702 A APPENDIX 703

04		
05		
06		
07		
08		
09		
10		
11		
12		
13		
14		
5		
6		
7		
18		
19		
20	В	Sensitivity Analysis Pseudocode
21		
22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35		
6		
87	A	gorifhm 2: Fast Sensitivity Analysis
38	D	ate Number of levels I. Uncertainty threshold c
39	R	esult: Perturbation Levels $\{\alpha_1, \dots, \alpha_{L-1}\}$
10	1 a	α) \leftarrow Equation 5
11	2 p0	ints $\leftarrow \{(0,0), (\alpha_L, 2)\};$
12	3 lo	op
3	4	$\hat{c} \leftarrow \text{PCHIP}(\text{points});$
14	5	for $i \leftarrow 1L - 1$ do
15	6	$\alpha_i \leftarrow \text{Estimate}(\hat{c}, 2i/L);$
16	7	$(y_l, y_u) \leftarrow \text{Estimate upper and lower y-values of } \hat{c} \text{ at } x = \alpha_i;$
17	8	$c_l \leftarrow \text{PCHIP}(\text{points.insert}(y_l));$
8	9	$c_u \leftarrow \text{Fermite}(points.insent(y_u));$
19	10	$\alpha_{il} \leftarrow \text{Estimate}(c, y_l);$ $\alpha_{il} \leftarrow \text{Estimate}(\hat{c}, y_l);$
0	11	$\begin{array}{c} \alpha_{i_u} \leftarrow \text{Estimate}(c, y_u), \\ \epsilon \leftarrow (\alpha - \alpha)/2 \end{array}$
1	12	$ \alpha \circ (\alpha_{i_u} - \alpha_{i_l})/2,$
2	13	$\alpha^*, \epsilon^* \leftarrow \text{Choose level with max } \epsilon_{\epsilon}$
3	15	if $\epsilon^* < \epsilon$ then Break loop;
4	16	points.insert($(\alpha^*, q^*(\alpha^*))$);
55	17 en	d;

C DETAILED EXPERIMENT HYPERPARAMETERS

762							
763	Method	Max Iters	LR	Optimizer	Augmentations	Batch Size	Backbone
764	Baseline	160,000	6e-05	AdamW	RandomCrop	1	SegFormer-b0
765	Augmix	160,000	6e-05	AdamW	RandomCrop, Con-	1	SegFormer-b0
766					Posterize, Rotate,		
767					Solarize, Shear X,		
768					Shear Y, Translate X, Translate X, Color		
769					Contrast, Brightness,		
770					Sharpness		
771	AutoAugment	160,000	6e-05	AdamW	RandomCrop, Con-	1	SegFormer-b0
772					Posterize, Rotate,		
773					Solarize, Shear X,		
774					Translate Y Color.		
775					Contrast, Brightness,		
776	DondAug	160.000	60.05	AdamW	Sharpness BandamGran Can	1	Sac Earman b0
777	KandAug	100,000	08-03	Adamw	trast, Equalize,	1	Segronner-bo
778					Posterize, Rotate,		
779					Solarize, Shear X, Shear V Translate X		
780					Translate Y, Color,		
781					Contrast, Brightness,		
782	TrivialAug	160.000	6e-05	AdamW	Sharpness RandomCron Con-	1	SegFormer-b0
783	Titvian tug	100,000	00 05	7 tourn w	trast, Equalize,	1	begi onner bo
784					Posterize, Rotate,		
785					Solarize, Snear X, Shear Y. Translate X.		
786					Translate Y, Color,		
787					Contrast, Brightness,		
788	IDBH	160,000	6e-05	AdamW	RandomCrop, Con-	1	SegFormer-b0
789					trast, Equalize,		6
790					Posterize, Rotate, Solarize Shear X		
791					Shear Y, Translate X,		
792					Translate Y, Color,		
793					Contrast, Bright-		
794					RandomFlip, Ran-		
795	0				domErasing		
796	$r_{v} = 1600$:						
797	$r_{SA} = 9600;$						
798	Warmup = 6400	160,000	6e-05	AdamW	RandomCrop, Con-	1	SegFormer-b0
799					Posterize, Rotate.		
800					Solarize, Shear X,		
801					Shear Y, Translate X, Translate X, Color		
802					Contrast, Brightness,		
803					Sharpness		
804							

Table 7: Experiment hyperparameters for Table 2 and Table 4. All experiments are trained under similar hyperparameter settings, with each evaluation conducted on the *highest-performing mIoU checkpoint*. In comparisons, we prioritize official implementations released by authors and avoid re-implementations. Additionally, most comparisons use the same set of augmentations to ours, with the exception of IDBH Li & Spratling (2023), whose original implementation includes RandomFlip and RandomErasing. For all experiments, we use the SegFormer-b0 backbone Xie et al. (2021), which is a recent state-of-the-art segmentation-specialized architecture.

Figure 5: Qualitative evaluation on multi-organ segmentation with motion blur corruption. We show predictions on a motion-blurred sample from the Synapse (Landman et al.) (2015) dataset for TrivialAugment (b), IDBH (c), and Our method (d), against the ground truth (a). Our method is able to segment right and left kidneys, liver, and aorta accurately. In contrast, the TrivialAugment prediction is unable to distinguish both kidneys.

D.1 QUALITATIVE RESULTS ON RAINY DATA

(a) AutoAugment Prediction.

(b) IDBH Prediction.

(c) Our Prediction.

Figure 6: Qualitative comparison on snowy urban driving sample between AutoAugment Cubuk et al. (2020), IDBH Li & Spratling (2023), and Ours. In this example, each method (AutoAugment, IDBH, Ours) is trained on clean Cityscapes data representing sunny weather, then evaluated on adverse weather samples. Despite not having rainy data in the training set, our method is able to segment the driving noticeably clearer than other methods. In particular, other methods consistently struggle to segment the vehicle confidently.

D.2 SPECIAL CASE: WINDSHIELD WIPER OCCLUSION

Figure 7: More examples of special case on ACDC prediction: windshield wiper occlusion.

D.3 DETAILS ON BASIS AUGMENTATIONS

Previous work in robustification showed that learning with a set of "basis perturbations" (BP) significantly improved zero-shot evaluation against unseen corruptions Shen et al. (2021) for image classification and regression tasks, such as vehicle steering prediction. The intuition behind basis perturbations is that the composition of such perturbations spans a much larger space of perturbations than may be observed in natural corruptions; observed zero-shot performance boosts on unseen corruptions subsequently might be attributed to learning a model which is robust to basis perturbations. In our method, we extend this concept and introduce a more generalized and larger set of basis perturbations in sensitivity analysis to determine the most productive augmentation during training.

905 Let $D = \{Positive, Negative\}$ describe the set of augmentations applied in either a positive 906 (lighter) direction or negative (darker) to either one channel of an image or a parameter of an affine 907 transformation applied to an image.

- Let $P = \{R, G, B, H, S, V\}$ describe the set of channels in RGB and HSV color spaces which may be perturbed; in other words, these augmentations are *photometric*.
- Then, let $G = \{Shear X, Shear Y, Translate X, Translate Y, Rotate\}$ denote affine, or geometric, transformations which are parameterized by a magnitude value.
- Finally, let $Z = \{Noise, Blur\}$ be the set of augmentations not applied along channel dimensions. Specifically, we use Gaussian Noise and Gaussian Blur.
- Thus, the set of all basis augmentations A_B used in robustification is $A_B = \{D \times P + G + Z\}$.
- To compute lighter or darker channel augmentations of RGB or HSV channels, we use linear scaling. Let the range of a channel be $[v_{\min}, v_{\max}]$. For lighter channel augmentations, we transform the

channel values v_C by an intensity factor α like so:

$$v_C' = \alpha v_{\max} + (1 - \alpha) \cdot v_C$$

Likewise, for darker channel augmentations, the transformation can be described like so:

$$v'_C = \alpha v_{\min} + (1 - \alpha) \cdot v_C$$

The default values are $v_{\min} = 0$ and $v_{\max} = 255$. For *H* channel augmentations, we set the maximum channel values to be 180. For *V* channel augmentations, we set the minimum channel values to be 10 to exclude completely dark images.

Affine transformations can be represented as a 3×3 matrix, which, when multiplied with a 2dimensional image, produces a geometrically distorted version of that image. Affine transformation matrices are typically structured in the form:

 $M = \begin{bmatrix} 1 & Shear_X & T_x \\ Shear_Y & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$

for shear and translation transformations. For rotations where the center of the image is fixed as the origin point (0,0), the transformation matrix is defined as:

	$\lceil cos \theta \rceil$	$-sin\theta$	[0
$M_{rot} =$	$sin\theta$	$cos\theta$	0
	0	0	1

943 944

947

968

920 921

933

938

To account for padded values in images after affine transformations, we zoom in images to the largest rectangle such that padded pixels are cropped out.

All augmentations are parameterized by a magnitude value ranging from 0 to 1. A magnitude value 948 of 1 corresponds to the most severe augmentation value. More details on exact parameter value 949 ranges can be found in the appendix. Conversely, a magnitude value of 0 produces no changes to the 950 original image, and can be considered an identity function. We account for the symmetry of these 951 augmentation transformations by considering both positive values and negative values as separate 952 augmentations. The fast adaptive sensitivity analysis algorithm introduced in the next section relies 953 on the property that increasing magnitude corresponds to increasing "distance" between images. 954 Thus, augmentations cannot simply span the value ranges -1 to 1, and we separate them instead to 955 different augmentations (positive and negative).

We apply these augmentations on-the-fly in online learning rather than generating samples offline. Doing so greatly reduces the offline storage requirement by one order of magnitude. Suppose *L* intensity levels are sampled for each basis augmentation. Then, offline generation of perturbed data requires up to $L \times 2 \times (|P| + |G|) + 2 = 24L$ additional copies of the original clean dataset. *With online generation, we avoid offline dataset generation entirely* and only need the original clean dataset to be stored, similar to standard vanilla learning.

Figure 8: Visualization of each photometric augmentation transformation on a bedroom image.
Up ↑ indicates the "lighter", positive direction and ↓ indicates the "darker", negative direction. "B" and "N" indicate blur and noise, respectively.

 ShearX
 ShearY
 ShearY
 ShearY
 ShearY
 TransX
 TransX
 TransY
 TransY
 Rotate
 Rotate

Figure 9: Visualization of various geometric augmentations applied to a sample image of a house. We use the following geometric transformations in our sensitivity analysis scheme, which are also analogous to the set of transformations used by other methods Cubuk et al. (2019); Zheng et al. (2022). Up arrows indicate augmentation in the *positive*, or left, direction, while down arrows indicate augmentation in the *negative*, or right, direction.

Figure 10: Additional augmentation types used in sensitivity analysis, which are used in other methods such as AutoAugment. While these photometric transformations are used in other methods, the transformations also overlap with the photometric transformations shown in Figure 8, namely HSV perturbations. However, we still conduct sensitivity analysis evaluation on these transformations for completion.

1026 D.4 AdvSteer Benchmark Examples

1080 D.5 CLEAN PERFORMANCE ON DIFFERENT BACKBONES

	PSPNet Zhao et al. (2017)			SegF	SegFormer Xie et al. (2021)			
Method	aAcc↑	mAcc↑	mIoU↑	aAcc	↑ mAcc↑	mIoU		
Baseline	63.770	48.695	35.715	86.82	5 57.280	48.365		
Augmix	94.770	74.400	66.740	95.52	0 81.430	73.390		
AutoAugment	95.130	77.210	69.630	95.55	0 81.390	73.820		
RandAugment	95.060	76.770	69.360	95.61	0 82.390	74.560		
TrivialAugment	95.090	75.930	68.620	95.64	0 83.210	75.130		
Ours	95.100	79.320	71.840	95.88	0 84.070	76.330		

Table 8: Comparison of clean evaluation performance across different augmentation methods
 on Cityscapes. We evaluated our sensitivity-informed augmentation method against popular
 benchmarks on PSPNet and SegFormer. The baseline represents training with no augmentations.

D.6 RESULTS ON CUB DATASET FOR CLASSIFICATION

	InceptionV3						
Method	Clean	Basis Aug	AdvSteer	IN-C			
Baseline	41.647	15.965	3.679	20.501			
Augmix	35.865	15.274	4.810	20.394			
AutoAugment	16.793	7.219	2.575	8.158			
TrivialAugment	33.914	13.338	4.229	17.586			
RandAugment	36.624	15.466	4.821	19.345			
Ours	47.670	18.122	5.276	21.842			

Table 9: Performance on CUB (Wah et al., 2011) dataset with InceptionV3 (Szegedy et al., 2016) backbone.

D.7 FAST SENSITIVITY ANALYSIS ILLUSTRATION

Figure 12: **Illustration of fast sensitivity analysis.** Each iteration of the fast sensitivity can be intuitively visualized. Since we can assume general monotonicity of the curve, we first initialize a candidate curve (a line in the first iteration). We solve for the candidate perturbation levels $\hat{\alpha}$ based on the solution in Equation 6. In the next step (middle), we evaluate the candidate level with the greatest uncertainty and adjust the candidate curve, the dotted red line, using PCHIP on the evaluated levels, which are guaranteed to be true points along the function q from Equation 5. In the next step (right), we use the new curve and solve for new candidate levels, repeating the process in the previous two steps until the maximum uncertainty of any candidate level values falls below a threshold of 0.05.

1126						
1137	Perturb	Method	p_1	p_2	p_3	p_4
1138		Baseline	0.100	0.300	0.500	0.700
1130	κ_\uparrow	Adaptive	0.149	0.253	0.399	0.604
1135	C	Baseline	0.100	0.200	0.400	0.600
1140	GΥ	Adaptive	0.103	0.204	0.395	0.619
1141	В.	Baseline	0.200	0.300	0.500	0.700
1142	D_{\uparrow}	Adaptive	0.146	0.328	0.551	0.788
1143	D	Baseline	0.200	0.400	0.600	0.800
1144	n_{\downarrow}	Adaptive	0.225	0.503	0.625	0.803
1145	C_{\pm}	Baseline	0.200	0.400	0.600	0.800
1146	G_{\downarrow}	Adaptive	0.256	0.447	0.607	0.812
11/7	B_{\perp}	Baseline	0.200	0.500	0.700	0.800
1147	D_{\downarrow}	Adaptive	0.231	0.450	0.594	0.730
1148		Baseline	0.100	0.300	0.400	0.900
1149	H_{\uparrow}	Adaptive	0.268	0.406	0.508	0.809
1150	C	Baseline	0.200	0.500	0.600	0.800
1151	\mathcal{S}_{\uparrow}	Adaptive	0.243	0.439	0.589	0.744
1152	V_{*}	Baseline	0.200	0.400	0.600	0.700
1153	V ↑	Adaptive	0.193	0.360	0.517	0.680
1154	TT	Baseline	0.200	0.400	0.500	0.600
1155	Π_{\downarrow}	Adaptive	0.279	0.433	0.548	0.699
4450	S.	Baseline	0.200	0.400	0.600	0.900
1156	D_{\downarrow}	Adaptive	0.199	0.344	0.562	0.847
1157	V_{1}	Baseline	0.200	0.400	0.600	0.800
1158	•↓	Adaptive	0.197	0.397	0.594	0.797
1159	blaur	Baseline	9	19	25	35
1160	oiur	Adaptive	9	17	23	31
1161	noice	Baseline	10	15	20	30
1162	noise	Adaptive	6.4	12.4	17.7	26.9

1134 D.8 SENSITIVITY ANALYSIS COMPUTED CURVE COMPARISON

Table 10: Comparison of computed perturbation levels using a baseline Shen et al. (2021) sensitivity analysis method versus our adaptive method. p_5 is 1 for all RGB/HSV channels, 49 for blur, and 50 for noise. In previous work, each perturbation level is chosen from a certain number of sampled, discretized values. Additionally, these perturbed datasets are generated offline in an additional step before training. Our fast sensitivity analysis enables sensitivity analysis to be performed on the fly during training, and offers much more dynamic, accurate, and descriptive sensitivity curves.

D.9 KID VS. FID RELATIVE ERROR COMPARISON WITH SCALING SAMPLE SIZES

Figure 13: Relative error of KID and FID over several sample sizes. We plot the relative error of computed KID and FID values over several sample sizes, with the reference value being the computed value for each at 500 samples. From this, we can see that FID is significantly biased toward the number of samples used for evaluation. We can reduce the evaluation of KID values in sensitivity analysis by a notable fraction due to this property.

D.10 TRAIN-TIME EVALUATION ON PERTURBED DATASETS

70 Red Eval	Green Eval	Blue Eval	Hue Eval	Saturation Eval	Value Eval	Blur and Noise Eval
			10000 20000 30000 40000 Baraton		10000 20000 4000	lighter baseline lighter ours darker baseline darker ours tobso 2000 1000 extern

Figure 14: Evaluation on perturbed test datasets over training iterations. We show the evaluation on each perturbed dataset during training of our model and the baseline for VOC2012 dataset.

1242 ADAPTIVE SENSITIVITY ANALYSIS WITH DIFFERENT NUMBER OF LEVELS D.11 1243