
Under review as a conference paper at ICLR 2024

Appendix for
“What and How does In-Context Learning Learn? Bayesian

Model Averaging, Parameterization, and Generalization”

A CONCLUSION

In this paper, we investigated the theoretical foundations of ICL for the pretrained language models.
We proved that the perfectly pretrained LLMs implicitly implements BMA with regret O(1/t) over
a general response generation modeling, which subsumes the models in previous works. Based on
this, we showed that the attention mechanism parameterizes the BMA algorithm. Analyzing the
pretraining process, we demonstrated that the total variation between the pretrained model and the
nominal distribution consists of the approximation error and the generalization error. The combi-
nation of the ICL regret and the pretraining performance gives the full description of ICL ability of
pretrained LLMs. We mainly focus on the prompts that comprise several examples in this work and
leave the analysis of instruction-based prompts for future works.

B MORE RELATED WORKS

Transformers. Our work is also related to the works that theoretically analyze the performance of
transformers. For the analytic properties of transformers, Vuckovic et al. (2020) proved that attention
is Lipschitz-continuous via the view of interacting particles. Noci et al. (2022) provided the theoret-
ical justification of the rank collapse phenomenon in transformers. Yun et al. (2019) demonstrated
that transformers are universal approximators. For the statistical properties of transformers, Malladi
et al. (2022), Hron et al. (2020), and Yang (2020) analyzed the training of transformers within the
neural tangent kernel framework. Wei et al. (2022a) presented the approximation and generaliza-
tion bounds for learning boolean circuits and Turing machines with transformers. Edelman et al.
(2021) and Li et al. (2023) derived the generalization error bound of transformers. In our work, we
analyze transformers from both the analytic and statistical sides. We show that attention essentially
implements the BMA algorithm in the ICL setting. Furthermore, we derive the approximation and
generalization bounds for transformers in the pretraining phase.

Generalization. Our analysis of the pretraining is also related to the generalization analysis of the
neural networks. This topic has attracted a lot of interests for a long time. Anthony et al. (1999)
derived the uniform generalization bound for fully-connected neural networks with the help pf VC
dimension. Bartlett et al. (2017) sharpened this generalization bound for classification problem
by adopting the Dudley’s integral and calculating of the covering number of neural network class.
At the same time, Neyshabur et al. (2017) derived a similar as Bartlett et al. (2017) from PAC-
Bayes framework. Following this line, Liao et al. (2020) , Ledent et al. (2021) and Lin and Zhang
(2019) built the generalization bound for graph neural networks and convolutional neural network.
These results respected the underlying graph structure and the translation-invariance in the networks.
Edelman et al. (2021) established the generalization bound for transformer, but this result did not
reflect the permutation-invariance, still depending on the channel number. Our work focuses on
the analysis of Maximum Likelihood Estimate (MLE) with transformer function class, which is not
covered by previous works. Our bounds are sharper than that of Edelman et al. (2021) on the channel
number dependency.

C EXPERIMENTAL RESULTS

We conduct five experiments to verify our theoretical findings, including the Bayesian view (Propo-
sitions 4.1 and (4.7)), the regret upper-bounded in Corollary 4.2 and Theorem 6.2, and the constant
ratio between attn† and attn in Proposition 4.3. The implementation details are provided in Ap-
pendix D.

C.1 VERIFICATION OF THE BAYESIAN VIEW

To verify the Bayesian view that we adopt in the paper, we implemented two experiments. In
the first experiment, we explicitly construct the hidden concept vectors that are found by LLMs.

14

Under review as a conference paper at ICLR 2024

Figure 1: Accuracies of LLMs with and without
explicit hidden concepts.

Figure 2: Accuracy of LLMs to find the best arm
in the bandit instance with an informative arm.

Motivated by (4.7), we construct the hidden concept vector as the average sum over prompts of the
values of twenty selected attention heads, i.e., we compress the hidden concept into a vector with
dimension 4096. To demonstrate the effectiveness of the constructed hidden concepts, we add these
hidden concept vectors at a layer of LLMs when the model resolves the prompt with zero-shot.
In Figure. 1, “zs-hc” refers to the results of LLMs that infers with learned hidden concept vectors
and zero-shot prompt, and “ICL-i” refers to the results of LLMs prompted with i examples. We
consider the tasks of finding antonyms, finding the capitals of countries, and finding the past tense
of words. The results indicate that the LLMs with learned hidden concept vectors have comparable
performance with the LLMs prompted with several examples. This indicates that the learned hidden
concept vectors are indeed efficient compression of the hidden concepts, which proves that LLMs
deduce hidden concepts for ICL. This result strongly corroborates with (4.7).

In the second experiment, we aim to verify that LLMs implement inference with the Bayesian frame-
work, not with gradient descent (Akyürek et al., 2022; von Oswald et al., 2022; Bai et al., 2023) on
some tasks. We prompt the LLMs with the history data of a set of similar multi-armed bandit in-
stances with 100 arms, and let LLMs indicate which arm to pull in a similar new bandit instance. In
these similar bandit instances, there is an informative arm, whose reward is exactly the index of the
arm with the highest rewards. We also provide the side information that “Some arm may directly tell
you the arm with the highest reward, even itself does not have the highest reward”. In each example
provided in the prompt, there are the rewards of six arms, including the informative arm and the best
arm, in one bandit instance. As shown in Figure 2, the LLMs can efficiently implement ICL even
with only 6 examples. We note that the gradient descent algorithms in the previous works cannot
explain this performance, since the gradient descent algorithms need at least 100 data points, where
each data point is the reward of one arm, to learn. In contrast, the Bayesian view can clearly explain
Figure 2, where LLMs make use of the side information to calculate a better posterior for ICL.

C.2 VERIFICATION OF THE REGRET BOUND

To verify Corollary 4.2 and Theorem 6.2, we implement experiments to evaluate the regret in two
settings. In the first setting, the LLMs is trained for the linear regression task from scratch, which
is a representative setting studied in Garg et al. (2022); Akyürek et al. (2022). The examples in
the prompt are {(xi, yi)}Ni=1, where xi ∈ Rd, d = 20 and yi = wTxi for some w sampled from
Gaussian distribution. Given the Gaussian model, we adopt the squared error to approximate the
logarithm of the probability. Then the t× regret of the LLMs can be well approximated by the sum
of the squared error till time t. The results in Figure 3 strongly corroborate our theoretical findings.
First, the results verify our claim in Corollary 4.2 and Theorem 6.2 that t · regret can be upper
bounded by a constant. Second, the line of squared error indicates that the ICL of LLMs only has
a significant error when T ≤ d, i.e., the regret only increases in this region. Thus, the regret of the
ICL by LLMs is at most linear in O(d/T). From the view of our theoretical result, discretizing the
set {z ∈ Rd | ∥z∥2 ≤ d} with approximation error δ > 0 will result in a set with (C/δ)d elements,
where C > 0 is an absolute constant. Corollary 4.2 and Theorem 6.2 imply that the regret is the sum
of the log |Z|/T = d log(C/δ)/T and the pretraining error, which matches the simulation results.

15

Under review as a conference paper at ICLR 2024

Figure 3: Squared error and re-
gret of LLMs trained for linear
regression.

Figure 4: Cumulative negative
log-likelihoods of pretrained
LLMs for function value pre-
diction.

Figure 5: The ratio between
attn† and attn.

In the second experiment, we directly evaluate the regret of pretrained LLMs on the function value
prediction task. The prompt consists of the values of a function on the points with fixed inter-
vals. Since the values are real numbers, we adopt the method in Gruver et al. (2023) to transfer a
real number to a token sequence. For the pretrained model, we cannot calculate P(ri | prompti−1, z)
due to the unknown nominal distributions. Thus, we calculate the cumulative negative log-likelihood
CNLLt = −

∑t
i=1 P̂(ri | prompti−1), and CNLLt/t is an upper bound of the regret. In Figure 4,

we indicate the cumulative negative log-likelihoods of predicting the values of five functions. The
results show that the cumulative negative log-likelihoods are stepped, which means that the cumu-
lative negative log-likelihoods are upper-bounded by constants in a long period. This corroborates
with Corollary 4.2 and Theorem 6.2. In addition to the mentioned property, we also observe that
there are connections between the cumulative negative log-likelihood and the prediction error. We
let the LLMs to predict the value given the prompt that contains the past values. Figures 6 and 7
show that the larger cumulative negative log-likelihood implies a larger prediction error.

C.3 VERIFICATION OF THE CONSTANT RATIO BETWEEN attn† AND attn

To verify Proposition 4.3, we directly calculate the ratio between attn† and attn. We consider the
case dv = 1 and dk = d for some d > 0. The entries in K of (4.8) are i.i.d. samples of Gaussian
distribution, and the i−th entry of V is calculated as the inner product between a Gaussian vector
and the i−th column. Figure 5 shows the results for d = 2 and d = 3. It shows that the ratio
between attn† and attn will converge to a constant. This constant depends on the dimension d,
which originates from Proposition F.1.

D IMPLEMENTATION DETAILS OF EXPERIMENTS

In this section, we provide the implementation details of the experiments. In the hidden concepts
construction experiment, we explicitly calculate the hidden concept vector for Llama2-7b with the
method in Todd et al. (2023). Given the prompts generated from the same hidden concept, we
calculate the average value of each attention head by prompting the LLM with different prompts.
Then we select the attention head according to its average indirect effect, which is defined in Todd
et al. (2023). The hidden concept vector is the sum of the average value of the selected attention
heads. We test the performance of the learned hidden concept vectors on tasks: (1) Antonym: Given
an input word, generate the word with the opposite meaning. (2) Country-Capital. Given a country
name, generate the capital city. (3) Present-Past. Given a verb in the present tense, generate the
verb’s simple past inflection. To test the effectiveness of the learned hidden concept vector, we
prompt the LLM only with the query, i.e., the zero-shot case, and set the attention head values at
some layer as the learned hidden concept vector.

In the bandit experiment, we ask GPT-4 for the procedures to find the arm with the highest reward.
In each bandit instance, there is an informative arm, whose reward is exactly the index of the best
arm. When prompting models, we provide the historical data of several bandit instances that share
the same informative arm and ask models to specify how we should play in a similar bandit instance.
A prompt sample with two examples is provided as follows.

16

Under review as a conference paper at ICLR 2024

Figure 6: Cumulative negative log-likelihood
and the prediction values for y = x.

Figure 7: Cumulative negative log-likelihood
and the prediction values for y = exp(x2/2) ·
sin(x).

Your goal is to find the index of the arm with the highest reward, but the pulled arm
may not have the highest reward. I will provide you with the past pull history on other
bandits. The format of the history data on each bandit is [arm, reward]. Different pulls are
separated by a comma. For example, [5,6] indicates that arm 5 will give us a reward of 6
by pulling it.
You should learn from history and tell me which arm to pull in the current bandit to find
the arm with the highest reward. The history data is as follows.
Bandit:
[77, 871], [95, 613], [75, 655], [17, 449], [31, 13], [13, 1028]
Bandit:
[40, 698], [44, 88], [80, 147], [94, 265], [24, 1063], [31, 24]
Different bandits can have different rewards for each arm, but all bandits share a common
pattern. Some arm may directly tells you the arm with the highest reward, even itself
does not have the highest reward. Now I am playing a new bandit. This bandit will have
different rewards than the bandits in history, but they share the same pattern. Tell me
which arm to pull to find the arm with the highest reward. Tell me the final answer that
only contains the index of the arm in a single line without any additional text.

In the above prompt, the arm 31 always returns the index of the best arm. Thus, we expect LLMs
to tell us to pull arm 31 to find the best arm. The number of arms in each instance is 100, and
each example only provides information about six arms in each instance. We repeat the prompt with
different data ten times to plot Figure 2.

For the linear regression task, the model is trained with the loss

L(f) =
1

T

T∑
t=1

(
yt − f(promptt)

)2
,

where promptt = (x1, y1, · · · , xt−1, yt−1, xt), yt = wTxt, {xt}Tt=1 and w are i.i.d. samples of
Gaussian distribution (Garg et al., 2022). The model is designed based on GPT-2, and we add linear
layers as the first and last layers to accommodate it for the value prediction task. In the testing phase,
we sample w∗ and {xt}Tt=1 from the Gaussian distribution and let the model predict the response
value of a query xt+1 given the previous examples {xi, yi}ti=1. We reuse the code and model in
Garg et al. (2022) for the experiments. The error bar in Figure 3 is derived from 90% confidence
intervals over 1000 bootstrap trials.

In the function value prediction task, we adopt the method in Gruver et al. (2023) to transfer the real
number into tokens. We separate the digits with spaces and add commas ’,’ between the function
values at different times. We calculate the negative likelihood of text-DaVinci-003 by extracting the
probability value in the last layer of it. We note that the negative likelihood in Figure 4 takes every
token into account, including the separating spaces between the digits.

In the experiment about the ratio between attn† and attn, we set WQ, WK and WV in attn all
as the identity matrix. The entries in the K of (4.8) are i.i.d. samples of the normal distribution,
and the i−th entry of V is calculated as the inner product between a Gaussian vector and the i−th
column. The Gaussian vector is sampled from N (0, I). The error bar in Figure 3 is derived from
75th and 25th percentiles over 500 trials.

17

Under review as a conference paper at ICLR 2024

E FIGURE FOR PRETRAINING AND ICL

Figure 8: To form the pretraining dataset, a hidden concept z is first sampled according to PZ, and a
document is generated from the concept. Taking the token sequence St up to position t ∈ [T] as the
input, the LLM is pretrained to maximize the next token xt+1. During the ICL phase, the pretrained
LLM is prompted with several examples to predict the response of the query.

F PROOFS FOR SECTION 4.1

F.1 INTRODUCTION OF CONDITIONAL MEAN EMBEDDING

Let Hk and Hv be the two RKHSs over the spaces Q and V with the kernels K and L, respectively.
We denote by ϕ : Q → ℓ2 and φ : V → ℓ2 the feature mappings associated with Hk and Hv ,
respectively. Here l2 is the space of the square-integrable function class. Then it holds for any
k, k′ ∈ Q and v, v′ ∈ V that

ϕ(k)⊤ϕ(k′) = K(k, k′), φ(v)⊤φ(v) = L(v, v′). (F.1)
Let PK,V be the joint distribution of the two random variables K and V taking values in Q and
V, respectively. Then the conditional mean embedding CME(q,PK,V) ∈ Hv of the conditional
distribution PV |K is defined as

CME(q,PK,V) = E
[
L(V, ·)

∣∣K = q
]
.

The conditional mean embedding operator CV |K : Hk → Hv is a linear operator such that

CV |KK(q, ·) = CME(q,PK,V),

for any q ∈ Q. We define the (uncentered) covariance operator CKK : Hk → Hk and the (uncen-
tered) cross-covariance operator CVK : Hk → Hv as follows,

CKK = E
[
K(K, ·)⊗ K(K, ·)

]
, CVK = E

[
L(V, ·)⊗ K(K, ·)

]
.

Here ⊗ is the tensor product. Song et al. (2009) shows that CV |K = CVKC
−1
KK. Thus, we have that

CME(c,PK,V) = CVKC
−1
KKK(c, ·). (F.2)

For i.i.d. samples {(kℓ, vℓ)}ℓ∈[L] of PK,V , ∥·∥HS denotes the Hilbert-Schmidt norm, we write
ϕ(K) = (ϕ(k1), . . . , ϕ(kL))⊤ ∈ RL×dϕ and φ(V) = (ϕ(v1), . . . , ϕ(vL))⊤ ∈ RL×dφ . Then
the empirical covariance operator ĈKK and empirical cross-covariance operator ĈVK are defined as

ĈKK = L−1
L∑

ℓ=1

ϕ(kℓ)ϕ(kℓ)⊤ = L−1ϕ(K)⊤ϕ(K) ∈ Rdϕ×dϕ

ĈVK = L−1
L∑

ℓ=1

φ(vℓ)φ(kℓ)⊤ = L−1φ(V)ϕ(K)⊤ ∈ Rdφ×dϕ . (F.3)

The empirical version of the conditional operator is

Ĉλ
V |K = φ(Y)⊤ϕ(X)

(
ϕ(X)⊤ϕ(X) + λI

)−1
= ĈVK(ĈKK + L−1λI)−1 ∈ Rdφ×dϕ .

18

Under review as a conference paper at ICLR 2024

F.2 PROOF OF PROPOSITION 4.1

Proof. By (4.1), we have that

P(rt+1 | promptt) =
∫

P(rt+1 |ht+1, promptt)P(ht+1 | promptt)dht+1 (F.4)

=

∫
P(rt+1 | c̃t+1, ht+1)P(ht+1 |St)dht+1

=

∫
P(rt+1 | c̃t+1, ht+1)P(ht+1 |St, z)P(z |St)dht+1dz

=

∫
P(rt+1 | c̃t+1, ht+1, St, z)P(ht+1 |St, z)dht+1P(z |St)dz

=

∫
P(rt+1 | c̃t+1, St, z)P(z |St)dz, (F.5)

where the first inequality results from the Bayes rule, the second equality results from the fact that
rt+1 is conditionally independent with the previous history given ht+1, c̃t+1 and the fact that ht+1

only parameterizes the transition kernel of rt+1 given ct+1 in (4.1), the fourth equality results from
the fact that rt+1 is conditionally independent with the other variables given ht+1, c̃t+1, and the last
equality results from the Bayes’ rule.

F.3 PROOF OF COROLLARY 4.2

Proof. Note that

P(z |St) =
P(St | z)PZ(z)∫

P(St | z′)PZ(z′)dz′
=

∏t
i=1 P(ri | z, St, ci)PZ(z)∫ ∏t

i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′
,

where the second equality results from the fact that the hidden variable z only parameterizes the
conditional probability of rt given ct, ct and z are independent. Then, by Bayesian model
averaging, we have the following density estimation,

P(rt+1 |St, ct+1) =

∫
P(rt+1 | z, St, ct+1)P(z |St)dz

=

∫ ∏t+1
i=1 P(ri | z, Si−1, ci)PZ(z)dz∫ ∏t

i=1 P(ri | z′, Si−1, ci)PZ(z′)dz′
.

Thus, it holds that

−
T∑

t=0

logP(rt+1 | ct+1, St) = −
t∑

i=1

(
log

∫ t+1∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz − log

∫ t∏
i=1

P(ri | z, Si−1, ci)PZ(z)dz

)

= − log

∫ T∏
t=0

P(ri | z, Si−1, ci)PZ(z)dz

= inf
q
Ez∼q

[
−

T+1∑
i=1

logP(ri | z, Si−1, ci)

]
+ Ez∼q

[
log

q(z)

PZ(z)

]
,

where the second equality results from the fact that P(rt+1 | ct+1, St) =
∫
P(r1 | c1,z)P(z)dz

1 ., and the
last equality results from the standard Lagrangian arguments.

We consider q to be in the class of all Dirac measures. Then, we have that

− 1

T

T∑
t=1

logP(rt | ct, St−1) ≤
1

T
inf
z

(
−

T∑
t=1

logP(rt | z, St−1, ct)− logPZ(z)
)
.

Thus, the statistical convergence rate of the Bayesian posterior averaging is O(1/T).

19

Under review as a conference paper at ICLR 2024

F.4 PROOF OF PROPOSITION 4.3

Proof. The proof of Proposition 4.3 mainly involves two steps

• Build the relationship between attn† and conditional mean embedding.

• Build the relationship between the attn and conditional mean embedding.

Step 1: Build the relationship between attn† and conditional mean embedding.

In the following, we adopt Hk and Hv to denote the RKHSs for the key and the value with the kernel
functions K and L, respectively. Also, we use ∥ · ∥ to denote the norm of RKHS for an element in
the corresponding RKHS and the operator norm of the operators that transform elements between
RKHSs. For the value space, we adopt the Euclidean kernel L(v, v′) = v⊤v′, and the feature
mapping φ is the identity mapping. Recall the definition of the empirical covariance operator and
the empirical cross-covariance operator in Appendix F.1. For keys and values, we correspondingly
define them as

ĈKK = L−1ϕ(K)⊤ϕ(K), ĈVK = L−1φ(V)⊤ϕ(K), ĈVV = L−1φ(V)⊤φ(V),

where ϕ(K) = (ϕ(k1), . . . , ϕ(kL))⊤ ∈ RL×dϕ and φ(V) = (φ(v1), . . . , φ(vL))⊤ ∈ RL×dφ By
the definition of the newly defined attention in Section 4.1, we have that

attn†(q,K, V) = ĈVK(ĈKK + L−1λI)−1ϕ(q),

which implies that attn† recovers the empirical conditional mean embedding. By (F.2), it holds
that ∥∥attn†(q,K, V)− CME(q,PK,V)

∥∥
≤

∥∥ĈVK(ĈKK + L−1λI)−1ϕ(q)− CVK(CKK + L−1λI)−1ϕ(q)
∥∥︸ ︷︷ ︸

(i)

+
∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC

−1
KKK(q, ·)

∥∥︸ ︷︷ ︸
(ii)

. (F.6)

Upper bounding term (i) of (F.6). Following the proof from Song et al. (2009), we only need to
upper bound ∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1∥. It holds that∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥ (F.7)

≤
∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1

∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.
Considering the first term on the right-hand side of (F.7), we have the operator decomposition
ĈVK = Ĉ

1/2
VV WĈ

1/2
KK for W such that ∥W∥ ≤ 1. This decomposition implies that∥∥ĈVK(ĈKK + L−1λI)−1(ĈKK − CKK)(CKK + L−1λI)−1

∥∥
≤ ∥ĈVV∥1/2 ·

∥∥Ĉ1/2
KK(ĈKK + L−1λI)−1/2

∥∥ ·
∥∥(ĈKK + L−1λI)−1/2

∥∥ ·
∥∥(ĈKK − CKK)(CKK + L−1λI)−1

∥∥
≤ (L−1λ)−1/2 ·

∥∥(ĈKK − CKK)(CKK + L−1λI)−1
∥∥, (F.8)

where the last inequality follows from the fact that

∥ĈVV∥2 = L−1
L∑

ℓ=1

∥vℓ∥22 ≤ 1, ĈKK(ĈKK + L−1λI)−1 ≤ I, (ĈKK + L−1λI)−1 ≤ (L−1λ)−1I.

Combining (F.8) and (F.7), we have∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1
∥∥ (F.9)

≤ (L−1λ)−1/2 ·
∥∥(ĈKK − CKK)(CKK + L−1λI)−1

∥∥+
∥∥(ĈVK − CVK)(CKK + L−1λI)−1

∥∥.
20

Under review as a conference paper at ICLR 2024

In the following, we will upper bound the second term on the right-hand side of (F.9) with Lemma
J.1. For this purpose, we define ξ : Rdp × Rd → Hk ⊗Hv as follows,

ξ(k, v) = φ(v)ϕ(k)⊤(CKK + L−1λI)−1.

Since the operator norm of (CKK + L−1λI)−1 is upper bounded by (L−1λ)−1, we have that∥∥ξ(k, v)∥∥ =
∥∥(CKK + L−1λI)−1

∥∥ ·
∥∥φ(v)∥∥ ·

∥∥ϕ(k)∥∥ ≤ C · (L−1λ)−1,

where C > 0 is an absolute constant. Additionally, we can bound the expectation of the squared
norm of ξ(k, v) as

E
[∥∥ξ(k, v)∥∥2] = E

[∥∥ϕ(k)⊤(CKK + L−1λI)−1
∥∥2 · ∥∥φ(v)∥∥2]

≤ E
[∥∥(CKK + L−1λI)−1ϕ(k)

∥∥2]
≤ (L−1λ)−1 · E

[〈
(CKK + L−1λI)−1ϕ(k), ϕ(k)

〉]
.

Using the definition of the trace operator, we have

E
[∥∥ξ(k, v)∥∥2] ≤ E

[
tr
(
(CKK + L−1λI)−2ϕ(k)ϕ(k)⊤

)]
≤ (L−1λ)−1 · tr

(
(CKK + L−1λI)−1CKK

)
= (L−1λ)−1 · Γ(L−1λ).

Here Γ(L−1λ) is the effective dimension of CKK in Caponnetto and De Vito (2007), which is defined
as follows,

Γ(L−1λ) = tr
(
(CKK + L−1λI)−1CKK

)
.

We apply Lemma J.1 with B = C(L−1λ)−1 and σ2 = (L−1λ)−1 · Γ(L−1λ), then we have that
with probability at least 1− δ, the following holds∥∥ĈVK(CKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥ ≤ C ·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
, (F.10)

where C > 0 is an absolute constant. Similarly, we can prove that with probability at least 1 − δ,
the following holds∥∥ĈKK(CKK + L−1λI)−1 − CKK(CKK + L−1λI)−1

∥∥ ≤ C ′ ·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
.

(F.11)

Here C ′ > 0 is an absolute constant. Combining (F.9), (F.10), and (F.11), we have with probability
at least 1− δ that ∥∥ĈVK(ĈKK + L−1λI)−1 − CVK(CKK + L−1λI)−1

∥∥
≤ C ′′ ·

√
L

λ
·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

2

δ
. (F.12)

Upper bounding term (ii) of (F.6). We follow the procedures in the proof from Fukumizu (2015).
For any g ∈ Hk, we have that

⟨CVK(g), CVK(g)⟩ = E
[
L(V, V̄)g(K)g(K̄)

]
=

〈
(CKK ⊗ CKK)E

[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
, g ⊗ g

〉
.

Similarly, for any q ∈ Rdp and any g ∈ Hk, we have that〈
CVK,E

[
L(V, ·)

∣∣K = q
]〉

=
〈
E
[
L(V, V̄)

∣∣K = q,K = ‡
]
, CKKg

〉
=

〈
(I ⊗ CKK)E

[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
,L(·, q)⊗ g

〉
.

21

Under review as a conference paper at ICLR 2024

Taking g = (CKK + L−1λI)−1K(q, ·), we have that∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC
−1
KKK(q, ·)

∥∥2
=

〈(
(CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]
,K(q, ·)⊗ K(q, †)

〉
.

We note that E[L(v, v̄) | k = ·, k̄ = ‡] ∈ Hk ⊗Hk is in the range spanned by CKK ⊗ CKK. Thus,
we can define C̃ ∈ Hk × Hk such that (CKK ⊗ CKK)C̃ = E[L(v, v̄) | k = ·, k̄ = ‡]. Let {λi}∞i=1
and {φi}∞i=1 be the eigenvalues and eigenvectors of CKK, respectively. We then have that∥∥CVK(CKK + L−1λI)−1K(q, ·)− CVKC

−1
KKK(q, ·)

∥∥4
≤

∥∥∥∥((CKK + L−1λI)−1CKK ⊗ (CKK + L−1λI)−1CKK − I ⊗ (CKK + L−1λI)−1CKK

(CKK + L−1λI)−1CKK ⊗ I + I ⊗ I
)
E
[
L(V, V̄)

∣∣K = ·, K̄ = ‡
]∥∥∥∥2

=
∑
i,j

(
λiλj(L

−1λ)2

(λi + L−1λ)(λj + L−1λ)

)2

· ⟨φi ⊗ φj , C̃⟩2

≤ (L−1λ)4 · ∥C̃∥2.

Thus, we have ∥∥CVK(CKK + λI)−1K(q, ·)− CVKC
−1
KKK(q, ·)

∥∥
2
≤ C · λL−1, (F.13)

where C > 0 is an absolute constant.

Combining (F.6), (F.12), and (F.13), we have with probability at least 1− δ, the following holds∥∥attn†(q,K, V)− CME(q,PK,V)
∥∥ ≤ O

(√
L

λ
·
(
2

λ
+

√
Γ(L−1λ)

λ

)
log

1

δ
+ λL−1

)
. (F.14)

Since K is Gaussian RBF kernel, we have that Γ(L−1λ) = O(L/λ).

Step 2: Build the relationship between the attn and conditional mean embedding.

We achieve our goal in two sub-steps. In the first step, we prove that there exists a constant C > 0
such that

attnSM(q,K, V) = C

∫
Sd−1

vP̂K
V |K(v | q)dv, (F.15)

where Sd−1 is the (d − 1)-dimensional unit sphere. Here P̂K
V |K is the kernel conditional density

estimation of PV |K defined as follows,

P̂K
V |K(v | q) =

∑L
ℓ=1 K(k

ℓ, q) · K(vℓ, v)∑L
ℓ=1 K(k

ℓ, q)
,

where ι = 1/
∫
Sd−1 K(k, q)dq is a normalization constant. Note that ι does not depend on the value

of k by symmetry. We transform the right-hand side of this equality as∫
vP̂K

V |K(v | q)dv = ι ·
∫
Sd−1

v ·
∑L

ℓ=1 K(k
ℓ, q) · K(vℓ, v)∑L

ℓ=1 K(k
ℓ, q)

dv

=
ι ·

∑L
ℓ=1 K(k

ℓ, q) ·
∫
Sd−1 v · K(vℓ, v)dv∑L

ℓ=1 K(k
ℓ, q)

. (F.16)

Thus, it suffices to calculate the integration term
∫
Sd−1 v · K(vℓ, v)dv. To this end, we have the

following lemma.

22

Under review as a conference paper at ICLR 2024

Proposition F.1. Let K(a, b) = exp(a⊤b/γ) be the exponential kernel with a fixed γ > 0. It holds
for any b ∈ Sd−1 that ∫

Sd−1

a · K(a, b)da = C1 · b,

where C1 > 0 is an absolute constant.

Proof. See Section I.1 for a detailed proof.

Thus, it holds for the right-hand side of (F.16) that

ι · C1 ·
∑L

ℓ=1 K(k
ℓ, q) · vℓ∑L

ℓ=1 K(k
ℓ, q)

= ι · C1 · V ⊤softmax(Kq/γ) = ι · C1 · attnSM(q,K, V),

where the first equality follows from the definition of the softmax function and the second equality
follows from the definition of the softmax attention.

The second step is to relate the right-hand side of (F.15) to conditional mean embedding. In fact,
under the condition that P̂K

V |K(v | q) → P(v | q) uniformly for any q ∈ Sdp−1 as L → ∞, we have∫
vP̂K

V |K(v | q)dv → E[V |K = q] as L → ∞.

Thus, we have that

attnSM(q,K, V) → C · E[V |K = q] as L → ∞ (F.17)

for some constant C > 0. Combining (F.17) and (F.14) and choosing λ = L3/4, we complete the
proof of Proposition 4.3.

G APPENDIX FOR SECTION 5

G.1 SUPPLEMENTAL DEFINITIONS FOR MARKOV CHAINS

We follow the notations in Paulin (2015). Let Ω be a Polish space. The transition kernel for a time-
homogeneous Markov chain {Xi}∞i=1 supported on Ω is a probability distribution P(x, dy) for every
x ∈ Ω. Given X1 = x1, · · · , Xt−1 = xt−1, the conditional distribution of Xt equals P(xt−1,dy).
A distribution π is said to be a stationary distribution of this Markov chain if

∫
x∈Ω

P(x, dy)π(dx) =
π(dy). We adopt Pt(x, ·) to denote the distribution of Xt conditioned on X1 = x. The mixing time
of the chain is defined by

d(t) = sup
x∈Ω

TV
(
P t(x, ·), π

)
, tmix(ε) = min{t | d(t) ≤ ε}, tmix = tmix(1/4).

G.2 PROOF OF THEOREM 5.3

Proof of Theorem 5.3. Our proof mainly involves three steps.

• Error decomposition with the PAC-Bayes framework.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition with the PAC-Bayes framework.

For ease of notation, we temporarily write Tp and Np as T and N , respectively. Recall that the
pretraining dataset is D = {(Sn

t , x
n
t+1)}

N,T
n,t=1, which consists of N trajectories (essays), and each

essay have T + 1 words. Given Sn
t , the next word is generated as xn

t+1 ∼ P(· |Sn
t), and Sn

t+1 =

23

Under review as a conference paper at ICLR 2024

(Sn
t , x

n
t+1). Here, we construct a ghost sample D̃ = {(S̃n

t , x̃
n
t+1)}

N,T
n,t=1 as S̃n

t = Sn
t and x̃n

t+1 ∼
P(· | S̃n

t) independently from D. We define function g(θ) = L(θ,D) − logED̃[exp(L(θ, D̃)) | D],
where

L(θ, D̃) = −1

4

N∑
n=1

T∑
t=1

log
P(x̃n

t+1 |Sn
t)

Pθ(x̃n
t+1 |Sn

t)
.

For distributions Q,P ∈ ∆(Θ), where P can potentially depends on D, Lemma J.3 shows that

EP

[
g(θ)

]
≤ KL(P∥Q) + logEQ

[
exp

(
g(θ)

)]
.

Substituting the definition of g(θ) and taking expectation with respect to the distribution of D on the
both sides of the inequality, we can derive that

ED

[
exp

{
EP

[
L(θ,D)− logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
− KL(P ∥Q)

}]
≤ 1.

With Chernoff inequality, we can show that with probability at least 1− δ, the following holds

−Eθ∼P

[
logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
≤ −EP

[
L(θ,D)

]
+ KL(P ∥Q) + log

1

δ
. (G.1)

We first cope with the left-hand side of (G.1).

− EP

[
logED̃

[
exp

(
L(θ, D̃)

)
| D

]]
≥ −1

2
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
P(x̃n

t+1 |Sn
t)

Pθ̂(x̃
n
t+1 |Sn

t)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]

= −1

2

N∑
n=1

T∑
t=1

logEx̃n
t+1∼P(· |Sn

t)

[
exp

(
− 1

2
log

P(x̃n
t+1 |Sn

t)

Pθ̂(x̃
n
t+1 |Sn

t)

) ∣∣∣∣D]

− 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]

≥ 1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2 − 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x̃

n
t+1 |Sn

t)

Pθ(x̃n
t+1 |Sn

t)

) ∣∣∣∣D]]
,

(G.2)

where the first inequality results from the definition of L(θ,D) and Cauchy-Schwarz inequality, the
equality results from that the transitions of x̃n

t+1 are independent given D, and the last inequality
results from Lemma J.5. The second term in the right-hand side of (G.2) can be controlled if the
distribution P is chosen to concentrate around θ̂. This will be done in Step 2. Now we consider the
right-hand side of (G.1). For any θ∗ ∈ Θ, we can decompose it as

− EP

[
L(θ,D)

]
= EP

[
1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
+ log

Pθ∗(xn
t+1 |Sn

t)

Pθ̂(x
n
t+1 |Sn

t)
+ log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]

≤ 1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
+

1

4

N∑
n=1

T∑
t=1

EP

[
log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]
, (G.3)

where the inequality results from the fact that θ̂ maximizes the likelihood. We will choose θ∗ as
the projection of P onto {Pθ | θ ∈ Θ}, i.e., P∗

θ is the best approximation of P with respect to the
KL divergence. Thus, the first term in the right-hand side of (G.3) is the approximation error. The

24

Under review as a conference paper at ICLR 2024

second term in the right-hand side of (G.3) can be controlled in the same way as the second term in
the right-hand side of (G.2). Combining inequalities (G.1), (G.2), and (G.3), we have that

1

4

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2

≤ 1

2
Eθ∼P

[
logED̃

[
exp

(
− 1

2

N∑
n=1

T∑
t=1

log
Pθ̂(x

n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

) ∣∣∣∣D]]
+

1

4

N∑
n=1

T∑
t=1

EP

[
log

Pθ̂(x
n
t+1 |Sn

t)

Pθ(xn
t+1 |Sn

t)

]
︸ ︷︷ ︸

(I)

+
1

4

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)︸ ︷︷ ︸
(II)

+ KL(P ∥Q)︸ ︷︷ ︸
(III)

+ log
1

δ
, (G.4)

where term (I) is the fluctuation error induced by θ ∼ P , term (II) is the approximation error, and
term (III) is the KL divergence between P and Q.

Step 2: Control each term in the error decomposition.

We first consider term (I). Since θ̂ is a deterministic function of D and that
log(Pθ̂(x

n
t+1 |Sn

t)/Pθ(x
n
t+1 |Sn

t)) is close to 0 if θ is close to θ̂, we need to design P for
any θ̂ ∈ Θ such that θ ∼ P is close to θ̂ almost surely.

We need to quantify the fluctuation of Pθ when θ is changing, i.e., how Pθ is close to Pθ̂ when θ is
close to θ̂.

Proposition G.1. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

TV
(
Pθ(· |X),Pθ̃(· |X)

)
≤ 2

τ

∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥
1,2

+

D∑
t=1

αt(βt + ιt + κt + ρt),

where

αt =
2

τ
BA(1 +BA,1 ·BA,2)

(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)
2 − γ̃

(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)

1 − γ̃
(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥WV,(t)
i − W̃

V,(t)
i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑

i=1

BK · ∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F +BQ · ∥WK,(t+1)

i − W̃
K,(t+1)
i ∥F

for all t ∈ [D].

Proof of Proposition G.1 . See Appendix I.3.

Proposition G.1 implies that the difference between Pθ and Pθ̃ can be upper-bounded by the dif-
ference between the parameters of each layer. Thus, for any θ ∈ D, we set the distribution P as
uniform distribution on the neighborhood of parameters, and the radius of the neighborhood is set
proportional to 1/NT shown in Figure 9.

25

Under review as a conference paper at ICLR 2024

Figure 9: The distribution P in (G.5) is the uniform distribution on the neighborhood of θ with
radius proportional to 1/NT , and Q in (G.8) is the uniform distribution on Θ.

P =

D+1∏
t=1

LP

(
θ(t)

)
(G.5)

LP

(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥1,2

))
LP

(
θ(t)

)
= Unif

(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A

(t)) · LP (W
(t))

LP (A
(t)) = Unif

(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W

(t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))
for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥·∥) = {x | ∥x−a∥ ≤ r}
denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = R−1(1 +BA,1 ·BA,2)

−1α−1
t /NT, r

(t)
γ,2 = R−1α−1

t /NT

r
(t)
A,1 = R−1B−1

A,2α
−1
t /NT, r

(t)
A,2 = R−1B−1

A,1α
−1
t /NT,

r
(t)
V = R−1h−1(1 +BA,1 ·BA,2)

−1α−1
t /NT, r

(t)
Q = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

K α−1
t /NT

r
(t)
K = R−1h−1(1 +BA,1 ·BA,2)

−1B−1
V B−1

Q α−1
t /NT, r(D+1) = τB−1

A /NT.

Under this assignment, we now bound | logPθ̂(x |S)/Pθ(x |S)| for any S ∈ RL×d and x ∈ Rdy .
We first note that

Pθ̂(x |S) ≥ by = (1 + dy exp(BA/τ))
−1 (G.6)

for any S and x, which results from the softmax layer defined below (5.1). This results from the fact
that the last layer of the transformer is softmax with inverse temperature parameter τ and that∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1)

∥∥∥∥
1

≤
∥∥A(D+1),⊤∥∥

1,2
≤ BA.

If TV(Pθ(· |S),Pθ̃(· |S)) = ε ≤ by/2, some basic calculations show that

by
by + ε

≤
Pθ̂(x |S)
Pθ(x |S)

≤ 1 +
2ε

by
.

Thus, if we set the distribution P as the uniform distribution on the neighborhood around θ̂ with
radius proportional to 1/NT , i.e., (G.5), then for θ ∼ P we have that∣∣∣∣ log Pθ̂(x |S)

Pθ(x |S)

∣∣∣∣ ≤ 2ε

by
= O

(
1

NT

)
for P a.s.

Based on this, we conclude that

(I) = O(1). (G.7)

26

Under review as a conference paper at ICLR 2024

Next, we control term (III) in (G.4). In order to upper bound KL(P ∥Q), we need to make sure
that the support of P is a subset of that of Q. Thus, we take Q as the uniform distribution on the
parameter space.

Q =

D+1∏
t=1

LQ

(
θ(t)

)
(G.8)

LQ

(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥1,2

))
LQ

(
θ(t)

)
= Unif

(
B
(
1/2, 1/2, | · |

))
· Unif

(
B
(
1/2, 1/2, | · |

))
· LQ(A

(t)) · LQ(W
(t))

LQ(A
(t)) = Unif

(
B
(
0, BA,1, ∥ · ∥F

))
· Unif

(
B
(
0, BA,2, ∥ · ∥F

))
LQ(W

(t)) =

h∏
i=1

Unif
(
B
(
0, BQ, ∥ · ∥F

))
· Unif

(
B
(
0, BK , ∥ · ∥F

))
· Unif

(
B
(
0, BV , ∥ · ∥F

))
.

Then the KL divergence between P and Q is

KL(P ∥Q) = O
(
(D2 · d · (dF + dh + d) + d · dy) · log

(
1 +NTτ−1RhBABA,1BA,2BQBKBV

))
.

(G.9)

Finally, we control term (II) in (G.4). This term can be controlled as

1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)

=
1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)

+
1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)
.

The first two terms in the right-hand side of the equality is the generalization error, which can be
bounded with Lemma J.4. With Assumption 5.2, we note that∣∣∣∣ log P(x |S)

Pθ∗(x |S)

∣∣∣∣ ≤ b∗ = logmax{c−1
0 , b−1

y }, (G.10)

so the function satisfies the condition in Lemma J.4 with ci = 2b∗. Using the moment generating
function bound in Lemma J.4 and Chernoff bound, we have that

1

NT

N∑
n=1

T∑
t=1

log
P(xn

t+1 |Sn
t)

Pθ∗(xn
t+1 |Sn

t)
− 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
)
≤

√
tminb∗,2

2NT
log

1

δ

(G.11)
with probability at least 1− δ.

Step 3: Conclude the proof.

Combining inequalities (G.4), (G.7), (G.9), and (G.11), we have that

1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)

≤

√√√√ 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)2

= O
(

t
1/4
min

(NT)1/4
log

1

δ
+

√
D2d(dF + dh + d) + d · dy√

NT
· log

(
1 +NTB̄

)
+ inf

θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
))

,

27

Under review as a conference paper at ICLR 2024

where we take θ∗ as the best approximation parameters. Finally, we will change the left-hand side
of this inequality to the expectation of it. In fact, we have that
Proposition G.2. Let F be the collection of functions of f : Rn → R, and we assume that |f | ≤ b

for any function f ∈ F . For a Markov chain X = (X1, ·, XN), we define f(X) =
∑N

i=1 f(Xi)/N .
The mixing time of this Markov chain is denoted as tmix(ε). Given a distribution Q on F , with
probability at least 1− δ, we have∣∣∣EP

[
EX

[
f(X)

]
− f(X)

]∣∣∣ ≤
√

b2 · tmin

2 log 2N

[
KL(P ∥Q) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1− δ, where

tmin = inf
0≤ε<1

tmix(ε) ·
(
2− ε

1− ε

)2

.

Proof of Proposition G.2. See Appendix I.2.

We note that Proposition G.2 is indeed an uniform convergence bound, since it holds simultaneously
for all P . Thus, we can set P and Q as those in equalities (G.5) and (G.8), then we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Sn

t),Pθ̂(· |S
n
t)
)]

− 1

NT

N∑
n=1

T∑
t=1

TV
(
P(· |Sn

t),Pθ̂(· |S
n
t)
)

= O
(√

tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

))
.

Thus, we have that

1

NT

N∑
n=1

T∑
t=1

ESn
t

[
TV

(
P(· |Sn

t),Pθ̂(· |S
n
t)
)]

= O
(

t
1/4
min

(NT)1/4
log

1

δ
+

√
tmin√
NT

(
D̄ log(1 +NTB̄) + log

1

δ

)

+ inf
θ∗∈Θ

√√√√ 1

NT

N∑
n=1

T∑
t=1

ESn
t
KL

(
P(· |Sn

t) ∥Pθ∗(· |Sn
t)
))

.

We conclude the proof of Theorem 5.3.

G.3 FORMAL STATEMENT AND PROOF OF PROPOSITION 5.4

Denote the alphabet of the language as X ⊆ R (d = 1), then the conditional distribution P∗ can be
viewed as a function g∗ : XL → Rdy , where L is the maximal length of a sentence, and the output
is the distribution of the next word. Since A is finite, Theorem 2 in Zaheer et al. (2017) shows that
there exist ρ∗ : R → Rdy and ϕ∗ : X → R such that

g∗(X) = ρ∗
(
1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a function f
defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of the real-valued
smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of the smooth functions with
bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .

28

Under review as a conference paper at ICLR 2024

Figure 10: The construction in Proposition G.4 mainly consists of three parts: the approximation of
ϕ∗, the approximation of ρ∗, and the realization of 1

L

∑L
i=1.

Assumption G.3. There exists B > 0 such that ϕ∗, τ log ρ∗i ∈ SB for i ∈ [dy].

This assumption states that the function g∗ is smooth enough for transformers to approximate.

Proposition G.4. Under Assumptions 5.2 and G.3, if dF ≥ 16dy , BA,1 ≥ 16Rdy , BA,2 ≥ dF
BA ≥

√
dy , and BV ≥

√
d, then

max
∥S⊤∥2,∞≤R

KL
(
P∗(· |S) ∥Pθ∗(· |S)

)
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
,

for some constant C > 0.

Proof of Proposition G.4. Our proof mainly involves three steps.

• The high-level introduction of transformer approximator for g∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

Step 1: The high-level introduction of transformer approximator for g∗.

Without loss of generality, we assume that B > 1 in Assumption G.7. We would like to first
introduce our construction in a high-level way. As shown in Figure 10, we will construct Ψϕ∗ and
Ψρ∗ to respectively approximate ϕ∗ and τ log ρ∗.

To approximate ϕ∗ with Ψϕ∗ , we will make use of the universal approximation property of the
fully-connected networks and ignore the attention module in the transformer by setting W

V,(t)
i = 0,

γ
(t)
1 = 1, γ(t)

2 = 0 for all i ∈ [h]. We further set A(t)
2 = IdF

∈ RdF×dF , which is the identity
matrix. The network structure for Ψϕ∗ is

X(t+1) = Πnorm

[
ReLU(X(t)A

(t+1)
1 + b(t+1) · IL)

]
,

where b(t+1) ∈ R is the bias term. In Step 2, we will use this fully-connected network to approximate
ϕ∗.

To approximate the average 1
L

∑L
i=1 ϕ

∗(xi), we take W
Q,(t)
i = 0, WK,(t)

i = 0, and W
V,(t)
i = Id,

γ
(t)
1 = 0, γ(t)

2 = 1, A(t)
2 = 0.

After this average aggregation, we still take W
V,(t)
i = 0, γ(t)

1 = 1, γ(t)
2 = 0 for all i ∈ [h] and

A
(t)
2 = IdF

∈ RdF×dF to approximate ρ∗i for i ∈ [dy]. We stack the approximators for τ log ρ∗i to
approximate τ log ρ∗, multiplying the width of the networks by dF .

29

Under review as a conference paper at ICLR 2024

Step 2: Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

In the first and the Dth layer, we take A
(1),′
1 = A

(1)
1 /R and A

(D),′
1 = A

(D)
1 · R to normalize and

retrieve the magnitudes of inputs, where R is the range of the inputs. This will keep the magnitudes
of the intermediate outputs small. Next, we will use Lemma J.9 to construct the networks. In the
proof of Lemma J.9, the norm of the outputs of the intermediate layers do not excess the range of the
inputs, so the layer normalization in our networks will not influence the constructed approximators.
In this case, we can respectively approximate ϕ∗ and τ log ρ∗i with fully-connected networks Ψϕ∗

and Ψρ∗
i

for i ∈ [dy] as

∥ϕ∗ −Ψϕ∗∥∞ ≤ εϕ, ∥τ log ρ∗i −Ψρ∗
i
∥∞ ≤ ερ for i ∈ [dy],

where the depth D(·), the width W (·), and the maximal weight B(·) of the networks satisfy that

D′ = D(Ψϕ∗) ≤ C ·B · (log ε−1
ϕ)2 + logB, D′′ = max

i∈[dy]
D(Ψρ∗

i
) ≤ C ·B · (log ε−1

ρ)2 + logB,

W (Ψϕ∗) ≤ 16, W (Ψρ∗
i
) ≤ 16, B(Ψϕ∗) ≤ 1, B(Ψρ∗

i
) ≤ 1

for some constant C > 0. The bounds for width and maximal weight require that dF ≥ 16dy and
BA,1 ≥

√
dF · dF ≥ 16dy . Then we have that for any X = (x1, · · · , xL)∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

))∥∥∥∥
1

≤
∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

))∥∥∥∥
1

+

∥∥∥∥softmax(1

τ
Ψρ∗

(
1

L

L∑
i=1

ϕ∗(xi)

))
− softmax

(
1

τ
Ψρ∗

(
1

L

L∑
i=1

Ψϕ∗(xi)

))∥∥∥∥
1

≤ dyερ + C ′ · dy · (BA,1)
D′′

· εϕ, (G.12)

where C ′ > 0 is a constant, the first inequality results from the triangle inequality, (BA,1)
D′′

in
the second inequality results from the error propagation through a depth-D′′ network and the Lip-
schitzeness of softmax in Lemma J.6. This bound reflects that the later modules will amplify the
approximation error in the previous modules. In the following, we will balance the depths of dif-
ferent modules to handle the amplification. Lemma J.9 indicates the approximation error ε of a
fully-connected network will depth D can be upper bounded as

ε ≤ exp(−
√

D − logB

B
).

Thus, defining the left-hand side of (G.12) as approx err, we have that

approx err ≤ dy exp

(
−
√

D′′ − logB

B

)
+ dyB

D′′

A,1 exp

(
−

√
D′ − logB

B

)
.

We note the fact that: for any l > 0, c > 0, we have exp(−l
√
x− c) = O(exp(−l

√
x)), which

follows from the direct calculation. Then we can further upper bound the approximation error as

approx err = O

(
dy exp

(
−
√

D′′

B

)
+ dy exp

(
1√
B

[
D′′

√
B logBA,1 −

√
D′

]))
.

To handle the second term in the right-hand side of this inequality, we require that

k ·D′′ −
√
D′ ≤ −

√
D′′,

where k =
√
B logBA,1. This is equivalent to

D′ ≥ (k ·D′′ +
√
D′′)2.

Since D′ +D′′ ≤ D, where D is the depth of the whole network, we can set

D′′ =
√
D/(2

√
B logBA,1), D′ = D − 1−D′′ ≥ D/2 +D3/4

30

Under review as a conference paper at ICLR 2024

when D is large. This assignments ensure that D′ ≥ (k ·D′′ +
√
D′′)2. Thus, we have that

approx err = O

(
dy exp

(
−
√

D′′

B

))
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
for some constant C > 0. Here we relax the dependency on B a little for the notational clearness,
and the relaxation results from the fact that B ≥ 1 usually.

Step 3: Conclude the proof.

We denote Ψρ∗(
∑L

i=1 Ψϕ∗(xi)/L) as Pθ∗ . Then if TV(P(· |X),Pθ∗(· |X)) = ε ≤ c0/2, some basic
calculations show that

c0
c0 + ε

≤ P(x |S)
Pθ∗(x |S)

≤ 1 +
2ε

c0
.

Thus, we have

max
∥S⊤∥2,∞≤R

KL
(
P(· |S) ∥Pθ∗(· |S)

)
≤ 2ε

c0
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

G.4 PRETRAINING RESULTS FOR ℓ2 LOSS

G.4.1 PRETRAINING ALGORITHM WITH ℓ2 LOSS

Training with ℓ2 loss is common in the CV community, e.g. Radford et al. (2021). The net-
work structure is largely similar to those in Brown et al. (2020) and Devlin et al. (2018). Here,
we modify the network structure of the last layer. The network derives the final output as
Y (D+1) = 1

L I
⊤
LX

(D)A(D+1), where IL ∈ RL is the vector with all ones, A(D+1) ∈ Rd×dy . The
parameters in each layer are θ(t) = (γ

(t)
1 , γ

(t)
2 ,W (t), A(t)) for t ∈ [D], and θ(D+1) = A(D+1), and

the parameters of the whole network is θ = (θ(1), · · · , θ(D+1)). Similar to Section 5.1, we consider
the transformer with bounded weights. The set of parameters is

Θ =
{
θ |

∥∥A(D+1)
∥∥
F
≤ BA,max

{∣∣γ(t)
1

∣∣, ∣∣γ(t)
2

∣∣} ≤ 1,
∥∥A(t)

1

∥∥
F
≤ BA,1,

∥∥A(t)
2

∥∥
F
≤ BA,2,∥∥WQ,(t)

i

∥∥
F
≤ BQ,

∥∥WK,(t)
i

∥∥
F
≤ BK ,

∥∥WV,(t)
i

∥∥
F
≤ BV for all t ∈ [D], i ∈ [h]

}
,

where BA, BA,1, BA,2, BQ, BK , and BV are the bounds of parameter. We only consider the non-
trivial case where these bounds are larger than 1, otherwise the magnitude of the output in Dth layer
decades exponentially with growing depth. We denote the transformer with parameter θ as fθ.

In such case, we focus on the pretraining setting in CV tasks, i.e., the pretraining set D =
{(Si, xi)}Ni=1 consists of i.i.d. pairs. The underlying distribution is denoted as (S, x) ∼ µ ∈
∆(X∗ × X). In such case, d = dy , i.e., the transformer directly predicts the musked token. The
training algorithm is

θ̂ = argmin
θ∈Θ

1

N

N∑
i=1

∥∥xi − fθ(S
i)
∥∥2
2

(G.13)

From the population version of (G.13), it is easy to see that the function f∗(S) = E[x |S] achieves
the minimal population error, where the conditional expectation is defined from µ. In the following,
we will quantify the error between fθ̂ and f∗.

G.4.2 PERFORMANCE GUARANTEE FOR PRETRAINING WITH ℓ2 LOSS

We first state the assumptions for the pretraining setting.

Assumption G.5. There exists a constant R > 0 such that for (S, x) ∼ µ, we have ∥S⊤∥2,∞ ≤ R
and ∥x∥2 ≤ Bx almost surely.

31

Under review as a conference paper at ICLR 2024

Then the performance guarantee for the pretraining result θ̂ can be derived as following.
Theorem G.6. Let B̄ = BxRhBABA,1BA,2BQBKBV and D̄ = D2d(dF + dh + d) + d · dy . If
Assumption G.5 holds, the pretrained model fθ̂ by the algorithm in (G.13) satisfies

ES,x

[∥∥f∗(S)− fθ̂(S)
∥∥2
2

]
≤ 3

2
min
θ∈Θ

E
[∥∥f∗(S)− fθ(S)

∥∥2
2

]
︸ ︷︷ ︸

approximation error

+O
(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
︸ ︷︷ ︸

generalization error

with probability at least 1− δ.

The first term is the approximation error. It measures the proximity between the nominal function
f∗ and the functions induced by the parameter set Θ. The second term is the generalization error.
Similar as Theorem 5.3, the generalization error is independent of the token sequence length.

Since the neural networks are universal approximators, we will explicitly approximate f∗ from the
transformer function class. Theorem 2 in Zaheer et al. (2017) shows that there exist ρ∗ : R → Rdy

and ϕ∗ : R → R such that

f∗(X) = ρ∗
(
1

L

L∑
i=1

ϕ∗(xi)

)
,

where X = [x1, · · · , xL]. The ith component of ρ∗ is denoted as ρ∗i for i ∈ [dy]. For a function f
defined on Ω, the L∞ norm of it is defined as ∥f∥∞ = supx∈Ω |f(x)|. The set of the real-valued
smooth functions on it is denoted as S∞(Ω,R), Then we denote the set of the smooth functions with
bounded derivatives as

SB =
{
f ∈ S∞([−B,B],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
,

where f (n) is the nth-order derivative of f .
Assumption G.7. There exists B > 0 such that ϕ∗, ρ∗i ∈ SB for i ∈ [dy].

This assumption states that the function f∗ is smooth enough. Then we have that
Proposition G.8. Under G.7, if dF ≥ 16dy , BA,1 ≥ 16Rdy , BA,2 ≥ dF BA ≥

√
dy , and

BV ≥
√
d, then

max
∥S⊤∥2,∞≤R

∥∥f∗(S)− fθ∗(S)
∥∥
2
= O

(
dy exp

(
− D1/4√

C2B2 logBA,1

))
for some constant C > 0.

G.4.3 PROOF OF THEOREM G.6

Proof of Theorem G.6. For ease of notation, we respectively define the empirical risk and the popu-
lation risk as

L̂(f,D) =
1

N

N∑
i=1

∥∥xi − fθ(S
i)
∥∥2
2
, L(f) = ES,x

[∥∥x− fθ(S)
∥∥2
2

]
.

The our proof mainly involves three steps.

• Error decomposition for the excess population risk.

• Control each term in the error decomposition.

• Conclude the proof.

Step 1: Error decomposition for the excess population risk. The excess population risk for the
estimate θ̂ can be decomposed to the sum of the generalization error and the approximation error as
L(fθ̂)− L(f∗)

= L(fθ̂)− L(f∗)− 2
(
L̂(fθ̂,D)− L̂(f∗,D)

)
+ 2

(
L̂(fθ̂,D)− L̂(fθ∗ ,D)

)
+ 2

(
L̂(fθ∗ ,D)− L̂(f∗,D)

)
≤ L(fθ̂)− L(f∗)− 2

(
L̂(fθ̂,D)− L̂(f∗,D)

)︸ ︷︷ ︸
generalization error

+2
(
L̂(fθ∗ ,D)− L̂(f∗,D)

)︸ ︷︷ ︸
approximation error

, (G.14)

32

Under review as a conference paper at ICLR 2024

where θ∗ = argminθ∈Θ L(fθ), and the inequality results from that θ̂ achieves the minimal empirical
risk.

Step 2: Control each term in the error decomposition.

We first consider the generalization error and will adapt Lemma J.2 to bound it. Define the function

g(S, x, θ) =
∥∥x− fθ(S)

∥∥2
2
−

∥∥x− f∗(S)
∥∥2
2
.

To verify the conditions in Lemma J.2, we notice that |g(S, x, θ)| ≤ (Bx +Bf)
2 and that

E
[
g(S, x, θ)

]
= E

[∥∥x− fθ(S)
∥∥2
2
−

∥∥x− f∗(S)
∥∥2
2

]
= E

[∥∥f∗(S)− fθ(S)
∥∥2
2

]
E
[(
g(S, x, θ)− E

[
g(S, x, θ)

])2] ≤ E
[(
g(S, x, θ)

)2]
≤ E

[∥∥2x− f∗(S)− fθ(S)
∥∥2
2
·
∥∥f∗(S)− fθ(S)

∥∥2
2

]
≤ (3Bx +Bf)

2 · E
[∥∥f∗(S)− fθ(S)

∥∥2
2

]
,

where the second equality results from the definition of f∗, the second inequality results from
Cauchy–Schwarz inequality, and the last inequality result from the boundedness of x, f∗, and fθ.
Then Lemma J.2 shows that for a distribution Q ∈ ∆(Θ) and 0 < λ ≤ 1/(2(Bx + Bf)

2), the
following holds with probability at least 1− δ simultaneously for all P ∈ ∆(Θ)∣∣∣∣Eθ∼P

[
E
[
g(S, x, θ)

]
− 1

N

N∑
i=1

g(Si, xi, θ)

]∣∣∣∣
≤ λ(3Bx +Bf)

2Eθ∼P

[
E
[
g(S, x, θ)

]]
+

1

Nλ

[
KL(P ∥Q) + log

2

δ

]
.

Taking λ = 1/(2(3Bx +Bf)
2), we have∣∣∣∣Eθ∼P

[
L(fθ)− L(f∗)−

(
L̂(fθ,D)− L̂(f∗,D)

)]∣∣∣∣
≤ 1

2
Eθ∼P

[
L(fθ)− L(f∗)

]
+

2(3Bx +Bf)
2

N

[
KL(P ∥Q) + log

2

δ

]
.

Next, we will take proper P and Q to relate this equation and the generalization error. For this pur-
pose, we quantify how the perturbation of network parameters influence the output of the network.

Proposition G.9. For any input X ∈ RL×d and θ, θ̃ ∈ Θ, we have that

∥fθ(X)− fθ̃(X)∥2 ≤
∥∥A(D+1) − Ã(D+1)

∥∥
F
+

D∑
t=1

αt(βt + ιt + κt + ρt),

where

αt = BA(1 +BA,1 ·BA,2)
(
1 + hBV (1 + 4BQBK)

)D−t

βt = |γ(t)
2 − γ̃

(t)
2 |+ (1 +BA,1 ·BA,2) ·

(
1 + (∥X⊤∥2,∞ − 1)It=1

)
· |γ(t)

1 − γ̃
(t)
1 |

ιt = BA,2 · ∥A(t)
1 − Ã

(t)
1 ∥F +BA,1 · ∥A(t)

2 − Ã
(t)
2 ∥F

κt = (1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·

h∑
i=1

∥∥WV,(t)
i − W̃

V,(t)
i ∥F

ρt = 2(1 +BA,1 ·BA,2) ·
(
1 + (∥X⊤∥2,∞ − 1)It=1

)
·BV

·
h∑

i=1

BK · ∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F +BQ · ∥WK,(t+1)

i − W̃
K,(t+1)
i ∥F

for all t ∈ [D].

33

Under review as a conference paper at ICLR 2024

Proof of Proposition G.9 . See Appendix I.4.

With the help of Proposition G.9, we set the distribution P as

P =

D+1∏
t=1

LP

(
θ(t)

)
(G.15)

LP

(
θ(D+1)

)
= Unif

(
B
(
Â(D+1), r(D+1), ∥ · ∥F

))
LP

(
θ(t)

)
= Unif

(
B
(
γ̂
(t)
1 , r

(t)
γ,1, | · |

))
· Unif

(
B
(
γ̂
(t)
2 , r

(t)
γ,2, | · |

))
· LP (A

(t)) · LP (W
(t))

LP (A
(t)) = Unif

(
B
(
Â

(t)
1 , r

(t)
A,1, ∥ · ∥F

))
· Unif

(
B
(
Â

(t)
2 , r

(t)
A,2, ∥ · ∥F

))
LP (W

(t)) =

h∏
i=1

Unif
(
B
(
Ŵ

Q,(t)
i , r

(t)
Q , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

K,(t)
i , r

(t)
K , ∥ · ∥F

))
· Unif

(
B
(
Ŵ

V,(t)
i , r

(t)
V , ∥ · ∥F

))
for t ∈ [D], where Unif denotes the uniform distribution on the set, B(a, r, ∥·∥) = {x | ∥x−a∥ ≤ r}
denotes the ball centered in a with radius r, the radius is set as

r
(t)
γ,1 = (Bx +Bf)

−1R−1(1 +BA,1 ·BA,2)
−1α−1

t /N, r
(t)
γ,2 = (Bx +Bf)

−1R−1α−1
t /N

r
(t)
A,1 = (Bx +Bf)

−1R−1B−1
A,2α

−1
t /N, r

(t)
A,2 = (Bx +Bf)

−1R−1B−1
A,1α

−1
t /N,

r
(t)
V = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1α−1

t /N, r(D+1) = (Bx +Bf)
−1B−1

A /N,

r
(t)
K = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1B−1

V B−1
Q α−1

t /N,

r
(t)
Q = (Bx +Bf)

−1R−1h−1(1 +BA,1 ·BA,2)
−1B−1

V B−1
K α−1

t /N.

Under this assignment, we now bound Eθ∼P [∥x− fθ(S)∥22 − ∥x− fθ̂(S)∥
2
2] as∣∣∣∣Eθ∼P

[∥∥x− fθ(S)
∥∥2
2
−
∥∥x− fθ̂(S)

∥∥2
2

]∣∣∣∣ ≤ 2(Bx +Bf)

∣∣∣∣Eθ∼P

[∥∥fθ(S)− fθ̂(S)
∥∥
2

]∣∣∣∣ = O
(
Bx +Bf

N

)
,

where the inequality results from Cauchy-Schwarz inequality, and the equality results from Propo-
sition G.9. Thus, we have that

L(fθ̂)− L(f∗)−
(
L̂(fθ̂,D)− L̂(f∗,D)

)
≤ 1

2

(
L(fθ̂)− L(f∗)

)
+O

(
Bx +Bf

N

)
+

2(3Bx +Bf)
2

N

[
KL(P ∥Q) + log

2

δ

]
. (G.16)

To access to the value of KL(P ∥Q), we take Q as the distribution in (G.8) except that

LQ

(
θ(D+1)

)
= Unif

(
B
(
0, BA, ∥ · ∥F

))
. (G.17)

Then the KL divergence between P and Q is

KL(P ∥Q) = O
(
(D2 · d · (dF + dh + d) + d · dy) · log

(
1 +NBxRhBABA,1BA,2BQBKBV

))
.

Combining this equality with (G.16), we have that with probability at least 1− δ, the generalization
error can be bounded as

L(fθ̂)− L(f∗)− 2
(
L̂(fθ̂,D)− L̂(f∗,D)

)
= O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
. (G.18)

Next we control the approximation error in (G.14).

L̂(fθ∗ ,D)− L̂(f∗,D)

= L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
+

3

2

(
L(fθ∗)− L(f∗)

)
= L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
+

3

2
E
[∥∥f∗(S)− fθ∗(S)

∥∥2
2

]
, (G.19)

34

Under review as a conference paper at ICLR 2024

where the second equality results from the definition of f∗. To bound the first two terms in the
right-hand side of (G.19), we use Lemma J.2 and take P and Q as (G.15) and (G.17), replacing θ̂ by
θ∗. Then we have that

L̂(fθ∗ ,D)− L̂(f∗,D)− 3

2

(
L(fθ∗)− L(f∗)

)
= O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
. (G.20)

Step 3: Conclude the proof.

Combining inequalities (G.14), (G.18), (G.19), and (G.20), we have that

L(fθ̂)− L(f∗) =
3

2
E
[∥∥f∗(S)− fθ∗(S)

∥∥2
2

]
+O

(
B2

x

N

[
D̄ log(1 +NB̄) + log

2

δ

])
.

Thus, we conclude the proof of Theorem G.6.

G.4.4 PROOF OF PROPOSITION G.8

Proof of Proposition G.8. Our proof mainly involves three steps.

• Build the high-level transformer approximator for f∗.

• Build the approximators in the transformer for ϕ∗ and ρ∗i separately.

• Conclude the proof.

The first two steps follow the procedures of the proof of Proposition G.4 exactly. Now we present
the final step.

Step 3: Conclude the proof.

In the final layer, we just take A(D+1) = Idy
as the identity matrix. Denoting the derived parameters

as θ∗ we have that

max
∥X⊤∥2,∞≤R

∥∥∥∥ρ∗(1

L

L∑
i=1

ϕ∗(xi)

)
− fθ∗(X)

∥∥∥∥
2

= O
(
dy exp

(
− D1/4√

C2B2 logBA,1

))
.

Thus, we conclude the proof of Proposition G.8.

H PROOFS AND FORMAL STATEMENTS FOR §6

H.1 PROOF OF THEOREM 6.2

Proof. By Corollary 4.2 and the fact that log(1/p0(z∗)) ≤ β, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | z∗, promptt−1)−
T∑

t=1

logP(rt | promptt−1)
]
≤ β/T. (H.1)

In addition, we have that

T−1 · EDICL

[T∑
t=1

logP(rt | promptt−1)−
T∑

t=1

logPθ̂(rt | promptt−1)
]
= EDICL

[
KL

(
P(· | prompt)

∥∥∥Pθ̂(· | prompt)
)]
.

(H.2)

Similar to (G.10), we have that∣∣∣log(P(r | prompt)/Pθ̂(r | prompt)
)∣∣∣ ≤ b∗ = logmax{c−1

0 , b−1
y }.

By Lemma J.10, we have that

KL
(
P(· | prompt) ∥Pθ̂(· | prompt)

)
≤ (3 + b∗)/2 · TV

(
P(· | prompt),Pθ̂.(· | prompt)

)
. (H.3)

35

Under review as a conference paper at ICLR 2024

By Assumption 6.1, we have that PDICL
(prompt) ≤ κPD(prompt). Thus, by Theorem 5.3, we have

with probability at least 1− δ that

EDICL

[
KL

(
P(· | prompt) ∥Pθ̂(· | prompt)

)]
≤ C · b∗ · κ · ES∼D

[
TV

(
P(· |S),Pθ̂.(· |S)

)]
≤ C · b∗ · κ ·∆pre(N,T, δ). (H.4)

Combining (H.4), (H.1), and (H.2), we have with probability at least 1− δ that

EDICL

[
T−1 ·

T∑
t=1

logP(rt | z∗, promptt−1)− T−1 ·
T∑

t=1

logPθ̂(rt | promptt−1)
]

≤ β/T + ES∼D

[
KL

(
P(· |S) ∥Pθ̂(· |S)

)]
≤ O

(
β/T + b∗ · κ ·∆pre(N,T, δ)

)
, (H.5)

which completes the proof of Theorem 6.2.

H.2 ASSUMPTIONS AND FORMAL STATEMENT FOR PROMPTING WITH WRONG
INPUT-OUTPUT MAPPINGS

We first state assumptions for this setting.
Assumption H.1. Conditioned on any z ∈ Z, the input-output pairs are independent, i.e., for any
two input-output pair sequences St, S

′
t′ ∈ X∗, we have P((St, S

′
t′) | z) = P(St | z) · P(S′

t′ | z).
This assumption states that for any task z ∈ Z, the input-output pairs are independently generated.
This largely holds in realistic applications since the examples usually are independently produced.
It can be relaxed when there are more structures in the token generation process, e.g. the hidden
Markov model in Xie et al. (2021).
Assumption H.2. There exists a constant c1 > 0 such that PZ(z∗) ≥ c1.
This assumption states that the prior distribution of the hidden concept z∗ is strictly larger than 0, oth-
erwise this concept can never be deduced. For two concepts z, z′ ∈ Z, we define the KL divergence
between the conditional distributions of input-output pair on them as KLpair(P(· | z)∥P(· | z′)) =
EX,y∼P(· | z)[log(P(X, y | z)/P(X, y | z′))]. This divergence measures the distance between distri-
butions of input-output pairs conditioned on different tasks z and z′.
Assumption H.3. The concept z∗ satisfies that minz ̸=z∗ KLpair(P(· | z∗) ∥P(· | z)) > 2 log 1/c0,
where c0 is the constant in Assumption 5.2.
This distinguishability assumption requires that the divergence between z∗ and other concepts z is
large enough to infer the concept z∗ from the prompt. We denote the pretraining error in Theorem 5.3
as ∆pre(Np, Tp, δ), then we have the following result.
Proposition H.4. Under Assumptions 5.2, 6.1 H.1, H.2, and H.3, the pretrained model Pθ̂ in (5.2)
predicts the outputs with the prompt containing wrong mappings as

Eprompt′

[
KL

(
P(· | c̃t+1, z∗)∥Pθ̂(· |S

′
t, c̃t+1)

)]
=O

(
κ∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
with probability at least 1− δ.

H.3 PROOF OF PROPOSITION H.4

Proof of Proposition H.4. From Bayesian model averaging, the output distribution is
P(rt+1 |S′

t, c̃t+1)

=
∑
z∈Z

P(rt+1 | c̃t+1, z) · PZ(z |S′
t)

= P(rt+1 | c̃t+1, z
∗) +

∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z |S′

t)

= P(rt+1 | c̃t+1, z
∗) +

∑
z ̸=z∗

(
P(rt+1 | c̃t+1, z)− P(rt+1 | c̃t+1, z

∗)
)
· PZ(z

∗ |S′
t) ·

PZ(z) · P(S′
t | z)

PZ(z∗) · P(S′
t | z∗)

,

(H.6)

36

Under review as a conference paper at ICLR 2024

where the first equality results from Bayesian model averaging, the last equality results from Bayes’
theorem. Next, we upperbound the ratio P(S′

t | z)/P(S′
t | z∗) in the right-hand side of Eqn. (H.6).

We have that

1

t
log

P(S′
t | z)

P(S′
t | z∗)

=
1

t

t∑
i=1

log
P
(
(c̃i, r

′
i) | z

)
P
(
(c̃i, r′i) | z∗

) ≤ −2 log c0 +
1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) ,
where the equality results from Assumption H.1, and the inequality results from Assumption 5.2.
Assumption 5.2 also implies that | logP((c̃i, ri) | z)/P((c̃i, ri) | z∗)| ≤ (1 + l) log 1/c0. Hoeffding
inequality shows that with probability at least 1− δ, we have

1

t

t∑
i=1

log
P
(
(c̃i, ri) | z

)
P
(
(c̃i, ri) | z∗

) + KLpair
(
P(· | z∗) ∥P(· | z)

)
≤ (1 + l)√

t
log

1

c0
· log 1

δ
.

Thus, we have that with probability at least 1− δ, the following holds for all z ̸= z∗

P(S′
t | z)

P(S′
t | z∗)

≤ exp

(
− t

(
KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

))
.

Combining this inequality with Eqn. (H.6), we have that

TV
(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)

= O
(

1

c1
exp

(
− t

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

)))
.

(H.7)

Taking expectations with respect to the distribution of S′
t, c̃t+1 on the both sides in (H.7), we have

that

Eprompt′

[
TV

(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)]

= O
(

1

c1
exp

(
− t

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0 −

(1 + l)√
t

log
1

c0
· log |Z|

δ

)))
+ δ.

(H.8)

We set δ = |Z exp(−a
√
t/2b)|, where a = minz ̸=z∗ KLpair

(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0, b =

−(1 + l) log c0. Then the right-hand side of (H.8) can be upper bounded as

Eprompt′

[
TV

(
P(· |S′

t, c̃t+1),P(· | c̃t+1, z
∗)
)]

= O
(
exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
.

Let Eprompt′ [TV(P(· |S′
t, c̃t+1),Pθ̂(· |S

′
t, c̃t+1))] ≤ κ∆pre(Np, Tp, δ), where ∆pre(Np, Tp, δ) is the

bound in Theorem 5.3. Then we have that

Eprompt′

[
KL

(
P(· | c̃t+1, z

∗)∥Pθ̂(· |S
′
t, c̃t+1)

)]
≤ O

(
Eprompt′

[
TV

(
Pθ̂(· |S

′
t, c̃t+1),P(· | c̃t+1, z

∗)
)])

= O
(
κ∆pre(Np, Tp, δ)+exp

(
−

√
t

2(1 + l) log 1/c0

(
min
z ̸=z∗

KLpair
(
P(· | z∗) ∥P(· | z)

)
+ 2 log c0

)))
,

where the first equality results from Assumption 5.2. Thus, we conclude the proof of Proposi-
tion H.4.

I PROOF OF SUPPORTING PROPOSITIONS

I.1 PROOF OF PROPOSITION F.1

Proof. Let a, b be two vectors in the (d − 1)-dimensional unit sphere Sd−1. We first define the
following vector,

c = (a⊤b) · b−
(
a− (a⊤b) · b

)
∈ Sd−1. (I.1)

37

Under review as a conference paper at ICLR 2024

By direct calculation, we have the following property of c defined in (I.1),

c⊤b = (a⊤b) · ∥b∥22 − a⊤b+ (a⊤b) · ∥b∥22 = a⊤b. (I.2)

By (I.1) and (I.2), we have that

a+ c = 2(a⊤b) · b = 2(c⊤b) · b = (a⊤b) · b+ (c⊤b) · b. (I.3)

We now calculate the desired integration. Note that∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da+

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da. (I.4)

For the second term on the right-hand side of (I.4), it follows from (I.1) and (I.2) and (I.3) that∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
c− (c⊤b) · b

)
· exp(c⊤b)dc, (I.5)

where the equality follows from the fact that dc = 2∥b∥22da− da = da. By replacing c by a on the
right-hand side of (I.5), we have∫

Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = −

∫
Sd−1

(
a− (a⊤b) · b

)
· exp(a⊤b)da = 0 (I.6)

Finally, by plugging (I.6) into (I.4), we obtain that∫
Sd−1

a · exp(a⊤b)da = b ·
∫
Sd−1

(a⊤b) exp(a⊤b)da.

Thus, by setting

C1 =

∫
Sd−1

(a⊤b) exp(a⊤b)da, ∀b ∈ Sd−1,

we complete the proof of Proposition F.1. Note that here C1 is an absolute constant that does not
depend on b due to the symmetry on the unit sphere.

I.2 PROOF OF PROPOSITION G.2

Proof of Proposition G.2. We note that f(X) satisfies the condition in Lemma J.4 with ci = 2b/N
for i ∈ [N]. Then Lemma J.4 shows that

Ef∼P0

[
EX

(
exp

[
λ(f(X)− Ef(X))

])]
≤ exp

(
λ2 · b2 · tmin

2N

)
.

Take λ =
√
2N log 2/(b2tmin). The Markov inequality shows that

P

(
Ef∼P0

(
exp

[
λ(f(X)− Ef(X))

])
≥ 2

δ

)
≤ δ

for any 0 < δ < 1. We note that this probability inequality does not involve P . Take the function g
in Lemma J.3 as g(f) = λ(f(X)− Ef(X)), then it shows that

logEP0

[
exp

(
g(X)

)]
+ KL(P ∥P0) ≥ EP

[
g(X)

]
for any P simultaneously. Combining these inequalities, we have

∣∣∣EP

[
EX

[
f(X)

]
− f(X)

]∣∣∣ ≤
√

b2 · tmin

2 log 2N

[
KL(P ∥P0) + log

4

δ

]
,

for any distribution P on F simultaneously with probability at least 1 − δ. Thus, we conclude the
proof of Proposition G.2.

38

Under review as a conference paper at ICLR 2024

I.3 PROOF OF PROPOSITION G.1

Proof of Proposition G.1 . We analyze the error layer by layer in the neural network. Denote the
outputs of each layer in the networks parameterized by θ and θ̃ as X(t) and X̃(t), respectively. In
the final layer, we have that

TV
(
Pθ(· |X), Pθ̃(· |X)

)
≤ 2

∥∥∥∥ 1

Lτ
I⊤LX(D)A(D+1) − 1

Lτ
I⊤L X̃(D)Ã(D+1)

∥∥∥∥
∞

≤ 2

τ

[∥∥A(D+1),⊤∥∥
1,2

·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1),⊤ − Ã(D+1),⊤∥∥

1,2

]
,

where the first inequality results from Lemma J.6, and the second inequality results from Lemma J.7
and that ∥X(D),⊤∥2,∞ ≤ 1 due to the layer normalization. In the following, we build the recursion
relationship between ∥X(t),⊤ − X̃(t),⊤∥2,∞ for t ∈ [D].

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞
≤

∥∥ffn(Y (t+1), A(t+1))⊤ − ffn(Ỹ (t+1), Ã(t+1))⊤
∥∥
2,∞ + |γ(t+1)

2 − γ̃
(t+1)
2 |+

∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥
2,∞

≤ |γ(t+1)
2 − γ̃

(t+1)
2 |+

∥∥Y (t+1),⊤ − Ỹ (t+1),⊤∥∥
2,∞ +BA,1 ·BA,2 · ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞

+BA,2 · ∥A(t+1)
1 − Ã

(t+1)
1 ∥F +BA,1 · ∥A(t+1)

2 − Ã
(t+1)
2 ∥F, (I.7)

where the first inequality results from the triangle inequality and that Πnorm is not expansive, the
second inequality results from the following proposition

Proposition I.1. For any X, X̃ ∈ RL×d, A1, Ã1 ∈ Rd×dF , and A2, Ã2 ∈ RdF×d, we have that∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ ∥A1∥F · ∥A2∥F · ∥X⊤ − X̃⊤∥2,∞ + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃⊤∥2,∞
+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃⊤∥2,∞.

Proof of Proposition I.1. See Appendix I.5.

Next, we build the relationship between ∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞ in the right-hand side of in-
equality (I.7) and ∥X(t),⊤ − X̃(t),⊤∥2,∞.

∥Y (t+1),⊤ − Ỹ (t+1),⊤∥2,∞
≤

∥∥mha(X(t),W (t+1))⊤ − mha(X̃(t), W̃ (t+1))⊤
∥∥
2,∞ + |γ(t+1)

1 − γ̃
(t+1)
1 |+

∥∥X(t),⊤ − X̃(t),⊤∥∥
2,∞

≤ |γ(t+1)
1 − γ̃

(t+1)
1 |+

∥∥X(t),⊤ − X̃(t),⊤∥∥
2,∞

+ h ·BV

(
1 + 4BQBK

)
∥X(t),⊤ − X̃(t),⊤∥2,∞ +

h∑
i=1

∥∥WV,(t+1)
i − W̃

V,(t+1)
i ∥F

+ 2BV ·BK

h∑
i=1

∥WQ,(t+1)
i − W̃

Q,(t+1)
i ∥F + 2BV ·BQ

h∑
i=1

∥WK,(t+1)
i − W̃

K,(t+1)
i ∥F,

(I.8)

where the first inequality results from the triangle inequality, and the second inequality results from
Lemma J.8. Combining inequalities (I.7) and (I.8), we derive that

∥X(t+1),⊤ − X̃(t+1),⊤∥2,∞
≤ (1 +BA,1 ·BA,2)

(
1 + hBV (1 + 4BQBK)

)
∥X(t),⊤ − X̃(t),⊤∥2,∞ + βt+1 + ιt+1 + κt+1 + ρt+1.

This concludes the proof of Proposition G.1.

39

Under review as a conference paper at ICLR 2024

I.4 PROOF OF PROPOSITION G.9

Proof of Proposition G.9 . We analyze the error layer by layer in the neural network. Denote the
outputs of each layer in the networks parameterized by θ and θ̃ as X(t) and X̃(t), respectively. In
the final layer, we have that

∥fθ(X)− fθ̃(X)∥2
≤

∥∥Ã(D+1)
∥∥
F
·
∥∥X(D),⊤ − X̃(D),⊤∥∥

2,∞ +
∥∥A(D+1) − Ã(D+1)

∥∥
F
,

where the inequality results from Lemma J.7 and that ∥X(D),⊤∥2,∞ ≤ 1 due to the layer normaliza-
tion. The remaining proof just follows the procedures in the proof of Proposition G.1, and we have
that

∥fθ(X)− fθ̃(X)∥2

≤
∥∥A(D+1) − Ã(D+1)

∥∥
F
+

D∑
t=1

αt(βt + ιt + κt + ρt).

Thus, we conclude the proof of Proposition G.9.

I.5 PROOF OF PROPOSITION I.1

Proof of Proposition I.1. We have that∥∥ffn(X,A)⊤ − ffn(X̃, Ã)⊤
∥∥
2,∞

≤ max
i∈[L]

[∥∥ReLU(Xi,:A1)A2 − ReLU(X̃i,:A1)A2

∥∥
2
+
∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 +

∥∥ReLU(X̃i,:A1)A2 − ReLU(X̃i,:Ã1)A2

∥∥
2

+
∥∥ReLU(X̃i,:Ã1)A2 − ReLU(X̃i,:Ã1)Ã2

∥∥
2

]
≤ max

i∈[L]

[
∥A1∥F · ∥A2∥F · ∥Xi,: − X̃i,:∥2 + ∥A1 − Ã1∥F · ∥A2∥F · ∥X̃i,:∥2

+ ∥Ã1∥F · ∥A2 − Ã2∥F · ∥X̃i,:∥2
]
,

where the first inequality results from the triangle inequality, the second and the last inequalities
result from Lemma J.7 and that ReLU is not expansive. Thus, we conclude the proof of Proposi-
tion I.1.

J TECHNICAL LEMMAS

Lemma J.1 (Caponnetto and De Vito (2007)). Let (Ω, ν) be a probability space and ξ be a random
variable on Ω taking value in a real separable Hilbert space H. We assume that there exists constants
B, σ > 0 such that ∥∥ξ(w)∥∥H ≤ B/2, a.s., E

[
∥ξ∥2H

]
≤ σ2.

Then, it holds with probability at least 1− δ that∥∥∥∥L−1
L∑

i=1

ξ(ωi)− E[ξ]
∥∥∥∥ ≤ 2

(
B

L
+

σ√
L

)
log

2

δ
.

Lemma J.2 (Proposition 4.5 in Duchi (2019)). Let F be the collection of functions of f : Rn → R.
For any f ∈ F , we define

µ(f) = EX

[
f(X)

]
, σ2(f) = EX

[
(f(X)− EX [f(X)])2

]
,

40

Under review as a conference paper at ICLR 2024

where the expectation is taken with respect to a random variable X ∼ ν on (Rn,B(Rn)). Assume
that |f(X)− µ(f)| ≤ b a.s. for some constant b ∈ R for all f ∈ F . Then for any 0 < λ ≤ 1/(2b),
given a distribution P0 on F , with probability at least 1− δ, we have∣∣∣∣EQ

[
EX [f(X)]− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λEQ

[
σ2(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

for any distribution Q on F , where Xi are i.i.d. samples of ν. If the function class F further satisfies
σ2(f) ≤ cµ(f) for some constant c ∈ R for all f ∈ F , we have∣∣∣∣EQ

[
EX

[
f(X)

]
− 1

n

n∑
i=1

f(Xi)

]∣∣∣∣ ≤ λcEQ

[
µ(f)

]
+

1

nλ

[
KL(Q ∥P0) + log

2

δ

]
,

with probability at least 1− δ.
Lemma J.3 (Donsker–Varadhan representation in Belghazi et al. (2018)). Let P and Q be distribu-
tions on a common space X . Then

KL(P ∥Q) = sup
g∈G

{
EP

[
g(X)

]
− logEQ

[
exp

(
g(X)

)]}
,

where G = {g : X → R | EQ[exp(g(X))] < ∞}.
Lemma J.4 (Corollary 2.11 in Paulin (2015)). Let X = (X1, · · · , XN) be a Markov chain, taking
values in Λ =

∏N
i=1 Λi with mixing time tmix(ε) for ε ∈ [0, 1]. Let

tmin = inf
0≤ε<1

tmix(ε) ·
(
2− ε

1− ε

)2

.

If function f : Λ → R is such that f(x) − f(y) ≤
∑N

i=1 ciIxi ̸=yi
for every x, y ∈ Λ, then for any

λ ∈ R,

logE
(
exp

[
λ(f(X)− Ef(X))

])
≤ λ2 · ∥c∥22 · tmin

8
.

For any t ≥ 0, we have

P
(∣∣f(X)− Ef(X)

∣∣ ≥ t
)
≤ 2 exp

(
−2t2

∥c∥22 · tmin

)
.

Lemma J.5 (Lemma 25 in Agarwal et al. (2020)). For any two conditional probability densities
P (· |X), P ′(· |X) and any distribution ν ∈ ∆(X),we have

Eν

[
TV

(
P (· |X), P ′(· |X)

)2]≤−2 log

(
EX∼ν,Y∼P (· |X)

[
exp

(
− 1

2
log

P (Y |X)

P ′(Y |X)

)])
.

Lemma J.6 (Corollary A.7 in Edelman et al. (2021)). For any x, y ∈ Rd, we have

∥softmax(x)− softmax(y)∥1 ≤ 2∥x− y∥∞.

Lemma J.7 (Lemma 17 in Zhang et al. (2022a)). Given any two conjugate numbers u, v ∈ [1,∞],
i.e., 1

u + 1
v = 1, and 1 ≤ p ≤ ∞, for any A ∈ Rr×c and x ∈ Rc, we have

∥Ax∥p ≤ ∥A∥p,u∥x∥v and ∥Ax∥p ≤ ∥A⊤∥u,p∥x∥v.

Lemma J.8 (Propositions 20 and 21 in Zhang et al. (2022a)). For any X, X̃ ∈ RL×d, and any
WQ

i , W̃Q
i ,WK

i , W̃K
i ∈ Rd×dh ,WV

i , W̃V
i ∈ Rd×d for i ∈ [h] , if ∥X⊤∥p,∞, ∥X̃⊤∥2,∞ ≤ BX ,

∥WQ
i ∥F, ∥W̃Q

i ∥F ≤ BQ, ∥WK
i ∥F, ∥W̃K

i ∥F ≤ BK , ∥WV
i ∥F, ∥W̃V

i ∥F ≤ BV for i ∈ [h], then we
have ∥∥∥(mha(X,W)− mha(X̃, W̃)

)⊤∥∥∥
2,∞

≤ h ·BV

(
1 + 4B2

X ·BQBK

)
∥X⊤ − X̃⊤∥2,∞ +BX

h∑
i=1

∥∥WV
i − W̃V

i ∥F

+ 2B3
X ·BV ·BK

h∑
i=1

∥WQ
i − W̃Q

i ∥F + 2B3
X ·BV ·BQ

h∑
i=1

∥WK
i − W̃K

i ∥F.

41

Under review as a conference paper at ICLR 2024

Lemma J.9 (Lemma A.6 in Elbrächter et al. (2021)). For a, b ∈ R with a < b, let

S[a,b] =
{
f ∈ S∞([a, b],R) |

∥∥f (n)(x)
∥∥ ≤ n! for all n ∈ N

}
.

There exists a constant C > 0 such that for all a, b ∈ R with a < b, f ∈ S[a,b], and ε ∈ (0, 1/2),
there is a fully connect network Ψf such that

∥f −Ψf∥∞ ≤ ε,

with the depth of the network as D(Ψf) ≤ Cmax{2, b − a}(log ε−1)2 + log(⌈max{|a|, |b|}⌉) +
log(⌈1/(b−a)⌉), the width of the network as W (Ψf) ≤ 16, and the maximal weight in the network
as B(Ψf) ≤ 1.
Lemma J.10. Let b = supx log(p(x)/q(x)). We have that

KL(p ∥ q) ≤ 2(3 + b) · TV(p, q). (J.1)

Proof. We let f(t) = log t and g(t) = |1/t− 1|. Then, for 0 ≤ t ≤ exp(b), we have that

sup
0≤t≤exp(b)

f(t)

g(t)
= sup

0≤t≤exp(b)

log t

|1/t− 1|
= sup

1≤t≤exp(b)

t log t

t− 1
≤ 2(b+ 3).

Note that KL(p ∥ q) = Ep[f(p(x)/q(x))] and TV(p, q) = Ep[g(p(x)/q(x))], which concludes the
proof.

42

	Conclusion
	More Related Works
	Experimental Results
	Verification of the Bayesian View
	Verification of the Regret Bound
	Verification of the Constant Ratio between attn and attn

	Implementation Details of Experiments
	Figure for Pretraining and icl
	Proofs for Section 4.1
	Introduction of Conditional Mean Embedding
	Proof of Proposition 4.1
	Proof of Corollary 4.2
	Proof of Proposition 4.3

	Appendix for Section 5
	Supplemental Definitions for Markov Chains
	Proof of Theorem 5.3
	Formal Statement and Proof of Proposition 5.4
	Pretraining Results for 2 Loss
	Pretraining Algorithm with 2 Loss
	Performance Guarantee for Pretraining with 2 Loss
	Proof of Theorem G.6
	Proof of Proposition G.8

	Proofs and Formal Statements for §6
	Proof of Theorem 6.2
	Assumptions and Formal Statement for Prompting With Wrong Input-Output Mappings
	Proof of Proposition H.4

	Proof of Supporting Propositions
	Proof of Proposition F.1
	Proof of Proposition G.2
	Proof of Proposition G.1
	Proof of Proposition G.9
	Proof of Proposition I.1

	Technical Lemmas

