1
2
3

e % 9 o s

10
11
12

14
15

17

Under review as a conference paper at ICLR 2025

A APPENDIX

B SENSITIVITY ANALYSIS PSEUDOCODE

Algorithm 2: Fast Sensitivity Analysis

Data: Number of levels L, Uncertainty threshold ¢
Result: Perturbation Levels {a, ..., a1}

g(a) « Equation

points <— {(0,0), (ar,2)};

loop

¢ <+ PCHIP(points);

fori <+ 1...L —1do

«; < Estimate(¢, 2i/L);

(y1, yu) < Estimate upper and lower y-values of ¢ at z = ay;
¢ < PCHIP(points.insert(y;));

¢y < PCHIP(points.insert(y,));

oy, < Estimate(¢, y;);

o, < Estimate(C, yy,);

€ < (v, —ag,)/2;

end

a*, €* + Choose level with max ¢;;
if €* < € then Break loop;
points.insert((a*, g*(a*)));

end;
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C DETAILED EXPERIMENT HYPERPARAMETERS

Method Max Iters LR Optimizer Augmentations Batch Size Backbone

Baseline 160,000 6e-05 AdamW  RandomCrop 1 SegFormer-b0

Augmix 160,000 6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0
trast, Equalize,

Posterize, Rotate,
Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Brightness,

Sharpness
AutoAugment 160,000 6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0
trast, Equalize,

Posterize, Rotate,
Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Brightness,
Sharpness
RandAug 160,000 6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0
trast, Equalize,
Posterize, Rotate,
Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Brightness,
Sharpness
TrivialAug 160,000 6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0

trast, Equalize,
Posterize, Rotate,
Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Brightness,

Sharpness
IDBH 160,000 6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0
trast, Equalize,

Posterize, Rotate,
Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Bright-

ness, Sharpness,
RandomFlip, Ran-
domErasing
Ours;
r, = 1600;
rsA = 9600;
Warmup = 6400 160,000  6e-05 AdamW  RandomCrop, Con- 1 SegFormer-b0

trast, Equalize,
Posterize, Rotate,

Solarize, Shear X,
Shear Y, Translate X,
Translate Y, Color,
Contrast, Brightness,
Sharpness

Table 7: Experiment hyperparameters for Table |2 and Table |4 . All experiments are trained
under similar hyperparameter settings, with each evaluation conducted on the highest-performing
mloU checkpoint. In comparisons, we prioritize official implementations released by authors and
avoid re-implementations. Additionally, most comparisons use the same set of augmentations to
ours, with the exception of IDBH |Li & Spratling|(2023), whose original implementation includes
RandomFlip and RandomErasing. For all experiments, we use the SegFormer-b0 backbone |Xie et al.
(2021), which is a recent state-of-the-art segmentation-specialized architecture.
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D QUALITATIVE RESULTS ON SYNAPSE

gaiibladder
'.-n_kidney
plagreas
BElloorta Blcorta

feft_kidney left_kidney left_kidney lefi=kidney

(a) Ground truth. (b) TrivialAugment Pre- (c) IDBH Prediction. (d) Our Prediction.
diction.
Figure 5: Qualitative evaluation on multi-organ segmentation with motion blur corruption. We
show predictions on a motion-blurred sample from the Synapse (Landman et al.,2015) dataset for
TrivialAugment (b), IDBH (c), and Our method (d), against the ground truth (a). Our method is
able to segment and left kidneys, liver, and aorta accurately. In contrast, the TrivialAugment
prediction is unable to distinguish both kidneys.

D.1 QUALITATIVE RESULTS ON RAINY DATA

(a) AutoAugment Prediction. (b) IDBH Prediction. (c) Our Prediction.

Figure 6: Qualitative comparison on snowy urban driving sample between AutoAugment Cubuk
et al. (2020), IDBH|Li & Spratling (2023), and Ours. In this example, each method (AutoAugment,
IDBH, Ours) is trained on clean Cityscapes data representing sunny weather, then evaluated on
adverse weather samples. Despite not having rainy data in the training set, our method is able to
segment the driving noticeably clearer than other methods. In particular, other methods consistently
struggle to segment the vehicle confidently.
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D.2 SPECIAL CASE: WINDSHIELD WIPER OCCLUSION

(a) Ground Truth. (b) AutoAugment. (c) IDBH. (d) Ours.

(i) Ground Truth. (j) AutoAugment. (k) IDBH. 1) Ours.

(m) Ground Truth. (n) AutoAugment. (o) IDBH. (p) Ours.

Figure 7: More examples of special case on ACDC prediction: windshield wiper occlusion.

D.3 DETAILS ON BASIS AUGMENTATIONS

Previous work in robustification showed that learning with a set of “basis perturbations” (BP)
significantly improved zero-shot evaluation against unseen corruptions for image
classification and regression tasks, such as vehicle steering prediction. The intuition behind basis
perturbations is that the composition of such perturbations spans a much larger space of perturbations
than may be observed in natural corruptions; observed zero-shot performance boosts on unseen
corruptions subsequently might be attributed to learning a model which is robust to basis perturbations.
In our method, we extend this concept and introduce a more generalized and larger set of basis
perturbations in sensitivity analysis to determine the most productive augmentation during training.

Let D = {Positive, Negative} describe the set of augmentations applied in either a positive
(lighter) direction or negative (darker) to either one channel of an image or a parameter of an affine
transformation applied to an image.

Let P = {R,G, B, H, S,V} describe the set of channels in RGB and HSV color spaces which may
be perturbed; in other words, these augmentations are photometric.

Then, let G = {ShearX, ShearY, Translate X, TranslateY, Rotate} denote affine, or geometric,
transformations which are parameterized by a magnitude value.

Finally, let Z = {Noise, Blur} be the set of augmentations not applied along channel dimensions.
Specifically, we use Gaussian Noise and Gaussian Blur.

Thus, the set of all basis augmentations A g used in robustificationis Ag = {D x P + G + Z}.

To compute lighter or darker channel augmentations of RGB or HSV channels, we use linear scaling.
Let the range of a channel be [Umin, Umax|. For lighter channel augmentations, we transform the
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channel values v by an intensity factor « like so:
Ve = QUmax + (1 — @) - ve
Likewise, for darker channel augmentations, the transformation can be described like so:

Ve = QUmin + (1 — @) - ve

The default values are vy,;, = 0 and vy,ax = 255. For H channel augmentations, we set the maximum
channel values to be 180. For V' channel augmentations, we set the minimum channel values to be 10
to exclude completely dark images.

Affine transformations can be represented as a 3 x 3 matrix, which, when multiplied with a 2-
dimensional image, produces a geometrically distorted version of that image. Affine transformation
matrices are typically structured in the form:

Sheary 1 T,

1 Shearx T,
M- [
0 0 1

for shear and translation transformations. For rotations where the center of the image is fixed as the
origin point (0, 0), the transformation matrix is defined as:

cos —sinf 0
Mot = lsin@ cosf 01
0 0 1

To account for padded values in images after affine transformations, we zoom in images to the largest
rectangle such that padded pixels are cropped out.

All augmentations are parameterized by a magnitude value ranging from O to 1. A magnitude value
of 1 corresponds to the most severe augmentation value. More details on exact parameter value
ranges can be found in the appendix. Conversely, a magnitude value of O produces no changes to the
original image, and can be considered an identity function. We account for the symmetry of these
augmentation transformations by considering both positive values and negative values as separate
augmentations. The fast adaptive sensitivity analysis algorithm introduced in the next section relies
on the property that increasing magnitude corresponds to increasing “distance” between images.
Thus, augmentations cannot simply span the value ranges -1 to 1, and we separate them instead to
different augmentations (positive and negative).

We apply these augmentations on-the-fly in online learning rather than generating samples offline.
Doing so greatly reduces the offline storage requirement by one order of magnitude. Suppose L
intensity levels are sampled for each basis augmentation. Then, offline generation of perturbed data
requires up to L x 2 X (|P| 4 |G|) + 2 = 24L additional copies of the original clean dataset. With
online generation, we avoid offline dataset generation entirely and only need the original clean dataset
to be stored, similar to standard vanilla learning.

R R G G B B H H S S \% \% B N
Figure 8: Visualization of each photometric augmentation transformation on a bedroom image.
Up 1 indicates the “lighter”, positive direction and | indicates the “darker”, negative direction. “B”
and “N” indicate blur and noise, respectively.
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ShearX ShearX ShearY ShearY TransX TransX TransY TransY Rotate Rotate

Figure 9: Visualization of various geometric augmentations applied to a sample image of a house.
We use the following geometric transformations in our sensitivity analysis scheme, which are also
analogous to the set of transformations used by other methods |Cubuk et al.| (2019); Zheng et al.|
(2022). Up arrows indicate augmentation in the positive, or left, direction, while down arrows indicate
augmentation in the negative, or right, direction.

Brightness Brightness Color Color Contrast Contrast Sharpness Sharpness Posterize Solarize

Figure 10: Additional augmentation types used in sensitivity analysis, which are used in other
methods such as AutoAugment. While these photometric tranformations are used in other methods,
the transformations also overlap with the photometric transformations shown in Figure[§, namely
HSV perturbations. However, we still conduct sensitivity analysis evaluation on these transformations
for completion.
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D.4 ADVSTEER BENCHMARK EXAMPLES

Figure 11: AdvSteer benchmark examples.
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D.5 CLEAN PERFORMANCE ON DIFFERENT BACKBONES

PSPNet Zhao et al.|(2017) SegFormer Xie et al.|(2021)
Method aAccT mAccT mloU?T aAccT mAccT mloUfT
Baseline 63.770 48.695 35.715 86.825 57.280  48.365
Augmix 94.770 74400 66.740 95.520 81.430  73.390
AutoAugment 95.130 77210 69.630 95.550 81.390  73.820
RandAugment  95.060 76.770  69.360 95.610 82390  74.560
TrivialAugment 95.090 75.930 68.620 95.640 83.210  75.130
Ours 95.100 79.320 71.840 95.880 84.070  76.330

Table 8: Comparison of clean evaluation performance across different augmentation methods
on Cityscapes. We evaluated our sensitivity-informed augmentation method against popular
benchmarks on PSPNet and SegFormer. The baseline represents training with no augmentations.

D.6 RESULTS ON CUB DATASET FOR CLASSIFICATION

InceptionV3
Method Clean Basis Aug AdvSteer IN-C
Baseline 41.647 15.965 3.679 20.501
Augmix 35.865 15.274 4.810 20.394
AutoAugment 16.793 7.219 2.575  8.158
TrivialAugment 33.914 13.338 4229 17.586
RandAugment  36.624 15.466 4.821 19.345
Ours 47.670 18.122 5276 21.842

Table 9: Performance on CUB (Wah et al.,|2011) dataset with InceptionV3 (Szegedy et al.,|2016)
backbone.

D.7 FAST SENSITIVITY ANALYSIS ILLUSTRATION

2 2 . 2
16 f———X 1.6 of———X
Evaluate g at B K

candidate @s, x 3

22X 1.2 12f——X
Construct simple
candidate curve with g . N
max and min points, . X Solve for new @s

08 F—X solve for as 0.8 0.8 X and repeat

T T 1 T T 1 T 11
X

[e31 ay ay ay 5 @ iy a3 ay ¢33 (431 iz d3 dy s

Figure 12: Illustration of fast sensitivity analysis. Each iteration of the fast sensitivity can be
intuitively visualized. Since we can assume general monotonicity of the curve, we first initialize a
candidate curve (a line in the first iteration). We solve for the candidate perturbation levels & based on
the solution in Equation[6] In the next step (middle), we evaluate the candidate level with the greatest
uncertainty and adjust the candidate curve, the dotted red line, using PCHIP on the evaluated levels,
which are guaranteed to be true points along the function g from Equation 5] In the next step (right),
we use the new curve and solve for new candidate levels, repeating the process in the previous two
steps until the maximum uncertainty of any candidate level values falls below a threshold of 0.05.
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D.8 SENSITIVITY ANALYSIS COMPUTED CURVE COMPARISON

Perturb  Method p1 P2 p3 Pa
R Baseline 0.100 0.300 0.500 0.700
g Adaptive 0.149 0.253 0.399 0.604

Baseline 0.100 0.200 0.400 0.600

Gt Adaptive 0.103 0.204 0.395 0.619
B Baseline 0.200 0.300 0.500 0.700
T Adaptive 0.146 0.328 0.551 0.788
R Baseline 0.200 0.400 0.600 0.800
+ Adaptive  0.225 0.503 0.625 0.803
G Baseline 0.200 0.400 0.600 0.800
+ Adaptive 0.256 0.447 0.607 0.812
B Baseline 0.200 0.500 0.700 0.800
+ Adaptive 0.231 0.450 0.594 0.730
Je Baseline 0.100 0.300 0.400 0.900
T Adaptive 0.268 0.406 0.508 0.809
g Baseline 0.200 0.500 0.600 0.800
U Adaptive 0.243  0.439 0.589 0.744
v Baseline 0.200 0.400 0.600 0.700
T Adaptive 0.193  0.360 0.517 0.680
H Baseline 0.200 0.400 0.500 0.600
i Adaptive 0.279 0.433 0.548 0.699
g Baseline 0.200 0.400 0.600 0.900
i Adaptive 0.199 0.344 0.562 0.847
v Baseline 0.200 0.400 0.600 0.800
+ Adaptive 0.197 0.397 0.594 0.797
blur Baseline 9 19 25 35
Adaptive 9 17 23 31

s Baseline 10 15 20 30
NOLSE T Adaptive 64 124 177 269

Table 10: Comparison of computed perturbation levels using a baseline Shen et al. (2021)
sensitivity analysis method versus our adaptive method. p5 is 1 for all RGB/HSV channels,
49 for blur, and 50 for noise. In previous work, each perturbation level is chosen from a certain
number of sampled, discretized values. Additionally, these perturbed datasets are generated offline
in an additional step before training. Our fast sensitivity analysis enables sensitivity analysis to
be performed on the fly during training, and offers much more dynamic, accurate, and descriptive
sensitivity curves.
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D.9 KID vs. FID RELATIVE ERROR COMPARISON WITH SCALING SAMPLE SIZES

Relative Error Across Sample Sizes

0.20 Em KID
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Figure 13: Relative error of KID and FID over several sample sizes. We plot the relative error of
computed KID and FID values over several sample sizes, with the reference value being the computed
value for each at 500 samples. From this, we can see that FID is significantly biased toward the
number of samples used for evaluation. We can reduce the evaluation of KID values in sensitivity
analysis by a notable fraction due to this property.

D.10 TRAIN-TIME EVALUATION ON PERTURBED DATASETS
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Figure 14: Evaluation on perturbed test datasets over training iterations. We show the evaluation
on each perturbed dataset during training of our model and the baseline for VOC2012 dataset.
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D.11 ADAPTIVE SENSITIVITY ANALYSIS WITH DIFFERENT NUMBER OF LEVELS

Cumulative Sensitivity vs Perturbation Intensity for 5 Levels Cumulative Sensitivity vs Perturbation Intensity for 10 Levels
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Figure 15: Visualization of cumulative sensitivity curve with varying number of levels L. We
visualize the cumulative sensitivity curve in Figure ?? when computing for 5, 10, 15, and 20 levels.
We find that even when we increase the number of levels, the curves remain approximately the same.
Thus, we use 5 levels in our implementation to reduce compute for the sensitivity analysis step.
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