A(t+1)
1 − Ã

(t+1)
1 ∥F +BA,1 · ∥A(t+1)

2 − Ã
(t+1)
2 ∥F, (I.7)

where the first inequality results from the triangle inequality and that Πnorm is not expansive, the
second inequality results from the following proposition

Proposition I.1. For any X, X̃ ∈ RL×d, A1, Ã1 ∈ Rd×dF , and A2, Ã2 ∈ RdF×d, we have that∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ ∥A1∥F · ∥A2∥F · ∥X⊤ − X̃⊤∥2,∞ + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃⊤∥2,∞
+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃⊤∥2,∞.

Proof of Proposition I.1. See Appendix I.5.

Next, we build the relationship between ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞ in the right-hand side of in-
equality (I.7) and ∥X(t),⊤ − X̃(t),⊤∥2,∞.

∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞
≤

∥∥mha(X(t),W (t+1))⊤ − mha(X̃(t), W̃ (t+1))⊤
∥∥
2,∞ + |γ(t+1)

1 − γ̃
(t+1)
1 |+

∥∥X(t),⊤ − X̃(t),⊤∥∥
2,∞

≤ |γ(t+1)
1 − γ̃

(t+1)
1 |+

∥∥X(t),⊤ − X̃(t),⊤∥∥
2,∞

+ h ·BV

(
1 + 4BQBK

)
∥X(t),⊤ − X̃(t),⊤∥2,∞ +

h∑
i=1

∥∥WV,(t+1)
i − W̃

V,(t+1)
i ∥F

+ 2BV ·BK

h∑
i=1

∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F + 2BV ·BQ

h∑
i=1

∥WK,(t+1)
i − W̃

K,(t+1)
i ∥F,

(I.8)

where the first inequality results from the triangle inequality, and the second inequality results from
Lemma J.8. Combining inequalities (I.7) and (I.8), we derive that

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞
≤ (1 +BA,1 ·BA,2)

(
1 + hBV (1 + 4BQBK)

)
∥X(t),⊤ − X̃(t),⊤∥2,∞ + βt+1 + ιt+1 + κt+1 + ρt+1.

This concludes the proof of Proposition G.1.

39

Under review as a conference paper at ICLR 2024

I.4 PROOF OF PROPOSITION G.9

Proof of Proposition G.9 . We analyze the error layer by layer in the neural network. Denote the
outputs of each layer in the networks parameterized by θ and θ̃ as X(t) and X̃(t), respectively. In
the final layer, we have that

∥fθ(X)− fθ̃(X)∥2
≤

∥∥Ã(D+1)
∥∥
F
·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1) − Ã(D+1)

∥∥
F
,

where the inequality results from Lemma J.7 and that ∥X(D),⊤∥2,∞ ≤ 1 due to the layer normaliza-
tion. The remaining proof just follows the procedures in the proof of Proposition G.1, and we have
that

∥fθ(X)− fθ̃(X)∥2

≤
∥∥A(D+1) − Ã(D+1)

∥∥
F
+

D∑
t=1

αt(βt + ιt + κt + ρt).

Thus, we conclude the proof of Proposition G.9.

I.5 PROOF OF PROPOSITION I.1

Proof of Proposition I.1. We have that∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ max
i∈[L]

[∥∥ReLU(Xi,:A1)A2 − ReLU(X̃i,:A1)A2

∥∥
2
+
∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 +

∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)A2

∥∥
2

+
∥∥ReLU(X̃i,:Ã1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃i,:∥2

+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃i,:∥2
]
,

where the first inequality results from the triangle inequality, the second and the last inequalities
result from Lemma J.7 and that ReLU is not expansive. Thus, we conclude the proof of Proposi-
tion I.1.

J TECHNICAL LEMMAS

Lemma J.1 (Caponnetto and De Vito (2007)). Let (Ω, ν) be a probability space and ξ be a random
variable on Ω taking value in a real separable Hilbert space H. We assume that there exists constants
B, σ > 0 such that ∥∥ξ(w)∥∥H ≤ B/2, a.s., E

[
∥ξ∥2H

]
≤ σ2.

Then, it holds with probability at least 1− δ that∥∥∥∥L−1
L∑

i=1

ξ(ωi)− E[ξ]
∥∥∥∥ ≤ 2

(
B

L
+

σ√
L

)
log

2

δ
.

Lemma J.2 (Proposition 4.5 in Duchi (2019)). Let F be the collection of functions of f : Rn → R.
For any f ∈ F , we define

µ(f) = EX

[
f(X)

]
, σ2(f) = EX

[
(f(X)− EX [f(X)])2

]
,

40

Under review as a conference paper at ICLR 2024

where the expectation is taken with respect to a random variable X ∼ ν on (Rn,B(Rn)). Assume
that |f(X)− µ(f)| ≤ b a.s. for some constant b ∈ R for all f ∈ F . Then for any 0 < λ ≤ 1/(2b),
given a distribution P0 on F , with probability at least 1− δ, we have∣∣∣∣EQ

[
EX [f(X)]− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λEQ

[
σ2(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

for any distribution Q on F , where Xi are i.i.d. samples of ν. If the function class F further satisfies
σ2(f) ≤ cµ(f) for some constant c ∈ R for all f ∈ F , we have∣∣∣∣EQ

[
EX

[
f(X)

]
− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λcEQ

[
µ(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

with probability at least 1− δ.
Lemma J.3 (Donsker–Varadhan representation in Belghazi et al. (2018)). Let P and Q be distribu-
tions on a common space X . Then

KL(P ∥Q) = sup
g∈G

{
EP

[
g(X)

]
− logEQ

[
exp

(
g(X)

)]}
,

where G = {g : X → R | EQ[exp(g(X))] < ∞}.
Lemma J.4 (Corollary 2.11 in Paulin (2015)). Let X = (X1, · · · , XN) be a Markov chain, taking
values in Λ =

∏N
i=1 Λi with mixing time tmix(ε) for ε ∈ [0, 1]. Let

tmin = inf
0≤ε<1

tmix(ε) ·
(
2− ε

1− ε

)2

.

If function f : Λ → R is such that f(x) − f(y) ≤
∑N

i=1 ciIxi ̸=yi
for every x, y ∈ Λ, then for any

λ ∈ R,

logE
(
exp

[
λ(f(X)− Ef(X))

])
≤ λ2 · ∥c∥22 · tmin

8
.

For any t ≥ 0, we have

P
(∣∣f(X)− Ef(X)

∣∣ ≥ t
)
≤ 2 exp

(
−2t2

∥c∥22 · tmin

)
.

Lemma J.5 (Lemma 25 in Agarwal et al. (2020)). For any two conditional probability densities
P (· |X), P ′(· |X) and any distribution ν ∈ ∆(X),we have

Eν

[
TV

(
P (· |X), P ′(· |X)

)2]≤−2 log

(
EX∼ν,Y∼P (· |X)

[
exp

(
− 1

2
log

P (Y |X)

P ′(Y |X)

)])
.

Lemma J.6 (Corollary A.7 in Edelman et al. (2021)). For any x, y ∈ Rd, we have

∥softmax(x)− softmax(y)∥1 ≤ 2∥x− y∥∞.

Lemma J.7 (Lemma 17 in Zhang et al. (2022a)). Given any two conjugate numbers u, v ∈ [1,∞],
i.e., 1

u + 1
v = 1, and 1 ≤ p ≤ ∞, for any A ∈ Rr×c and x ∈ Rc, we have

∥Ax∥p ≤ ∥A∥p,u∥x∥v and ∥Ax∥p ≤ ∥A⊤∥u,p∥x∥v.

Lemma J.8 (Propositions 20 and 21 in Zhang et al. (2022a)). For any X, X̃ ∈ RL×d, and any
WQ

i , W̃Q
i ,WK

i , W̃K
i ∈ Rd×dh ,WV

i , W̃V
i ∈ Rd×d for i ∈ [h] , if ∥X⊤∥p,∞, ∥X̃⊤∥2,∞ ≤ BX ,

∥WQ
i ∥F, ∥W̃Q

i ∥F ≤ BQ, ∥WK
i ∥F, ∥W̃K

i ∥F ≤ BK , ∥WV
i ∥F, ∥W̃V

i ∥F ≤ BV for i ∈ [h], then we
have ∥∥∥(mha(X,W)− mha(X̃, W̃)

)⊤∥∥∥
2,∞

≤ h ·BV

(
1 + 4B2

X ·BQBK

)
∥X⊤ − X̃⊤∥2,∞ +BX

h∑
i=1

∥∥WV
i − W̃V

i ∥F

+ 2B3
X ·BV ·BK

h∑
i=1

∥WQ
i − W̃Q

i ∥F + 2B3
X ·BV ·BQ

h∑
i=1

∥WK
i − W̃K

i ∥F.

41

Under review as a conference paper at ICLR 2024

Lemma J.9 (Lemma A.6 in Elbrächter et al. (2021)). For a, b ∈ R with a < b, let

S[a,b] =
{
f ∈ S∞([a, b],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
.

There exists a constant C > 0 such that for all a, b ∈ R with a < b, f ∈ S[a,b], and ε ∈ (0, 1/2),
there is a fully connect network Ψf such that

∥f −Ψf∥∞ ≤ ε,

with the depth of the network as D(Ψf) ≤ Cmax{2, b − a}(log ε−1)2 + log(⌈max{|a|, |b|}⌉) +
log(⌈1/(b−a)⌉), the width of the network as W (Ψf) ≤ 16, and the maximal weight in the network
as B(Ψf) ≤ 1.
Lemma J.10. Let b = supx log(p(x)/q(x)). We have that

KL(p ∥ q) ≤ 2(3 + b) · TV(p, q). (J.1)

Proof. We let f(t) = log t and g(t) = |1/t− 1|. Then, for 0 ≤ t ≤ exp(b), we have that

sup
0≤t≤exp(b)

f(t)

g(t)
= sup

0≤t≤exp(b)

log t

|1/t− 1|
= sup

1≤t≤exp(b)

t log t

t− 1
≤ 2(b+ 3).

Note that KL(p ∥ q) = Ep[f(p(x)/q(x))] and TV(p, q) = Ep[g(p(x)/q(x))], which concludes the
proof.

42

	Introduction
	Related Work
	Preliminary
	In-Context Learning via Bayesian Model Averaging
	Attention Parameterizes Bayesian Model Averaging

	Theoretical Analysis of Pretraining
	Pretraining Algorithm
	Performance Guarantee for Pretraining

	ICL Regret under Practical Settings
	ICL Regret with an Imperfectly Pretrained Model
	Prompting with Wrong Input-Output Mappings

	Conclusion
	More Related Works
	Experimental Results
	Verification of the Bayesian View
	Verification of the Regret Bound
	Verification of the Constant Ratio between attn and attn

	Implementation Details of Experiments
	Figure for Pretraining and icl
	Proofs for Section 4.1
	Introduction of Conditional Mean Embedding
	Proof of Proposition 4.1
	Proof of Corollary 4.2
	Proof of Proposition 4.3

	Appendix for Section 5
	Supplemental Definitions for Markov Chains
	Proof of Theorem 5.3
	Formal Statement and Proof of Proposition 5.4
	Pretraining Results for 2 Loss
	Pretraining Algorithm with 2 Loss
	Performance Guarantee for Pretraining with 2 Loss
	Proof of Theorem G.6
	Proof of Proposition G.8

	Proofs and Formal Statements for §6
	Proof of Theorem 6.2
	Assumptions and Formal Statement for Prompting With Wrong Input-Output Mappings
	Proof of Proposition H.4

	Proof of Supporting Propositions
	Proof of Proposition F.1
	Proof of Proposition G.2
	Proof of Proposition G.1
	Proof of Proposition G.9
	Proof of Proposition I.1

	Technical Lemmas

