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ABSTRACT

Despite the impressive performance of large language models (LLMs) across vari-
ous benchmarks, their ability to address ambiguously specified problems–frequent
in real-world interactions–remains underexplored. To address this gap, we intro-
duce a formal definition of task ambiguity and frame the problem of task disam-
biguation through the lens of Bayesian Experimental Design. By posing clari-
fying questions, LLM agents can acquire additional task specifications, progres-
sively narrowing the space of viable solutions and reducing the risk of generat-
ing unsatisfactory outputs. Yet, generating effective clarifying questions requires
LLM agents to engage in a form of meta-cognitive reasoning, an ability LLMs
may presently lack. Our proposed approach of active task disambiguation enables
LLM agents to generate targeted questions maximizing the information gain. Ef-
fectively, this approach shifts the load from implicit to explicit reasoning about the
space of viable solutions. Empirical results demonstrate that this form of question
selection leads to more effective task disambiguation in comparison to approaches
relying on reasoning solely within the space of questions.

1 INTRODUCTION

Write a function to search 
for an item in a list.

Should it return the item's 
index or a boolean? 

How to handle multiple 
occurnces of the same item 
within the list? 

How to handle cases when 
the target item is not 
present in the list?

def search(lst, x):

    return x in lst

def search(lst, x):

    if target in lst:

        return lst.index(x)

    else:

        return None

def search(lst, x):

    return lst.index(x)

def search(lst, x):

    return [i for i, item 

        in enumerate(lst) 

        if item == x]

Figure 1: An ambiguous problem statement,
a sample of LLM-generated compatible solu-
tions, and clarifying questions. ▶The goal:
Generate the most informative question.

Recent advances in the field of LLMs have led to
the development of problem-solving agents capa-
ble of addressing complex tasks that extend far be-
yond conventional structured data problems such
as regression and classification. State-of-the-art
LLMs have demonstrated remarkable success in log-
ical reasoning (Creswell et al., 2022; Lei et al.,
2023), mathematical problem solving (Romera-
Paredes et al., 2024; Imani et al., 2023), code gen-
eration (Liu et al., 2024; Zhang et al., 2023a) or
creative writing (Coenen et al., 2021; Chakrabarty
et al., 2023). While existing research predominantly
focuses on enhancing LLMs’ planning and reason-
ing capabilities with new prompting strategies like
Chain of Thought (CoT) (Wei et al., 2022) or self-consistency (Wang et al., 2023), evaluation
benchmarks typically assume complete and unambiguous problem statements. However, due to
the inherent ambiguity of natural language (Stengel-Eskin et al., 2023; Liu et al., 2023) or deliberate
underspecification, tasks encountered in real-world usage of LLMs may often not be well-defined,
increasing the risk of the agent misinterpreting the true intentions of the problem setter.

The concurrent line of work suggests that in the presence of ambiguously specified tasks, agents
should be able to infer missing information to discern the intended behavior (Tamkin et al., 2023).
However, in the context of human-specified tasks, when user intentions deviate from that of the
average population on which the internal LLM preference model has been trained, the agent is at
risk of generating outputs that do not align with the user’s true needs. Such behaviors may be
especially harmful in safety-critical applications, such as medical diagnosis or treatment decisions,
where erroneous answers pose significant risks.

∗Equal contribution
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Similar to prior works (Kuhn et al., 2022; Li et al., 2025), we advocate for LLM agents to engage
in an interactive dialogue when faced with ambiguously defined problems. By asking clarifying
questions, agents can narrow down viable solutions, reducing the risk of generating unsatisfactory
responses. Li et al. (2025) have demonstrated that such interactive task elicitation can be more infor-
mative and require less effort than refining the original prompts, often uncovering novel, not initially
anticipated aspects of the given problem. However, asking a good clarifying question requires LLM
agents to reason about their own generative distribution and identify features that differentiate the
viable solutions. We hypothesize that such meta-cognitive skills (Kuhn et al., 2022; Barzilai & Zo-
har, 2016) are beyond the capabilities of many modern LLMs. In response, this paper investigates
whether out-of-the-box abilities of LLMs in asking clarifying questions can be improved.

While traditional machine learning has extensively explored efficient data collection under model
uncertainty, resulting in the development of active learning strategies (Houlsby et al., 2011; Mackay,
1992), LLM-based agents do not operate on well-defined and structured input-output spaces. In-
stead, LLMs navigate complex tasks with natural language, necessitating novel approaches to effi-
cient information acquisition. Drawing from the principles of Bayesian Experimental Design (BED),
we propose a method of active task disambiguation maximizing questions’ utility by direct esti-
mation of their information gain. Effectively, the proposed method shifts the load from implicit
reasoning about the best question to explicit reasoning via sampling from the solution space.

Contributions: ▶ We identify the need for new reasoning methods enabling LLM agents to handle
ambiguously specified tasks effectively. ▶ Section 2: We introduce a formal definition of task
ambiguity in natural language problem specifications, enabling us to frame the problem of effective
task disambiguation through the lens of BED. ▶ Section 3: We propose and motivate theoretically
a BED-based strategy for LLM agents to generate clarifying questions. ▶ Section 4: We evaluate
the effectiveness of competing question-generating strategies on an illustrative game of 20 questions
and a real-world application to code generation. Our results demonstrate that the BED-based method
improves upon baseline strategies relying on implicit reasoning about the best question to ask.

2 FORMALISM & BACKGROUND

We let Σ denote the space of natural language. We define a problem statement S ∈ Σ as a natural
language instruction for an agent to generate a solution h ∈ Σ belonging to the unknown set of
ground-truth solutionsH∗ ⊂ Σ. We assume that the problem statement, S, can be decomposed into
two parts: a set of requirements R that any h ∈ H∗ should satisfy, and any additional contextual
information C that may influence the preference towards different outputs, h ∈ Σ.
Example 1 (Code generation). Consider the problem of code generation with an LLM agent based
on a prompt S = (R, C). Here, C is the natural language instruction guiding the LLM to output
a code solution h. The requirements for the generated code, described in R, include the expected
functionality of the code and any additional test cases that the generated solutions should pass. The
ground truth H∗ contains all programs h that, e.g. pass all hidden test cases or satisfy the internal
needs of the human user. A concrete example is presented in Figure 1.

Let p∗(·|S) denote the likelihood function that determines the preferences of the problem setter over
candidate solutions h ∈ Σ. We assume that for any S, p∗(·|S) may be decomposed as:

p∗(h|S) = 1{h ⊢ R}p̃∗(h|R, C), ∀h ∈ Σ. (1)

In the above, 1{h ⊢ R} is an indicator function assessing if a solution h satisfies the requirements
R or not. This indicator function is objective in the sense that it represents an unquestionable truth
about a sample solution h. In contrast, p̃∗(·|R, C), is context dependent and subjective. Given
the same contextual information, different problem setters (e.g., different human users) may have
varying preferences over competing solutions that satisfy the given set of requirements.

In this paper, we will focus on the problem of task underspecification; a situation where the support
of p∗(·|S) extends beyond the set of acceptable solutions.
Definition 1 (Task ambiguity). Let S = (R, C) andH := {h : h ⊢ R}. We say that S is ambiguous
ifH is a proper superset ofH∗, i.e. H ⊃ H∗.

When an LLM agent attempts to solve a given task specified by S, it generates a solution h according
to its own generative distribution pϕh

(·|S). If S is ambiguous, providing a correct solution becomes
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(a) Preference optimization. The distribution pϕh is aligned with the
average preferences of the population p∗avg. This strategy is successful,
if the set of acceptable solutions H∗ is aligned with the mode of pϕh

(left). If not, pϕh may fail to generate correct answers (right).

(b) Iterative task elicitation. By ac-
quiring new task specifications, the
set of admissible solutions is succes-
sively reduced, surroundingH∗.

Figure 2: Resolving ambiguity.
challenging due to the risk of misinterpreting the true intention of the problem setter. The risk
of misinterpretation is high if the distributions p∗ and pϕh

are not aligned. In order to solve this
problem, one could consider at least two alternative approaches:

Preference optimization. The first school of thought postulates that agents should be able to fill
in the blanks by combining information from instructions and their previous experience in order to
identify the intended behavior (Tamkin et al., 2023). In particular, the goal of reinforcement learning
with human feedback (RLHF) (Bai et al., 2022; Ouyang et al., 2022) or direct preference optimiza-
tion (DPO) (Rafailov et al., 2023) is to align the generative distribution pϕh

(·|S) with preferences of
the overall population such that with a high likelihood, pϕh

(·|S) concentrates around H∗ (Fig. 2a,
left). However, if the intentions of an individual user deviate from that of the average population
(Fig. 2a, right), the agent is at risk of proposing solutions not belonging toH∗. Such behaviors may
be especially harmful if there is an associated risk with generating a sample answer h /∈ H∗.

Iterative task elicitation. The second approach involves engaging in an interactive dialogue with
the user, seeking additional specifications (Kuhn et al., 2022; Li et al., 2025). Since H ⊃ H∗, some
requirements of the problem must have not been explicitly stated in S and remain unknown to the
LLM agent. Let St = (Rt, Ct) denote the task specification at time t. During each round of the
conversation, the agent can ask a clarifying question, qt, and after receiving the oracle answer at,
the problem statement gets updated to St+1 = St ∪ (qt, at). At each interaction step, the set of
solutions compatible with St, Ht := {h : h ⊢ Rt}, becomes smaller and successively concentrates
around the true solution set H∗, mitigating the risk of failure when sampling h ∼ pϕh

(·|St). The
goal of this approach is to ensure personalized alignment without the need for model fine-tuning.

The goal. This paper focuses on the latter option of interactive task elicitation. Given that obtaining
the oracle answers maybe be costly1 , our goal is to find the best strategy for generating clarifying
questions so that pϕh

concentrates aroundH∗ with minimal interaction cost.

� We make a distinction between model uncertainty and the ambiguity of a problem. While
model uncertainty is measured through the heterogeneity of pϕh

, ambiguity of a task is defined
through the objective indicator function 1{h ⊢ R} whose true value is independent of the LLM
or the problem setter. We note that in many cases, the support of the agent’s generative distribu-
tion pϕh

(·|S) may cover a larger space thanH∗, even if the problem statement S is not ambigu-
ous. This is due to the persistent issue of LLM hallucinations (Zhang et al., 2023b; Rawte et al.,
2023) or the complexity of the problem exceeding the LLM’s abilities. Thus, a high uncertainty
of the LLM agent does not imply inherent ambiguity of S. While the focus of this paper lies
in addressing objectively ambiguous problems, as we will see in experiment 4.2, iterative task
elicitation may also improve LLM-generated solutions even for unambiguous problems.

2.1 WHAT MAKES A QUESTION INFORMATIVE?

To understand what makes a question informative, we will rely on the principles of Bayesian Ex-
perimental Design (BED). BED aims to design optimal experiments by maximizing the amount of
information about an unknown quantity of interest gained from an outcome of an experiment. In
the context of problem solving with LLM agents, an experiment corresponds to a question q posed

1We work under the convention of BED (Rainforth et al., 2023), wherein the cost of selecting an experiment
that maximizes the information gain is negligible in comparison to the cost of obtaining the oracle answer.
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by the LLM agent, it’s outcome is the oracle answer, a, and the unknown quantity of interest, is
the generated solution, h. Therefore, the information gain (IG) from obtaining the additional task
specification as a pair (q, a), given a problem statement, S, can be formalized as:

IG(q, a) := H[p∗(h|S)]−H[p∗(h|S ∪ (q, a))], (2)
where H is the Shannon entropy. However, because IG strictly depends on the answer a, which
is unknown at the point of asking the question q, we need to consider the expected information
gain–a quantity which arises by taking the expectation over all possible answers, given the query q:

EIG(q) := Ep∗(a|q,S) [IG(q, a)] = H[p∗(h|S)]− Ep∗(a|q,S)H [p∗(h|S ∪ (q, a)] (3)
Noting that the first term of the EIG in (3) does not depend on q, we focus on the second term:

−Ep∗(a|q,S)[H [p∗(h|S ∪ (q, a))]]. (4)

In the above, p∗(a|q,S) denotes the distribution of oracle answers to a question q, given S. We will
assume that the law of total probability applies to p∗ so that p∗(a|q,S) =

∑
h∈H p∗(a|q, h)p∗(h|S).

We will also assume that p∗ is an oracle that given a sample solution h, can always answer a ques-
tion q, about h, truthfully, so that p∗(a|q, h) > 0 ⇒ h ⊢ (a, q). Under this assumption, all plau-
sible answers a to a question q must be semantically equivalent. Thus, without loss of generality,
we can assume that for each question, q, there exists only one answer, a, describing h, for which
p∗(a|q, h) = 1. Therefore, each question q, generates a partitioning of H into non-overlapping sets
of solutions H(q,a) compatible with S ∪ (q, a). Let Aq denote the space of all unique answers to a
question q given the current problem statement S and letH(a,q) := {h ∈ H : p∗(a|q, h) = 1}, then
we must have that:

H =
⋃

a∈Aq

H(q,a) and H(q,a) ∩H(q,a′) = ∅ ∀a, a′ ∈ Aq s.t. a ̸= a′.

In this view, the utility of each question can be seen through the partitioning of H that it generates
and the compound likelihood of solutions belonging to each of the partitionsH(q,a), a ∈ Aq .2

Requirement querying. Note that the ground-truth information gain depends on the unknown
distribution p∗. Ideally, we would like the generative distribution of the LLM, pϕh

(·|S), to closely
approximate p∗(·|S) for any problem statement, S. This is, however, not guaranteed. The bias of
pϕh

may not adequately represent the preferences of the problem setter encoded in p∗. However,
if, both p∗ and pϕh

can be decomposed as a product of the objective function 1{h ⊢ R} with their
subjective counterparts, then 1{h ⊢ R} provides a source of common grounding between the two
distributions. Our strategy of active task disambiguation will therefore solely focus on requirement
querying. With that in mind, from now on we will assume that each question-answer pair, (q, a),
yields a new requirement, extending the current set of requirements and progressively reducing the
set of compatible solutions (c.f. Fig. 2b).

Uniformity of the unknown. As p∗ is unknown and pϕh
may be inadequately biased, our strategy

of active task disambiguation will be agnostic to the biases of both p∗ and pϕh
. We will therefore

approximate p∗ with a uniform distribution over the set of all solutions compatible with the given
set of requirements. Under this assumption, we have that

Ep∗(a|q,S) [H [p∗(h|S ∪ (q, a))]] =
∑
a∈Aq

H [p∗(h|S ∪ (q, a))]
∑
h′∈H

p∗(a|q, h′)p∗(h′|S) (5)

=
∑
a∈Aq

H [p∗(h|S ∪ (q, a))]
∑

h′∈H(q,a)

1

|H|
(6)

Given that p∗(·|S) is uniform on H we have that p∗(h|S ∪ (q, a)) is uniform on H(q,a), thus
H [p∗(h|S ∪ (q, a))] = log(|H(q,a)|), and so

Ep∗(a|q,S) [H [p∗(h|S ∪ (q, a))]] =
1

|H|
∑
a∈Aq

|H(q,a)| log(|H(q,a)|) (7)

We note that the above is minimized whenH(a,q) are of equal size.

2In practice, when p∗ is represented through an internal likelihood function of a human, the two assumptions
on the law of total probability and truthfulness of p∗ may be violated; humans may answer questions incorrectly
or answer “I don’t know”, giving no information aboutH∗. We see such events as unpredictable random noise
that we decide not to model for simplicity. Alternative approaches may penalize questions q for which the
expected uncertainty of p∗(a|q, h) is high.
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Figure 3: Active task disambiguation. 1 Starting from t = 0, the problem statement St is presented
to the problem-solving agent. 2 The agent reasons about the problem to infer the set of solutions
Ht compatible with the requirements of St. In order to approximateHt, a set of candidate solutions
{ht

i} is sampled. 3 To discern between different solution variants, the agent generates candidate
questions {qtj}. 4 A question q∗ with the highest utility is selected and presented to the oracle.
5 Based on the oracle answer, a∗, the problem statement is extended by the new specification

defined through (q∗, a∗); the process can be repeated with the updated problem statement St+1 =
St ∪ (q∗, a∗) resulting in a reduced space of compatible solutions,Ht+1 ⊂ Ht.

Corollary 1. Let H be the set of solutions compatible with the requirements R within the problem
statement S . Suppose that p∗(·|S) is uniform on H. Let Qn be the set of all questions with exactly
n possible answers such that for any q ∈ Qn, there exists a finite set of possible answers Aq with
|Aq| = n and that each question-answer pair, (q, a), induces a new requirement. Then, the EIG is
maximized for a question q∗ whose possible answers in Aq∗ partitionH into equally sized subsets.

� If we only consider binary questions with |Aq| = 2 (e.g. yes-or-no type of questions), then
the question with the highest information gain is the one which partitions the set of all possible
solutions H into two subsets of equal size. The second pane on the right of Figure 3 shows how
at iteration t, three candidate questions may split the space of compatible solutions into subsets;
the selected question q∗ is one which results in the most even partitioning.

� From (7) it follows that max
q∈Qn

EIG(q) ∝ log( |H|
n ). This implies that a question with more

possible answers can result in larger information gain. However, this requires finding a catego-
rization of the possible solutions that partition them into balanced subsets. In the extreme case,
if |H| = K, the question with the highest information gain is the one whose answer always
points to exactly one of the solutions h ∈ H. Perhaps, the only way to ask such questions is to
enumerate all solutions in H and ask: “Is h∗ is supposed to be h1, . . . hK−1 or hK”? Arguably,
this is neither a natural question to ask nor a user-friendly one, as it requires the user to examine
each of the K possible solutions. We argue that questions with a small set of possible answers,
yet ones that induce a balanced partitioning of the solution space strike a good balance between
information gain and the mental load from the user.

3 THE METHOD: ACTIVE TASK DISAMBIGUATION

The key point of the previous section is that given the unknown bias of p∗, the question with the
largest information gain is the one that splits the space of compatible solutions into equal partitions.
Generating such a question requires the LLM agent to reason about the set of possible solutions
at each interaction step and identify the features that discern them. Such a reasoning process can
be viewed as a form of meta-cognitive ability, requiring the LLM agent to consider the uncertainty
within its own generative distribution. While a straightforward solution to asking such clarifying
questions may be to simply perform zero-shot prompting of the LLM agent, we hypothesize that
the out-of-the-box abilities of LLMs in this form of reasoning are lacking in comparison to their
solution-generating abilities. This may be caused by a relatively small number of clarifying ques-
tions present in their pre-training corpus. Our proposed method explicitly evaluates the utility of
candidate questions via a small sample of self-generated solutions and returns the question that
maximizes this utility. Fig. 3 shows a high-level overview of the workflow.
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Let U : Σ→ R denote a utility function determining the usefulness of a candidate question q. Based
on the derivations of the previous section we define U as:

U(q) = EIG(q)− c(q),

where c : Σ → R+ is a cost function determining the expected cost of obtaining the oracle answer
to a candidate question q3. Our method of active task disambiguation consists of the following steps.
At each iteration t,

1. Sample a set of N candidate solutions {ht
i}Ni=1 ∼ pϕh

(·|St);
2. Sample a set of M candidate questions {qtj}Mj=1 ∼ pϕq (·|St);
3. Obtain pseudo answers ati,j for each question qtj about every solution ht

i;

4. Approximate the utility U of each question qtj based on the answers {ati,j}Ni=1;

5. Return the question q∗ = argmaxq∈{qtj} U(q);

6. Record the user answer a∗ and extend the problem statement to St+1 = St ∪ (q∗, a∗).

Algorithm 1 estimate EIG(qj , {ai,j}Ni=1)

Require: A question qj and a set of N answers
{ai,j}Ni=1

{a1, . . . , an} ← Unique answers in {ai,j}Ni=1

for k ∈ {1, . . . , n} do
nk ← |{i : ai,j = ak, i ∈ [N ]}|
pk ← nk/n

end for
return −

∑n
k=1 pk log(pk)

In the above, pϕq
correspond to the question-

generating distribution of the problem-solving LLM.
Step 3. requires approximating the EIG of the
candidate questions {qtj}Mj=1 based on the sample
{ht

i}Ni=1. This estimate is computed by generating
to all questions qtj answers {ati,j} about each sample
solution ht

i. Depending on the type of the solutions,
these answers may be generated by the problem-
solving LLM itself (see experiment 4.1), or evalu-
ated with an external tool (see experiment 4.2). Al-
gorithm 1 shows the general procedure of estimating the EIG score based on equation (7).

� We note that the estimation of the EIG score, and consequently the selection of questions,
directly depends on the sample {ht

i}Ni=1. The proposed approach shifts the load of selecting
the best question from implicit reasoning about the best question to ask to explicit reasoning
in the solution space. The underlying motivation for this strategy is that generating discrim-
inative questions without direct access to the set of compatible solutions is more challenging
than solution generation itself. Question selection via direct maximization of the EIG bootstraps
the question-generating skills of LLMs using their potentially stronger solution-generating skill.
Based on this observation, we make a couple of practical remarks.

Ensuring uniformity. When estimating the EIG score based on samples from pϕh
(·|S = (R, C))

we want to ensure that pϕh
is close to uniform on the set of R-compatible solutions. In practice,

to encourage diversity of samples we may adopt two strategies. 1) Generate sample solutions with
increased sampling temperature. 2) Instruct the LLM to generate a list of “diverse and representa-
tive” solutions. We find that adding this statement to the solution-generating prompt improves the
diversity of generated samples and the coverage ofH (see study 2. of experiment 4.1).

Mitigating LLM noise. The effectiveness of questions selected by maximizing the estimated infor-
mation gain relies on the agent’s ability to accurately evaluate 1{h ⊢ R}. For this, we need to ensure
that a) the generative distribution of the agent, pϕh

(·|S), is error-free, i.e. pϕh
(h|S = (R, C)) = 0

for any h ⊬ R and b) the pseudo answers ai,j used to estimate the EIG are also error-free, i.e.
hi ⊢ (qj , ai,j). While in select cases ensuring the compatibility of solutions with requirements
is straightforward (see code generation in experiment 4.2), in many problems in which the agent
generates solutions without any external grounding, ensuring that points a) and b) are error-free is
challenging due to LLM hallucinations (Zhang et al., 2023b; Rawte et al., 2023). We observe that in
practice, employing more refined prompting strategies, like CoT or self-reflection, works well (see
study 3. of experiment 4.1).

3In the experimental section, for simplicity, we take c to be constant. In the case of human-written answers,
alternatives may include penalties for the question’s length or the expected length of the answer.
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4 EXPERIMENTS

Our experiments are designed to investigate two hypotheses which result from the discussions con-
tained in the previous sections:

H1) Implicit reasoning about solutions to generate the most effective clarifying question is a dif-
ficult skill for LLMs. This skill can be improved by shifting the reasoning load from the
question space to the solution space.

H2) The gap between implicit reasoning, i.e. generating questions without explicitly sampling
hypothetical solutions, and explicit reasoning through a sample of solutions to select the best
question is most significant in cases where:

H2a) The LLM can generate representative and diverse samples of solutions, uniformly cov-
ering the space of solutions compatible with the given problem statement.

H2b) The evaluation noise of the EIG is minimal. This is particularly true in cases when
evaluation can be offloaded to an external tool.

Given the above, we will present two kinds of problems: one in which there is no external evaluator
guaranteeing that sample solutions adhere to the given requirements and one in which we can ground
the evaluation of 1{h ⊢ R} with an external tool. For both experiments, prompts used to generate
questions, solutions, and answers are provided in the Appendix (D.1.1 and D.2).

4.1 YES-OR-NO QUESTIONS WITH THE 20 QUESTION GAME

The 20 Questions game is a classic guessing game that involves one player (A) thinking of an
object, and the other player (B) asking up to 20 yes-or-no questions to guess what it is. The object
can be anything, often categorized into an animal, a place, or a person to give the guessers a starting
point. The goal for the guessers is to identify the object with as few questions as possible. Despite
the 20 questions game being seemingly a toy example, it provides an ideal setup to evaluate the
multi-turn questioning abilities of LLM agents. Moreover, it serves as a parallel to many real-world
applications, like conversational search, content recommendation, or even medical diagnosis.

4.1.1 THE MAIN EXPERIMENT

Setup. To reduce the sampling costs, we play the game for 10 instead of the original 20 rounds. We
restrict the game to the category of animals. Here, the set of acceptable solutions,H∗ are singletons,
{h∗}where h∗ represents a single animal name that player A may think about. Player A is simulated
with GPT-4o-mini prompted to answer questions about the ground-truth animal h∗. We emphasize
that in this setup there is no pre-fixed list of candidate animals that the user or the reasoning agent
can choose from. Instead, at each point of the interaction, the guessing LLM (Player B) is free
to guess any animal across the entire animal kingdom. For a quantitative analysis of question-
generating strategies, we run the game on 15 arbitrary tasks corresponding to 15 animal names (see
appdx. D.1.2). For each task, we run the iterative requirement querying for 10 iterations across 5
seeds.

Question generation. We consider four alternative methods for generating questions:

• implicit: the agent is prompted to generate a single candidate question;

• implicit-ToT Yao et al. (2023): using the same prompt, we sample M = 5 questions and prompt
the LLM to select the best questions among the set of self-generated candidate questions;

• EIG-uniform: using the same prompt, we sample M = 5 questions and select the one that maxi-
mizes the estimated EIG score. The EIG is estimated assuming uniformity of sample solutions;

• EIG-logprobs: same as above, but the EIG is estimated using the log-probabilities of the sample
solutions as returned by the LLM agent.

EIG estimation. To estimate the EIG for the latter two strategies, at each interaction step, we
prompt the LLM agent to generate a list of N = 20 animals that adhere to the current set of re-
quirements Rt. If the list of requirements Rt is long, the LLM may generate animals that do not
fulfill all the requirements. To mitigate this, after the initial sampling of the animals, we loop over
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all requirementsRt and use the self-critic answering prompt to check if all requirementsRt are sat-
isfied. This extra filtering step is repeated twice (see Study 3. section 4.1.2 for ablation of this step).
Animals that do not fulfill the requirements are rejected and sampling is repeated until N animals
are obtained. The same self-critic answering prompt is used to generate the pseudo answers ai,j to
candidate questions qj about sample hypothesis hi. The resulting set of answers is used to estimate
the EIG according to Algorithm 1. Refer to Appendix C, Algorithm 4 for details on estimating the
EIG using the log-probabilities of the sample solutions {hi}Ni=1.
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EIG-uniform
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Iteration
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Figure 4: Comparison of question-
generating strategies on the game
of 20 questions. Rankings averaged
across 15 ground-truth animals, 5
run seeds, 25 evaluation seeds. See
Appendix E.1 for results with the
Llama family models.

Evaluation. Our metric of success is the likelihood of
the problem-solving agent guessing the ground truth animal
given the obtained set of requirements,Rt, at each interaction
step. We approximate this likelihood by sampling 10 animals
with pϕh

(·|Rt, C) and then prompting the agent to order the
animals from most to least likely. We record the position of
h∗ within the returned list, counting from the bottom–a score
of 0 indicates that h∗ has not been sampled and a score of 10
indicates that h∗ is at the top of the list. For each task, seed,
and iteration, we compute this score with 25 sampling seeds.

Results. As observed from Fig. 4, the EIG-uniform strategy
outperforms the remaining strategies by a significant mar-
gin. The fact that it outperforms both implicit and implicit-
ToT strategies confirms H1. Shifting the reasoning load from
question space to direct reasoning about solutions results in
improved efficacy of the selected questions–the elicited re-
quirements lead to a higher likelihood of the LLM guessing
the right animal after fewer iterations. We also observe that
EIG-logprobs significantly underperforms in comparison to
EIG-uniform. This proves our claim about the LLM’s generative distribution pϕh

being inadequately
biased, favoring solutions that do not necessarily agree with the ground truth solution set H∗. Fi-
nally, we note that the gap in performance between EIG-uniform and the two implicit strategies is
much lower for GPT-4o-mini, which is considered to be overall a significantly more capable model
than GPT-3.5-turbo, especially when more reasoning steps are enforced with the ToT prompt.

4.1.2 ADDITIONAL STUDIES

The aim of this section is to gain further insights and investigate the impact of the de-
sign choices behind the EIG-uniform strategy on the effectiveness of the generated questions.
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EIG-uniform

EIG-logprobs
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Figure 5: Number of valid solutions
after each iteration.

In what follows, we present results for the problem-solving
agent implemented with the GPT-3.5-turbo model.

Study 1: Questions’ utility. While we do not restrict the
game to a pre-fixed list of animals, in order to evaluate the
partitioning properties of generated questions, we construct a
large and diverse list of 500 animals (see Appendix D.1.2).
Figure 5 shows the number of animals compatible with the
requirements at the first six iterations from the large list con-
structed, instead of the small samples of N animals used
during the reasoning process (results limited to the first six
rounds due to high costs of responding to all questions about
500 animals). We find that questions generated with the EIG-
uniform strategy result in smaller subsets of Rt-compatible
solutions, and thus more effective disambiguation. This also shows that the estimation of EIG based
on just N = 20 samples during question elicitation is a good proxy for the ground truth EIG, here
approximated with the large list of 500 animals.

Study 2: Diversity of solutions. Estimation of questions’ utility is dependent on the quality of
sample solutions, which need to be sufficiently diverse to approximate Ht well. To ensure good
coverage, the prompt for animal guessing includes the statement: Generate a carefully selected, di-
verse, and representative set of animals.. The EIG score used in our experiments is equivalent to the
conditional mutual information (MI) between the random solutions h ∼ pϕh

(·|S) and random an-
swers a ∼ pϕ(·|q) :=

∑
h∈H pϕa(·|q, h)pϕh

(h|S), for a fixed question q. In order to test the impact
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Table 1: Diversity of samples

N diverse vanilla

10 0.57 (0.01) 0.46 (0.01)
20 0.58 (0.01) 0.54 (0.01)
30 0.60 (0.01) 0.58 (0.01)

of the diversifying statement, we compute this score across a range
of 330 diverse questions. From the main experimental results, we
collect the unique set of 330 questions asked until the sixth itera-
tion. We then run the game until the first six iterations sampling
animals with and without the diversifying statement. We also vary
the number of samples N . After obtaining the sets {ht

i}Ni=1 for all
t ∈ [1, . . . , 6], we estimate the score for each of the 330 questions
based on the LLM-generated answers. Assuming that the collection of 330 questions is diverse, the
average of the conditional MI score will be maximized for pϕh

close to uniform. Thus, a higher MI
score implies greater diversity of the generated sample solutions. Table 1 confirms that the inclusion
of the diversifying statement leads to more diverse samples of animals, validating H2a.
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Figure 6: The impact of LLM noise.

Study 3: Requirement compatibility. To mitigate
the impact of LLM hallucinations on sampling solu-
tions that do not adhere to the given set of require-
ments our solution generating prompt employs an ex-
tra filtering step to ensure that sample solutions hi

indeed adhere to the current set of requirements. We
test the impact of filtering on the accuracy of gener-
ated solutions. Figure 6 shows the average number
of solutions rejected with a single filtering step (left)
alongside the final rankings for the EIG-uniform strat-
egy when 0, 1 or 2 filtering steps are used (right). As
the number of requirements increases, the LLM is more prone to hallucinations. A form of “self-
reflection” via filtering becomes crucial in ensuring accurate outputs and confirming H2b.

4.2 ACTIVE CODE GENERATION–REQUIREMENTS AS UNIT TESTS

Setup. In our second experiment, we demonstrate active task disambiguation with an external tool
ensuring a near error-free evaluation of requirement compatibility. In this experiment, the goal of
our reasoning agent described in the initial prompt S0 is to generate a code solution h, based on the
requirements R0 specified via a user-defined instruction describing the expected functionality of h.
Following the setup of Chen et al. (2023), S0 contains a code snippet that includes statements such
as imports, the function header, and a short comment describing the expected functionality of the
generated code. Due to the ambiguous nature of natural language and the fact that at the point of
writing the instruction not all edge cases might have been considered, S0 is likely to be ambiguous
(see Appendix E.2.2 for examples).

Question generation. We consider two types of clarifying “questions”:

(B) A question q is a generated test case in the form of an assertion that the oracle is supposed to
either confirm as correct or reject. We call these questions binary, as they only have two kinds
of responses: True or False, similarly to the yes-or-no questions from the previous experiment.

(O) A question q is a generated input to the desired function. The oracle returns the expected output
of the code. We call these questions “open”, as for one sample input there may exist a nearly
unconstrained number of valid outputs, similarly to open-ended questions.

We compare questions generated zero-shot against questions selected by first sampling M = 5 can-
didate questions and then selecting one that maximizes the EIG, under the assumption of uniformity.

Answers and requirements. Both the ground truth answers a∗ and the answers ai,j used for EIG es-
timation are obtained by executing the ground-truth or a candidate program h, respectively, against
a question q. The resulting question-answer pairs are turned into additional requirements as exe-
cutable unit tests that each generated solution must pass and appended to Rt. Generated programs
are executed with an external Python interpreter in a sandbox environment. The “answering” of
questions through an external tool ensures near noiseless estimation of the EIG score.

Solution generation. The solutions ht
i ∼ pϕh

(·|St) are sampled by prompting the LLM to generate
code completions which are then filtered to only those samples that pass the test cases in Rt. This
ensures that all solutions sampled from the LLM conform to the elicited requirements.

Evaluation. We evaluate all question-generating strategies on the HumanEval benchmark contain-
ing simple coding problems (Chen et al., 2021), and the more challenging APPS (Hendrycks et al.,
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Figure 7: Accuracy of generated code solutions after eliciting 4 additional requirements. Results
averaged across 48 tasks, 3 run and 3 evaluation seeds.

2021) benchmark with competition-level coding challenges4, limiting the number of total questions
asked to 4. After obtaining for each iteration t a set of test cases Rt, we evaluate the discriminative
power of the obtained requirements, by sampling 20 solutions from pϕh

(h|St) and calculating the
percentage of code solutions that pass the hidden test cases provided in the benchmark dataset.

Results. Figure 7 shows the accuracy of the generated code samples after eliciting 4 requirements
with all strategies. Tables 3 and 4 in the appendix show the results across all 4 iterations. We observe
that EIG-based strategies lead to higher accuracy of the outputs with fewer test cases queried. As ex-
pected by the theoretical discussion of section 2.1, questions with more possible answers (O) can be
more informative than questions with only two possible answers (B). However, if these are to be an-
swered by a human user, “open” questions arguably require an increased mental load to answer. We
also observe that for more capable models, the gap between the baseline questioning strategies and
their EIG-equivalent version is smaller. Results are consistent across both benchmarks, indicating
that the EIG methods remain effective across varying levels of task ambiguity and difficulty5.

We also note that the low accuracy of generated samples h ∼ pϕh
(·|S0) does not imply that S0 itself

is inherently ambiguous, as it may simply be caused by the LLM’s limitations in following complex
instructions. However, even if S0 is objectively not ambiguous, the input-output examples appended
to the prompt St may positively bias pϕh

towards correct solutions, which is a desirable by-product
of employing active querying strategies to task disambiguation.

5 DISCUSSION

Limitations. While our work primarily focuses on efficient requirement elicitation, handling am-
biguously specified tasks involves two equally important aspects determining a) that the given prob-
lem is ambiguous; b) when a sufficient number of requirements have been collected to stop querying
the user. Kuhn et al. (2022) demonstrate that in select instances, ambiguity detection can be effec-
tively resolved with zero-shot prompting. We believe that future research should explore alternative
strategies. We also note that the question-generating strategies presented in this work require an
increased number of LLM calls compared to the baselines (see Appendix F). However, in line with
the assumptions commonly made in BED, we take the stance that the computational load required
to select the optimal query is negligible compared to the value of acquiring information that reduces
problem ambiguity. We anticipate this assumption will become more valid over time as technol-
ogy advancements lower the costs of LLM token generation, thereby enhancing the importance of
efficient information acquisition strategies.
Conclusions and Impact. Our findings suggest that clarifying questions generated with zero-shot
prompting of LLMs are less efficient than those elicited by direct estimation of their utility with
respect to the set of self-generated solutions. This suggests that the current skills of LLMs in gener-
ating efficient clarifying questions are underdeveloped, leaving room for improvement. Agents with
well-developed meta-cognitive skills should be able to implicitly reason about the best question to
ask without relying on multi-stage prompting strategies. We hypothesize that LLMs’ deficiency in
asking good clarifying questions stems from their limited exposure to such questions in the train-
ing corpus. To address this, our proposed framework offers a way to generate synthetic datasets of
underspecified problems and their corresponding optimal clarifying questions. These datasets could
serve as a resource for supervised fine-tuning, enhancing LLMs’ abilities to disambiguate tasks more
effectively and improving their interactive real-world problem-solving capabilities.

4We filtered the tasks of both benchmarks to a subset of 48 non-trivial tasks, i.e. tasks that do not achieve a
near 100% zero-shot accuracy when sampling from h ∼ pϕh(·|S

0) with GPT-3.5-turbo or GPT-4o-mini.
5The zero-shot accuracy of GPT-4o-mini on APPS is only ∼35% in comparison to the ∼70% achieved on

HumanEval confirming the more challenging nature of the APPS benchmark.
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REPRODUCIBILITY

The pseudo algorithm to execute active question generation can be found in Appendix C. The exact
format of the prompts used for both experiments is presented in Appendix D. Results are provided
for two closed sourced models: GPT-3.5-turbo, GPT-4o-mini; and two source models: Llama-3-8B
(Instruct), and Llama-3-70B (instruct). Code for reproducing the experimental results of section 4.2
is made available at: https://github.com/kasia-kobalczyk/active-task-disambiguation. The repository
also includes generated programs and querries with GPT-3.5-turbo and GPT-4o-mini.
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A EXTENDED RELATED WORK

Active (in-context) learning. In conventional AL, the ML system is designed to select queries from
a fixed pool of unlabeled examples in order to reduce the uncertainty about its own outputs. Several
works have explored AL strategies to improve the performance of LLMs on few-shot learning tasks
performed with in-context learning Zhang et al. (2022b); Margatina et al. (2023); Diao et al. (2024).
By acquiring new labeled examples, the generative distribution of the LLM is expected to shift
towards outputs consistent with the ground-truth labels. In our setup, we do not have access to a
fixed pool of questions that the agent can choose from. Instead, the agent generates a question on
its own. Noting that a question can be of the form “What is the label y for an input x?”, active
task elicitation can be seen as a generalization of AL. Furthermore, as observed by Zhang et al.
(2022b), in-context learning performance can be highly unstable across sample examples due to
the idiosyncrasies of how LLMs update their generative distribution when extending the set of in-
context examples. Given the unpredictable nature of the LLMs’ distribution, our work focuses on
eliciting binary task requirements, enabling the agent to filter its own outputs that do not conform
to task requirements specified by the user. By extending the problem statement with additional
requirements, the bias of pϕh

changes at each iteration, yet it remains unknown whether this change
is aligned with p∗. By encouraging uniformity of pϕh

over the set of compatible solutions, our
active-reasoning framework steers the agent to consider many possible interpretations of a task at
each point of the interaction, resulting in the selected questions being less biased towards most likely
interpretations according to the possibly misaligned language model.

Clarifying questions and generative task elicitation. Before the emergence of LLMs, prior works
(Rao & Daumé III, 2018; 2019; Min et al., 2020) have considered the problem of learning single-
turn clarifying questions, with the question generator trained as sequence-to-sequence RNN’s based
on a pre-collected dataset of problems, clarifying questions, and their answers. More recently, in
order to effectively address ambiguous user questions, Krasheninnikov et al. (2022) fine-tune the
GPT-3 model on a data set of conversations consisting of ambiguous user requests, clarifying ques-
tions, and final answers. Kuhn et al. (2022) show that LLMs can reason about ambiguous aspects
of a query and generate clarification questions with zero-shot prompting. Similarly, Li et al. (2025)
capitalize on zero-shot prompting of LLMs and introduce a framework in which LLMs infer in-
tended behaviour by querying the user with examples to label, yes-or-no questions or open-ended
questions. They show that the LLM-generated queries are more efficient and require less effort than
user-written prompts, enabling the discovery of initially unanticipated considerations of a task. Our
work demonstrates that the LLM-generated questions can be improved by encouraging the agent
to explicitly reason at inference time about the space of viable outputs given its current knowledge
about the problem. This aligns with the principles highlighted in Groenendijk (1984), where reason-
ing about the semantics of questions plays a crucial role in shaping subsequent answers.

Preference elicitation with LLMs. A number of recent studies (Yang et al., 2021; Piriyakulkij et al.,
2023; Handa et al., 2024; Austin et al., 2024) have leveraged LLMs for user preference elicitation,
employing ideas of BED to select most informative queries. Despite surface-level similarities, these
approaches are targeted at recommendation systems operating on a pre-determined set of objects
or fixed feature spaces. For instance, (Handa et al., 2024) present an interactive preference elici-
tation framework wherein a linear Bayesian model is used to describe user preferences over a set
of features elected prior to the start of user interaction. In this setup, the LLM’s role is limited to
feature extraction and query verbalization. In contrast, our paper focuses on scenarios where the
LLM reasoning agent is expected to output a solution that belongs to an unconstrained space of
natural language, not pre-determined by a feature space of fixed dimensionality nor a fixed list of
hypothetical answers. This necessitates an iterative sampling of solutions at each interaction step
to approximate the currently available options. Albeit more challenging, the unconstrained setting
closely reflects the real-world usage of LLMs as general purpose reasoning agents. Moreover, it
enables the LLM agent to query the user about aspects of hypothetical solutions at varying levels
of granularity, and crucially, as noted by Li et al. (2025), ask about aspects of a given problem that
could have been difficult to anticipate before engaging in the interactive dialogue.

Ambiguity in natural language tasks. Prior work highlights the importance of natural language
ambiguity and its direct impact on LLM performance in instruction following. Liu et al. (2023)
introduce a benchmark to assess LLMs’ ability to recognize ambiguous sentences and disentangle
their possible meanings. Tamkin et al. (2023) propose a benchmark of ambiguously specified classi-
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fication tasks, requiring LLM agents to infer missing information. Niwa & Iso (2024), similar to our
work, define ambiguity in terms of the sets of compatible and ground-truth solutions. Additionally,
they introduce an ambiguity taxonomy that categorizes different types of instruction ambiguities and
propose methods to refine initial instructions with clearer specifications.

Other related works. Recent studies have further explored the capabilities of LLMs in interactive
and active learning scenarios. Hu et al. (2024) introduce Uncertainty of Thoughts (UoT), an algo-
rithm designed to improve LLMs’ information seeking by enabling them to ask effective questions.
This approach uses uncertainty modeling to guide the LLM in actively reducing the LLMs uncer-
tainty. Similarly, Astorga et al. (2024a) investigate active learning with LLMs in settings where
data is partially observed and acquiring information has costs, focusing on efficient feature and label
acquisition. Building upon the theme of question generation, Andukuri et al. (2024) propose STaR-
GATE, a method that rewards language models for generating useful clarifying questions, enhancing
their ability to resolve task ambiguity through self-improvement.

B POTENTIAL APPLICATIONS OF ACTIVE TASK DISAMBIGUATION

Active task disambiguation holds promise across a broad spectrum of applications. For instance, in
personalized education and intelligent tutoring systems, clarifying questions can reveal subtle learn-
ing objectives and misconceptions, enabling real-time adaptation of instructional strategies (Aleven
et al., 2016; Graesser et al., 2005; Krasheninnikov et al., 2022). In software engineering, interac-
tive requirement elicitation helps mitigate misinterpretation during system design and development,
leading to more efficient coding cycles and improved software quality (Jirotka & Goguen, 1994; Li
et al., 2025). Creative industries—ranging from content generation and design to game develop-
ment—may also benefit by aligning AI-generated outputs with users’ evolving intensions (Amershi
et al., 2019).

Beyond conventional machine learning tasks, active task disambiguation may be extended to a di-
verse array of problem-solving and decision-making domains. In scientific research, systematically
clarifying experimental constraints can support more precise experiment design and hypothesis re-
finement (Montgomery, 2017). In robotics and autonomous systems, iteratively disambiguating mis-
sion goals and environmental constraints is key to achieving safer, more adaptive behavior (Paden
et al., 2016; Thrun, 2002). In healthcare, actively refining diagnostic criteria and treatment proto-
cols can improve patient outcomes by tailoring interventions to individual needs (Topol, 2019). In
addition, we envision active task disambiguation to enhance areas like: autoformulation (Astorga
et al., 2024b), informed machine learning and autoML (Kobalczyk & Schaar, 2025), legal reasoning
(Rissland, 1988), financial advisory (De Prado, 2018), emergency response planning (Zhang et al.,
2022a), urban planning (Ševčı́ková et al., 2007), policy-making support (Bowen & Zwi, 2005),
context-aware testing (Rauba et al., 2024b), self-healing systems (Rauba et al., 2024a), or cyberse-
curity (Purushottam et al., 2024).

17



Published as a conference paper at ICLR 2025

C ACTIVE TASK DISAMBIGUATION

Algorithm 2 Active requirement elicitation

Require: Initial problem statement S0 = (R0, C), Max number of iterations T , Number of solu-
tions sampled per iteration N , Number of questions sampled M .
for t in {1, . . . , T}: do
{ht

i}Ni=1 ∼ pϕh
(·|St)

{qtj}Mj=1 ∼ pϕq
(·|St)

if M = 1 then
q∗ ← qt1

else if M > 1 then
for j in 1, . . . ,M do

for i in 1, . . . , N do
ati,j ∼ pϕa

(·|ht
i, q

t
j)

end for
EIG

[
qtj
]
← estimate EIG(qtj , {ati,j}Ni=1)

end for
q∗ ← argmaxq∈{qtj}M

j=1
EIG [q]

end if
a∗ ← get oracle anser(q∗)
r∗ ← transform to requirement(a∗, q∗)
Rt+1 ← Rt ∪ {r}
St+1 ← (Rt+1, C)

end for

Algorithm 3 estimate EIG(qj , {ai,j}Ni=1)

Require: A question qj and a set of N answers {ai,j}Ni=1

{a1, . . . , an} ← Unique answers in {ai,j}Ni=1
for k ∈ {1, . . . , n} do
nk ← |{i : ai,j = ak, i ∈ [N ]}|
pk ← nk/pk

end for
return −

∑n
k=1 pk log(pk)

The methods of obtaining pϕh
, pϕq

, pϕa
as well as transform to requirement and

get oracle answer subroutines are application-specific. We provide the specific prompts used
in sections D. The experiment of the 20Q game 4.1 also considers an alternative method for estimat-
ing the EIG based on the token log-probabilities of sample solutions {hi}Ni=1:

Algorithm 4 estimate EIG logp(qj , {ai,j}Ni=1, {pi}Ni=1)

Require: A question qj , the set of N answers {ai,j}Ni=1, log-probabilities of sample solutions
{pi}Ni=1

{a1, . . . , an} ← Unique answers in {ai,j}Ni=1
for k ∈ {1, . . . , n} do
pk ←

∑
{i:ai,j=ak} exp(pi)

end for
for k ∈ {1, . . . , n} do
pk ← pk/

∑n
r=1 pr

end for
return −

∑n
k=1 pk log(pk)
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D PROMPTS AND EXPERIMENTAL DETAILS

D.1 THE 20 QUESTIONS GAME

D.1.1 PROMPT TEMPLATES

When eliciting the requirements for the game of 20 questions we use the following set of prompts:

Solution generating prompt

As an AI assistant, your role is to generate a wide and diverse range
of animals that strictly meet the specified requirements. Your
objective is to guess an animal from the entire animal kingdom that
satisfies these requirements:

{List of requirements Rt}
For this, generate a carefully selected, diverse, and representative
set of {N} animals following this scheme:

1. <H>
2. <H>
...
{N}. <H>

Fill <H> with full name animals.

Question generating prompt

Your objective is to guess an animal from the entire animal kingdom
that satisfies the following requirements:

{List of requirements Rt}
For this, generate the most informative yes/no question."

Question selection prompt (used only for implicit-ToT)

Your objective is to guess an animal from the entire animal kingdom
that satisfies the following requirements:

{List of requirements Rt}
For this, select the most informative yes/no question from this list:"

{List of questions {qtj}Mj=1

Answering prompt, {ati,j}Ni=1 ∼ pϕa(·|{ht
i}Ni=1, q

t
j)

You are an expert critic that specializes in responding to yes/no
questions. Given these animals:

1. {ht
1}. <A>.

2. {ht
2}. <A>.

...
N. {ht

N}. <A>.
For each animal fill <A> with ’Yes’ or ’No’ with the response for this
question:

{Sample question qtj}

Requirement transform prompts

Question to statement:
Transform the following question into an affirmative statement q
You should start with ’The animal’. Do not write anything else than
the affirmative statement.

Statement negation:
Transform the following question into an affirmative statement
statement
You should start with ’The animal’. Do not write anything else than
the affirmative statement.
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Oracle answer prompt (for GPT-4o-minisimulating player A)

Given the animal: h∗ and the question: q∗, respond to the question
depending on the given animal. You can only respond one of the
following answers.

Yes: If the answer is yes.
No: If the answer is no.
Pass: If the answer could be either yes or no.

Think step by step. After your thinking process respond: ’The final
answer is <Response>’.

D.1.2 EXPERIMENTAL DETAILS

Animals for the main setup. The focus of the main experiments is to evaluate the efficacy of
the requirements elicited with various question-generating strategies. To do this, we select an ar-
bitrary list of 15 animals as the ground-truth solutions h∗. These are: ’Chameleon’, ’Ladybug’,
’Swordfish’, ’Armadillo’, ’Crab’, ’Grasshopper’, ’African Grey Parrot’, ’Manta Ray’, ’Rabbit’,
’Flamingo’, ’Pangolin’, ’Toucan’, ’Starfish’, ’Tarantula’, ’Salamander’. For each h∗, we run the
game for T = 10 iterations and with 5 different seeds. For solution and question generation we use
N = 20 and M = 5, respectively.

Construction of the list of 500 animals for study 1. As discussed in the theoretical section of our
paper, a question that splits the solution space into roughly equal parts should result in the highest
information gain. Since we do not restrict the user nor the reasoning agent to a pre-fixed list of
animals, we cannot directly assess the partitioning properties of a question. Instead, during active
question generation we resolve to sampling of individual hi’s which should approximate the entire
solution space. The aim of this study is to evaluate the partitioning properties of the generated
questions on a much larger sample of solutions. To this end, we construct a large and diverse list
of 500 animals. This list was obtained by prompting GPT-4o-minito stratify the animal kingdom
into several categories. In response we obtained the following categories and their cardinalities:
100 mammals, 100 birds, 100 invertebrates, 50 amphibians, 50 reptiles and 100 fish. Then, we
subsample the respective number of animals in each category from the animals generated within our
main experimental results until the sixth iteration. The stratification ensures that the constructed list
is sufficiently diverse.

D.2 CODE GENERATION

D.2.1 PROMPT TEMPLATES

When eliciting the requirements for the game of 20 questions we use the following set of prompts:

Code header for St

def <function_name>(<input_name>):
"""
<Comment explaining the expected functionality of the code>

Examples:
<Generated test cases>
"""

Solution generating prompt

You are an expert Python programmer that specializes in coding tasks.
Complete the function given by the user. Do not change the function
signature. Do not add any additional commentary. Do not import any
additional libraries. Start your answer with the function signature.

<Code header for St>

20



Published as a conference paper at ICLR 2025

Question generating prompt (open)

You are an expert Python programmer that specializes in solving
user-specified coding tasks. To ensure you correctly understand user
specifications, you can query the user for expected program outputs
of sample inputs. Given the function signature, generate <M> sample
inputs that will be most helpful in formalizing user intent. Structure
your response as a list of function calls:

1. <function_name>(input_1)
2. <function_name>(input_2)
...
<M>. <function_name>(input_<M>)

Do not generate any additional content beyond the numbered list of
function calls. Do not repeat the same inputs as in the Examples
given.

<Code header for St>

Question generating prompt (binary)

You are an expert Python programmer that specializes in solving
user-specified coding tasks. To ensure you correctly understand
user specifications, you can write additional test cases. Given the
function signature, generate <M> sample test cases that will be most
helpful in formalizing user intent. Structure your response as a list
of assertion:

1. assert <function_name>(input_1) == output_1
2. assert <function_name>(input_2) == output_2
...
<M>. assert <function_name>(input_<M>) == output_<M>

Do not generate any additional content or comments beyond the list of
assertions.

<Code header for St>

D.2.2 EXPERIMENTAL DETAILS

We conduct our experiments on two benchmakrs: HumanEval (Chen et al., 2023) and APPS
(Hendrycks et al., 2021). To ensure a sufficient level of ambiguity of the problem statements, we
filter the set of tasks in these benchmarks to the set of non-trivial tasks, i.e. task that cannot be
solved with a 100% accuracy zero-shot, i.e. without acquiring additional requirements. In addition,
the APPS benchmark is filtered to the set of tasks that do not contain any example input-output pairs
in the original problem formulation. Resulting datasets contain 48 and 47 tasks, respectively.

E ADDITIONAL RESULTS

E.1 THE GAME OF 20 QUESTIONS

Table 2 shows the final ranking results for the game of 20 questions.

E.2 CODE GENERATION

E.2.1 FULL RESULTS

Table 3 shows the accuracies of the generated code samples at each iteration on the HumanEval
benchmark. Table 4 contains the corresponding results for the APPS benchmark. Despite the more
challenging nature of the APPS benchmark, as indicated by the significantly lower accuracy across
all models at t = 0, our conclusions still hold. The EIG-based strategies outperform their non-EIG
equivalents by a significant margin, and the “open” type of questions result in larger information
gains than “binary” questions.
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Table 2: Average ranks for the game of 20 questions. Rankings averaged across 15 ground-truth
animals, 5 run seeds, 25 evaluation seeds. Standard errors in brackets.

(a) GPT-3.5-turbo

t EIG-uniform EIG-logprobs implicit-ToT implicit

1 0.8 (0.0) 1.0 (0.1) 1.2(0.1) 0.9 (0.0)
2 1.5 (0.1) 1.4 (0.1) 1.7 (0.1) 1.5 (0.1)
3 2.4 (0.1) 1.9 (0.1) 2.4 (0.1) 2.0 (0.1)
4 2.9 (0.1) 2.4 (0.1) 3.0 (0.1) 2.5 (0.1)
5 3.9 (0.1) 2.9 (0.1) 3.4 (0.1) 3.0 (0.1)
6 4.1 (0.1) 3.2 (0.1) 3.7 (0.1) 3.6 (0.1)
7 4.7 (0.1) 3.4 (0.1) 4.0 (0.1) 4.0 (0.1)
8 5.0 (0.1) 3.6 (0.1) 4.5 (0.1) 4.3 (0.1)
9 5.9 (0.1) 3.8 (0.1) 4.8 (0.1) 4.7 (0.1)
10 6.2 (0.1) 4.1 (0.1) 5.1 (0.1) 4.9 (0.1)

(b) GPT-4o-mini

t EIG-uniform EIG-logprobs implicit-ToT implicit

1 0.4 (0.0) 0.3 (0.0) 0.2 (0.0) 0.1 (0.0)
2 1.1 (0.1) 0.9 (0.1) 1.1 (0.1) 1.1 (0.1)
3 2.0 (0.1) 1.7 (0.1) 2.0 (0.1) 2.1 (0.1)
4 3.4 (0.1) 2.6 (0.1) 2.7 (0.1) 2.9 (0.1)
5 4.4 (0.1) 3.8 (0.1) 3.8 (0.1) 3.7 (0.1)
6 5.5 (0.1) 4.7 (0.1) 5.1 (0.1) 4.5 (0.1)
7 6.2 (0.1) 5.1 (0.1) 5.7 (0.1) 5.1 (0.1)
8 6.5 (0.1) 5.5 (0.1) 6.1 (0.1) 5.3 (0.1)
9 6.7 (0.1) 5.7 (0.1) 6.5 (0.1) 5.4 (0.1)
10 6.8 (0.1) 6.0 (0.1) 6.6 (0.1) 5.5 (0.1)

(c) Llama3-70B (Instruct)

t EIG-uniform EIG-logprobs implicit-ToT implicit

1 1.3 (0.1) 0.4 (0.0) 0.8 (0.0) 0.5 (0.0)
2 1.5 (0.1) 0.5 (0.0) 1.2 (0.1) 0.9 (0.1)
3 1.7 (0.1) 0.9 (0.1) 2.0 (0.1) 1.4 (0.1)
4 2.4 (0.1) 1.2 (0.1) 2.4 (0.1) 2.1 (0.1)
5 3.0 (0.1) 1.5 (0.1) 2.8 (0.1) 2.7 (0.1)
6 3.8 (0.1) 1.8 (0.1) 3.1 (0.1) 3.4 (0.1)
7 4.3 (0.1) 2.2 (0.1) 3.7 (0.1) 3.8 (0.1)
8 5.1 (0.1) 2.7 (0.1) 4.1 (0.1) 4.3 (0.1)
9 5.4 (0.1) 3.2 (0.1) 4.6 (0.1) 5.3 (0.1)
10 6.3 (0.1) 3.9 (0.1) 5.1 (0.1) 5.9 (0.1)

Table 3: Accuracy (%) of solutions on HumanEval benchmark. (B)-solutions generated with “bi-
nary” questions. (O)-solutions generated with “open” questions. Results averaged across 48 tasks,
3 run and 3 evaluation seeds per task.

(a) GPT-3.5-turbo

t base (B) EIG (B) base (O) EIG (O)

0 44.1 (1.9) 44.6 (1.8) 47.1 (1.4) 47.0 (1.4)
1 55.3 (2.5) 66.8 (2.5) 67.5 (1.7) 74.4 (1.6)
2 65.2 (2.5) 78.4 (2.1) 71.6 (1.7) 81.4 (1.6)
3 70.7 (2.6) 82.2 (2.1) 75.5 (1.7) 84.5 (1.5)
4 70.8 (2.6) 85.6 (2.0) 75.9 (1.7) 85.0 (1.5)

(b) GPT-4o-mini

t base (B) EIG (B) base (O) EIG (O)

0 71.0 (2.1) 69.6 (2.1) 71.4 (2.1) 70.6 (2.1)
1 74.6 (2.0) 73.6 (2.1) 77.1 (2.0) 79.5 (1.8)
2 76.7 (2.0) 78.9 (2.0) 78.8 (1.9) 83.9 (1.7)
3 77.0 (2.0) 80.6 (1.9) 80.8 (1.9) 83.7 (1.8)
4 79.6 (2.0) 81.5 (1.9) 83.5 (1.8) 83.8 (1.8)

(c) Llama3-70B (Instruct)

t base (B) EIG (B) base (O) EIG (O)

0 63.9 (2.0) 63.8 (2.0) 63.6 (2.0) 63.6 (2.0)
1 71.3 (2.0) 79.3 (1.7) 72.9 (2.0) 79.7 (1.7)
2 73.0 (2.0) 82.5 (1.6) 75.2 (2.0) 82.8 (1.7)
3 75.4 (1.9) 84.7 (1.6) 78.3 (1.9) 84.2 (1.7)
4 78.8 (1.8) 87.5 (1.4) 81.2 (1.8) 85.5 (1.5)

(d) Llama3-8B (Instruct)

t base (B) EIG (B) base (O) EIG (O)

0 34.8 (1.7) 34.7 (1.7) 34.6 (1.7) 34.7 (1.7)
1 40.9 (1.9) 48.8 (1.9) 53.7 (1.9) 62.3 (2.0)
2 45.6 (1.9) 56.2 (2.0) 58.9 (2.0) 70.5 (2.0)
3 49.6 (2.0) 60.4 (2.0) 60.6 (2.1) 74.4 (2.0)
4 53.0 (2.0) 65.8 (2.0) 64.8 (2.0) 75.5 (1.9)

E.2.2 AMBIGUITY IN HUMANEVAL

We note that the low accuracy of generated samples h ∼ pϕh
(·|S0) does not imply that S0 itself is

inherently ambiguous, as it may simply be caused by the LLM’s limitations in following complex
instructions. However, even if S0 is objectively not ambiguous, the input-output examples appended
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Table 4: Accuracy (%) of solutions on the APPS benchmark. (B)-solutions generated with “binary”
questions. (O)-solutions generated with “open” questions. Results averaged across 47 tasks, 3 run
and 3 evaluation seeds per task.

(a) GPT-3.5-turbo

t base (B) EIG (B) base (O) EIG (O)

0 32.1 (1.6) 31.2 (1.6) 32.1 (1.6) 32.9 (1.7)
1 49.0 (1.9) 49.5 (2.0) 51.3 (1.9) 58.4 (2.0)
2 54.3 (1.9) 61.0 (2.0) 59.0 (1.9) 68.3 (2.0)
3 60.8 (2.0) 67.5 (1.9) 68.2 (1.8) 74.6 (1.8)
4 62.4 (1.9) 71.3 (1.9) 69.7 (1.9) 77.3 (1.8)

(b) GPT-4o-mini

t base (B) EIG (B) base (O) EIG (O)

0 35.8 (1.1) 35.9 (1.2) 34.6 (1.1) 35.9 (1.2)
1 53.9 (1.7) 62.0 (1.8) 59.2 (1.7) 68.0 (1.9)
2 57.5 (1.8) 67.7 (1.9) 68.8 (1.7) 83.0 (1.6)
3 60.8 (1.9) 72.9 (1.8) 72.7 (1.8) 85.7 (1.5)
4 62.9 (1.9) 75.3 (1.8) 75.1 (1.8) 87.2 (1.5)

(c) Llama3-70B (Instruct)

t base (B) EIG (B) base (O) EIG (O)

0 38.0 (1.9) 38.3 (1.8) 38.4 (1.8) 37.8 (1.8)
1 49.0 (2.0) 54.7 (1.9) 57.1 (2.0) 63.4 (2.0)
2 51.6 (2.0) 60.1 (2.0) 61.9 (2.1) 74.9 (1.9)
3 57.7 (2.0) 65.7 (2.1) 68.8 (2.0) 78.3 (1.9)
4 60.1 (2.0) 68.5 (2.0) 73.5 (2.0) 81.6 (1.8)

(d) Llama3-8B (Instruct)

t base (B) EIG (B) base (O) EIG (O)

0 10.6 (1.5) 8.5 (1.6) 9.1 (1.6) 9.7 (1.8)
1 13.5 (1.9) 17.0 (2.4) 21.8 (3.0) 25.3 (3.4)
2 15.4 (2.1) 19.7 (2.9) 26.9 (3.8) 28.4 (4.3)
3 14.5 (2.1) 22.7 (3.3) 32.1 (4.6) 34.2 (5.4)
4 18.5 (2.5) 26.9 (3.7) 39.2 (4.9) 50.7 (5.7)

to the prompt St may positively bias pϕh
towards correct solutions, which is a desirable by-product

of employing active querying strategies to task disambiguation. To ensure, however, that the code-
generation experiment is indeed appropriate to test our strategy for ambiguous prompts, we have
listed in table 5 sample tasks with explanation of their ambiguity.
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Table 5: Sample ambiguous problem statements from the HumanEval benchmark.

problem statement ambiguity
from typing import List

def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple
groups of nested parentheses. Your goal is to
separate those group into separate strings and return the
list of those.
Separate groups are balanced (each open brace is properly
closed) and not nested within each other
Ignore any spaces in the input string.
"""

How to handle characters in the
input string other than paren-
theses and spaces? How to han-
dle strings with non-balanced
groups of parentheses?

from typing import List

def remove_duplicates(numbers: List[int]) -> List[int]:
""" From a list of integers, remove all elements that occur
more than once.
Keep order of elements left the same as in the input.
"""

Should all duplicated ele-
ments be removed or one
unique element retained?, e.g.
remove duplicates([4, 4, 3,

5, 5]) ->[4, 3, 5] or [3]

def is_bored(S):
"""
You’ll be given a string of words, and your task is to count
the number

of boredoms. A boredom is a sentence that starts with the
word "I".
Sentences are delimited by ’.’, ’?’ or ’!’.
"""

Is a sentence starting with
“I’m” a boredom or not?

def histogram(test):
"""Given a string representing a space separated lowercase
letters, return a dictionary
of the letter with the most repetition and containing the
corresponding count.
If several letters have the same occurrence, return all of
them.
"""

How to handle letters that are
not separated by spaces?

def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the
second word or any of its rotations is a substring in the
first word
"""

What is understood by a string
rotation?

def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the
element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from
1 to i (1 * 2 * ... * i).

"""

Should the sum of 1 to i include
i?
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F COSTS OF QUESTION ELICITATION

We note that the EIG-based question-generating strategies presented in this work require an in-
creased number of LLM calls compared to the zero-shot baselines. In line with the assumptions
commonly made in BED, we take the stance that the computational load required to select the opti-
mal query is negligible compared to the value of acquiring information that reduces problem ambi-
guity. We anticipate this assumption will become more valid over time as technology advancements
lower the costs of LLM token generation, thereby enhancing the importance of efficient informa-
tion acquisition strategies. However, given that in many real-world applications design choices may
be constrained by the LLM sampling costs, we include a comparison of the effective number of
LLM calls required at each interaction step for the key strategies considered. In the below, N is the
number of generated solutions at each step, and M is the number of generated candidate questions.

F.1 20 QUESTIONS

Strategy Cost
implicit (baseline) O(1)
implicit-ToT O(M)
EIG O(N +M +NM)

In the baseline strategy, only one call is needed to sample a single question, q∗.

In the implicit-ToT strategy, additional M calls are needed to generate a set of M candidate ques-
tions, from which one is selected.

In the EIG-based strategies (EIG-uniform and EIG-logprobs), M calls are needed to sample a set of
candidate questions {qj}Mj=1 and N calls to sample the hypothetical solutions {hi}Ni=1. To select the
best question, we need to estimate the EIG, which requires the LLM to answer each question, qj ,
about every sampled solution, hi, thus requiring additional NM LLM calls.

F.2 CODE GENERATION

Strategy Cost
base O(1)
EIG O(N +M)

In the code generation example, the evaluation of the EIG does not require additional LLM calls.
The answers, ai,j , are obtained by executing the code solution, hi, against each question qj .
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