
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JET EXPANSIONS OF RESIDUAL COMPUTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a framework for expanding residual networks using jets, opera-
tors that generalize truncated Taylor series. Our method provides a systematic
approach to disentangle contributions of different computational paths to model
predictions. In contrast to existing techniques such as distillation, probing, or
early decoding, our expansions rely solely on the model itself and requires no
data, training, or sampling from the model. We demonstrate how our framework
grounds and subsumes the logit lens, reveals a (super-)exponential path structure
in the network depth and opens up several applications. These include the ex-
traction of n-gram statistics from a transformer large language model, and the
definition of data-free toxicity scores. Our approach enables data-free analysis of
residual networks for model interpretation, development, and evaluation.

1 INTRODUCTION

Machine learning models, particularly large-scale foundation models, have become increasingly
prevalent and impactful across a wide range of domains (Wei et al., 2021; Bommasani et al., 2023;
Touvron et al., 2023b). While delivering strong results, their black-box nature has led to the de-
velopment of techniques to assess their behavior and gain insights into their internal mechanisms.
In this space, mechanistic interpretability (MI) (see e.g. Bereska & Gavves, 2024; Ferrando et al.,
2024, for recent surverys) has emerged as an alternative to more classic local attribution methods
such as SHAP (Lundberg, 2017) or integrated gradient (Sundararajan et al., 2017). Contrary to these
methods, which seeks to trace output behavior back to the network input, MI focuses on tracing be-
havior back to the model itself. It seeks to uncover learned “algorithms” that are embedded in the
model weights and computational structure, with the aim of developing a global understanding of –
and, ultimately, to reverse engineer – neural computation.

The great majority of MI work uses a hypothesis-and-dataset-driven approach (see for example
Goldowsky-Dill et al. (2023)), in that it first formalizes a hypothesis, then chooses or curates a
dataset to probe the model, it applies techniques such as path patching (Wang et al., 2022) or causal
tracing (Meng et al., 2022), and then possibly refines the initial hypothesis. While this approach
to MI is valuable, it can limit the ability to perform open-ended exploration-driven studies aimed
at uncovering global behavior and charting “maps” that connect computation to behavior. In this
regard, studies such as Veit et al. (2016) or Elhage et al. (2021) focus on the intrinsic computation
that is carried out by a model, offering complementary views to the hypothesis-and-dataset-driven
approach. Yet, these studies often make unrealistic assumptions of the model, making it unclear how
much of the derived understanding can be transferred to real-world models and applications.

This paper contributes to this latter direction, presenting a general-purpose framework to manipulate
a residual computational graph with the aim of decomposing it into individual input-to-output com-
putational paths, which we can then further analyze to extract behaviors. Our method is based on
the simple observation that we can recursively expand a residual computational graph by selectively
applying jet operators (Ehresmann, 1951), which one can think of as the functional counterpart of
truncated Taylor series. This process, which we call the jet expansion of a model, gives rise to a class
of equivalent functional rewritings of the original network into the sum of polynomial terms (that
we see as input-to-output functions and dub jet paths) and non-linear remainders. The framework
does not make particular assumptions on the input model and, as it operates in the space of func-
tions (rather than function evaluations), it requires no input data. For transformer language models,
we show how specific instantiations linked to n-gram models make it feasible to exhaustively eval-
uate the jet paths over the entire input space, enabling end-to-end data-free global interpretability.

1

a residual

decomposing it into

-

behaviors

a residual

al graph

that

-

-

.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We focus on residual networks (He et al., 2016), particularly transformers (Vaswani et al., 2017),
operating at the granularity of residual blocks (e.g., self-attention or MLP blocks). This approach
simplifies our presentation, aligns with (Veit et al., 2016), and remains relevant given the ubiquity
of residual computation in practice. In section 4, we describe several instantiations of our frame-
work, some encompassing previously proposed interpretability tools like LogitLens (nostalgebraist,
2021b). Based on these instantiations, we present extensive case studies on auto-regressive large
language models (LLMs) from varying families and sizes, including GPT, Llama and OLMo. Our
findings demonstrate that jet expansion offers a versatile toolkit – jet lens, jet paths and jet n-grams
– for interpreting LLMs: i) analyzing their inner working (section 5.2); ii) debugging pretraining
dynamic (section 5.3); and iii) examining fine-tuning effects (section 5.4), contributing to more
transparent and responsible LLM usage. We conclude with a discussion about potential future re-
search directions that this work opens, alongside its current limitations.

2 RESIDUAL NETWORKS AND THEIR REWRITINGS

We start by reviewing the archetypal computational structure of residual networks and discuss the
case of linear residual networks as a canonical example of functions that are intrinsically expanded.
Residual networks. We focus on network architectures whose main body consists of multiple
recursive residual blocks, while the input and output are managed respectively by an encoding and
a decoding module. Let Z be an input space (e.g., sequences of tokens), c ∈ N+ be the number
of classes (e.g., a vocabulary size), Y = Rc be a space of output logits and d ∈ N+ be a hidden
dimension. Formally, we are concerned with functions q : Z → Y described as follows:

q = υ ◦ hL, where hL : Z → Rd, hL =⃝L
l=1βl ◦ η, (1)

where L ∈ N+ is the number of residual blocks (e.g. recursive depth), η : Z → Rd is an input
encoding module (e.g. token embedding layer),⃝ denotes repeated functional composition, and

βl : Rd → Rd for l ∈ [L] βl = id + γl, γl : Rd → Rd, (2)

υ : Rd → Y υ(x) = U γL+1(x) U ∈ Rc×d, γ : Rd → Rd, (3)
are respectively residual blocks with nonlinearities γl’s (e.g., input-normalized causal self-attentions
or MLPs), and the output decoding module (e.g., an unembedding projection U after a layer nor-
malization γL+1); id is the identity map. We leave all parameters implicit and assume all func-
tions are C∞. Optimized for classification (e.g., next token prediction for autoregressive lan-
guage models), the function q outputs unnormalized conditional probabilities (or logits) in that
Pq(“z belongs to class i”|z) = Softmax[q(z)]i, for z ∈ Z . In residual networks, the recursive
links allow the “storage” of computation from all previous layers and the embedded input, leading
to an accumulation of information across depths. This is highlighted by unrolling the computation
of eq. (1) up to a block l ∈ [L], setting h0 = η:

hl =⃝l
j=1βj ◦ η = η +

∑l
j=1 γj ◦ hj−1; q = υ ◦ η +

∑L
l=1 υ ◦ γl ◦ hl−1 (4)

Elhage et al. (2021) introduces the term residual stream to describe hl, a concept that can be traced
back to Hochreiter & Schmidhuber (1997) and Srivastava et al. (2015). Veit et al. (2016) describe
and study the unrolled structure of the final residual stream hL, which reveals a number of paths
from the input to the decoder that grows linearly with the network depth.
Linear residual networks. The presence of non-linearities at each block (and at the decoding
module) prevents us from directly expanding the input-to-output computation further.1 Linear resid-
ual networks do not have this impediment. Indeed, if γi(x) = Aix for some Ai ∈ Rd×d, η = E and
γ = id, we have that

q = U(
∑

S∈2[L]

∏
j∈S Aj)E =

∑
S∈2[L] qS (5)

where 2[L] is the power set of [L] = {1, . . . , L} and the qS = U(
∏

j∈S Aj)E = UWSE, with
W∅ = I . Equation (5) writes (“expands”) the linear network into a combination of 2L input-
to-output paths qS : Z → Y , themselves linear functions. This enables a detailed analysis of
each path’s contributions (e.g. one may look at the norm of each WS as a measure of global path
importance), roles, and interactions, as well as understanding global input-output relationships.

1One can still recover an exponential expansion of gradient paths when considering ∇q, e.g. to analyze
behavior during training, as Veit et al. (2016) do. In this work, however, we solely focus on the forward
dynamic of the network.

2

We

,

, operating

aligns

remains relevant

ubiquity

computation in practice. In section 4, we

-

, some encompassing

like LogitLens

findings

that

versatile toolkit

for interpreting LLMs

analyzing their

 (section

2

section

3

section

4), contributing to more

 LLM usage

conclude

-

 directions

eq.

where 2[L] is the power set of [L] = {1, . . . , L} and the qS = U(Q j∈S Aj)E = UWSE, with W∅ = I. Equation (5) writes (“expands”) the linear network into a combination of 2L input- to-output paths qS : Z → Y, themselves linear functions. This enables a detailed analysis of each path’s contributions (e.g. one may look at the norm of each WS as a measure of global path importance), roles, and interactions, as well as understanding global input-output relationships.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

η

υ

γ1

Jkγ2Jkγ2

η

υ

γ1

γ2

(a-II) (b) (c)

jet center

jet variate

direct

dependency

η

υ

γ1

input

encoding

output

decoding
intermediate

nonlinearity

η

γ1

Jkγ2Jkγ2

Jkυ Jkυ Jkυ Jkυ

η

υ

γ2

γ1
=

(a-I)

x∅
Figure 1: Representation of a two-blocks residual net (a, a-bis) and its exponential expansion steps (b, c).

3 RECURSIVE EXPANSION OF RESIDUAL NETWORKS WITH JETS

To tackle non-linearities and enable expansions in general residual networks similar to that of eq. (5),
we turn to jets (Ehresmann, 1951)In this section, we first introduce key concepts pertaining jets and
then move to describe the general algorithm for expanding residual computation.
Jet operators and their convex combinations We recall that, for a function f ∈ Ck+1(Rd,Rd)
and x, y ∈ Rd, Taylor’s theorem asserts that

f(y) = f(x) +
∑k

j=1(j!)
−1Djf(x)(y − x)⊗j +O(∥y − x∥k+1) (6)

where x, y are respectively the center and variate, Dj denotes the j-th differential, (y−x)⊗j denotes
the j-fold tensor product, and O(∥y − x∥k+1) denotes the class of functions that vanish at least as
fast as a degree-(k + 1) polynomial M∥y − x∥k+1 as y → x for some M > 0. The k-th order jet
operator of a function f maps vectors to equivalence classes of degree-k polynomial functions (we
denote the resulting quotient space by P k in the equation below, details in the appendix) as follows:

Jkf : Rd → Pk Jkf(x) = f(x) +
∑k

j=1(j!)
−1 Djf(x). (7)

Evaluating the jet at a variate y ∈ Rd yields the truncated Taylor expansion Jkf(x)(y) ∈ Rd, that is,
eq. (6) without the “O” term. The main advantage of working with jets rather than Taylor expansions
is that we can work directly with functions rather than vectors. We will make extensive use of the
following lemma. Its proof, alongside further details about jets, is in appendix A.
Lemma 1 (Convex combinations of jets). Let f ∈ C∞(Rd,Rd), k ∈ N, and C = {xi}i∈[N] be a
set of centers, for some N ∈ N+. Then,

Jkf
(∑N

i=1 xi

)
=

∑N
i=1 wiJ

kf(xi) +O(r(w, C)k+1) for any w ∈ △N+1,

where r(w, C) = maxi{wi∥xi −
∑

j xj∥}. We call any vector w in the simplex a jet weight.

Remark 1 (Jet centers and variates as functions). We will often want to trace the computation of a
jet back to the input space Z . In such cases, we interpret the jet centers x’s and the variates y’s as
functions of the original network input z ∈ Z onto Rd or Y . Thus, we have that Jkf(x)(y) : Z →
Rd (or Y) which evaluates as follows: Jkf(x)(y)(z) = Jkf(x(z))(y(z)).

Exponential expansion of a two-blocks network Before introducing the main algorithm, we start
with a minimal example of an expansion of a network with two residual blocks into four input-to-
output paths. The network, represented in fig. 1 (a-I) and (a-II), is given by:

q = υ ◦ h; h2 = β2 ◦ β1 ◦ η = η + γ1 ◦ η + γ2 ◦ (η + γ1 ◦ η) (8)

The final residual stream h2 is a sum of three terms (input-to-hidden-space functions). In a trans-
former network, γ1 could represent a self-attention block and γ2 an MLP block – typically both
transformations being input-normalized. Critically, the last term γ2 ◦ (η + γ1 ◦ η) does not allow us
to directly single out contributions that involve γ2 and η or γ1 ◦ η alone. To recover such paths, we
can jet-expand β2 and apply lemma 1 choosing as centers x∅ = η and x{1} = γ1 ◦ η, obtaining:

Jkβ2(x∅ + x{1}) =w1J
kβ2(x∅) + w2J

kβ2(x{1}) +O(rk+1)

=x∅ + x{1} + w1J
kγ2(x∅) + w2J

kγ2(x{1}) +O(rk+1
β2

),
(9)

3

η υ γ1 Jkγ2 Jkγ2 η υ γ1 γ2 (a-II) (b) (c) jet center jet variate direct dependency η υ γ1

 encoding

decoding intermediate nonlinearity γ1 η Jkγ2 Jkγ2 Jkυ Jkυ Jkυ Jkυ η υ γ2 γ1 = (

-I) Figure 1: Representation

 a two-blocks residual net (a,

-bis)

its exponential expansion steps (b, c). x∅

eq.

and then

describe

computation

eq.

. Its

, alongside

, is in appendix A

 and C =

 for some N

 N+

,

(w, C)

 for any w ∈ △N+1, where r(w, C) = maxi{wi∥xi − P j xj∥}. We call any vector w in the simplex a jet weight

fig.

-I

II

lemma

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where the last equality holds for k ≥ 1. 2 This operation is represented in fig. 1 (b). These terms
still do not yield input-to-output paths, as in general γ3 ̸= id (in transformer architecture this is
typically a normalization operation, e.g. layer norm). We can again proceed with a jet expansion,
this time of the decoding module υ = U γ3. Continuing with our example, we apply lemma 1
using as centers the outputs of the previous expansion, namely x∅, x{1}, x{2} = w1J

kγ2(x∅) and
x{1,2} = w2J

kγ2(x{1}), obtaining

Jkυ(x∅ + x{1} + x{2} + x{1,2}) =
∑

S∈2[2] ω1U Jkγ3(xS) +O(rk+1
υ) (10)

where ω ∈ ∆3 is a vector of jet weights. With this operation, represented by fig. 1 (c), we have ob-
tained four input-to-output paths, mimicking the exponential rewriting of the linear case; cf. Equa-
tion (5). For instance, the zeroth order (k = 0) path that passes through the second non-linearity
only, skipping the first, is given by the function z ∈ Z → ω3U γ3(w1γ2(η(z))) ∈ Y . This example
demonstrates the key principles of our approach: recursive expansion of the computational graph
using jets, and the use of convex combinations of jets to isolate specific paths. However, for deeper
networks with many blocks, manually expanding each layer becomes impractical. To address this,
we generalize this process into an algorithmic framework, which we develop next.

Algorithm 1 jet expand(q, l, C, k)

Require: Residual net q, block index l ∈ [L];
jet centers C = {xi}i∈[N]; order k ∈ N;

Ensure: ξ is a set of (partial) jet paths with
weights w ∈ △N−1 and δ is a reminder.

1: ξ ← {wiJ
kγl+1(xi)}i∈[N]

2: if l < L then
3: ξ ← ξ ∪ {wiJ

kid(xi)}i∈[N]

4: δ ← hl+1 −
∑

e∈ξ e

5: else δ ← γL+1 ◦ hL −
∑

e∈ξ e

jet-expand algorithm Algorithm 1
presents the key operation of the framework.
The algorithm applies lemma 1 to a residual
transformation or to the decoding non-linearity
for a given (user-defined) set of centers C. It
yields a set of expanded polynomial terms
ξ, which can be seen as a set-valued func-
tion ξ : Z × △N−1 → E , where E is an
appropriate power set of functions, and a
non-linear remainder δ : Z × △N−1 → Rd.
The remainder encompasses both the residuals
stemming from eq. (6) and lemma 1. As we
showed above, centers can be the outputs of
previous expansions, enabling the propagation of the expansion through the entire network and
effectively ’unrolling’ the computation graph into distinct paths. Importantly, once we apply
the algorithm for l = L we obtain a way to rewrite the computational graph of q as a sum of
expanded terms (input-to-output paths), which we call expansion, and a non-linear remainder.
Indeed, if (ξL, δL) =jet expand(q, L, C, k) for some C and k, the following class of functional
equivalences holds:

q =
∑

e∈ξL
U e(·, w) + δL(·, w) for w ∈ △N−1. (11)

Runtime The runtime of algorithm 1 is negligible as it operates on the original computational
graph. Evaluating ξ (and δ) at any z ∈ Z requires computing kth-order jets with a complexity of
O(|C|(F+kB)), where F and B are the costs of forward and backward evaluations of q. In practice,
higher-order jets can be computed efficiently using stored computation (Griewank & Walther, 2008;
Bettencourt et al., 2019). Specifically, k-th order derivatives can be computed using recurrence
Dkf(x)(y − x) = jvp(Dk−1f, x, y − x), where jvp computes the Jacobian-vector product and
it is available in most mainstream automatic differentiation frameworks like Pytorch. Appendix B
reports an example of runtime scaling with the jet order k in our implementation.

Remark 2 (Jet weights optimization). Jet weights w can be fixed, e.g. wi = 1/N or optimized to
minimize the remainder at any given z, such as after projection into the logit space. This optimiza-
tion can be done efficiently as ∥UδL(z, w)∥2 = ∥γL(hL(z))−

∑
e∈ξL

e(z, w)∥2UTU , which amounts
to the squared distance between the expansion and the original residual stream in the representa-
tion space Rd with the metric induced by the unembedding matrix. In our jet lens experiments in
section 5.2, we optimized jet weights with gradient descent.

Remark 3 (Non-vanishing remainders). In general, we cannot expect reminders to vanish (as k
grows). Indeed, even if the convergence radius of the Taylor series is infinite, the arguments of
residuals introduced by applications of Lemma 1 do not vanish. If q is a linear residual network,

2For k = 0 the weights apply also to the center terms since J0id(x{1}+x{2}) = w1x{1}+w2x{2}+O(r1).

4

fig.

is typically

 normalization operation, e.g. layer norm). We can again proceed with a jet expansion, this time of the

 module υ = U γ3. Continuing with our example, we apply lemma 1 using as centers the outputs of the previous expansion, namely x∅, x{1}, x{2} = w1Jkγ2(x∅) and x{1,2} = w2Jkγ2(x{1}), obtaining

(x∅ + x{1} + x{2} + x{1,2}) = P S∈2[2] ω1U Jkγ3(xS) +O(rk+1 υ) (10) where ω ∈ ∆3 is a vector of jet weights. With this operation, represented by fig. 1 (c), we have ob- tained four input-to-output paths, mimicking the exponential rewriting of the linear case; cf. Equa- tion (5). For instance, the zeroth order (k = 0) path that passes through the second non-linearity only, skipping the first, is given by the function z ∈ Z → ω3U γ3(w1γ2(

(z))) ∈ Y. This example demonstrates the key principles of our approach: recursive expansion

 the computational graph using jets,

 the use of convex combinations of jets to isolate specific paths. However, for deeper networks with many blocks, manually expanding each layer becomes impractical. To address this, we generalize this process into an algorithmic framework, which we develop next.

-

 algorithm

lemma

-

eq.

lemma

Runtime

algorithm

on

original

 requires computing kth-order jets with

,

forward and backward evaluations of q. In practice, higher-order jets can be computed efficiently using stored computation (Griewank &Walther, 2008; Bettencourt et al., 2019). Specifically, k-th order derivatives can be computed using recurrence Dkf(x)(y − x) = jvp(Dk−1f, x, y − x), where jvp computes the Jacobian-vector product and it is available in most mainstream automatic differentiation frameworks like Pytorch. Appendix B reports an example of runtime scaling with the jet order k in our implementation. Remark 2 (Jet weights optimization). Jet weights w can be fixed,

.g. wi = 1/N or optimized to minimize the remainder at any given z, such as after projection into the logit space. This optimiza- tion can be done efficiently as ∥UδL(z, w)∥2 = ∥γL(hL(z))− P e∈ξL e(z, w)∥2 UTU, which amounts to the squared distance between the expansion and the original residual stream in the representa- tion space Rd with the metric induced by the unembedding matrix

our jet lens experiments in section 5.2, we optimized jet weights with gradient descent. Remark 3 (Non-vanishing remainders). In general, we cannot expect reminders to vanish (as k grows). Indeed, even if the convergence radius of the Taylor series is infinite, the arguments of residuals introduced by applications of Lemma 1 do not vanish. If q is a linear residual network, 2For k = 0 the weights apply also to the center terms since J0id(x{1}+x{2}) = w1x{1}+w2x{2}+O(r1).

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

however, δ = 0 for k ≥ 1, showing that Algorithm 1 recovers (after reorganizing terms) the rewrite
of Equation (5) for every choice of w. 3 Hence, in light of Equation (11), jet expansions should
be seen as ways to rewrite computational graphs rather than function approximations – how close
the expansions are to the model output depends on the specific choice of centers and order. In
experiments we show however how δ’s can be small and the cosine similarity between expansion
and original network logits can be close to 1; see Figure 3.

4 NOTABLE EXPANSIONS AND THEIR IMPLICATIONS

We introduce some particular expansions as application of the introduced jet expand algorithm,
setting the stage for the numerical case studies of the next section.

Algorithm 2 exp jet expansion(q, k)

Require: Residual network q; order k ∈ N;
Ensure: ξ is a set of equally weighted input-to-

output jet paths, |ξ| = 2L, and δ is a re-
minder.

1: ξ ← {η, γ1 ◦ η}
2: for l ∈ [L] do
3: (ξ, δ)← jet expand(q, l, ξ, k)
4: ξ ← {e(·, 1/|ξ|)}e∈ξ

(Super)exponential expansion. Algorithm 2
generalizes the exponential expansion we per-
formed onto the two-blocks network in sec-
tion 3, using uniform jet weights. One can
interpret the algorithm as performing a “max-
imal” expansion (when remaining at the grain
of the blocks) which yields 2L input-to-output
paths. In fact, for k ≥ 1, we can further isolate
each degree of the expanded terms into separate
input-to-output paths that highlight interactions
among various blocks. This further refinement,
which we will focus on in future work, may suggests that residual networks may in fact behave as
super-exponential ensembles of (shallower) functions.
Jet lenses and the logit lens. The logit lens (nostalgebraist, 2021b; Geva et al., 2021; 2022;
Merullo et al., 2023; Belrose et al., 2023) is an interpretability method that consists in applying
the decoder to intermediate representations as follows:

LogitLensl(z) = Uγ(hl(z)) = J0υ(hl(z))(hL(z)).

The logit lens, aimed at highglighting the iterative refinement of the prediction across blocks, is
related to early exiting (or early decoding) in the context of conditional computation (see e.g. Panda
et al., 2016; Elbayad et al., 2020; Geva et al., 2022). It is immediate to verify that LogitLensl
is equivalent to the expansion yielded by jet expand(q, L, {hl}, 0). This suggests two general-
izations, which we dub iterative and joint jet lenses, respectively. The iterative jet lens is a direct
extension of the logit lenses that allows for higher order jets: jet expand(q, L, {hl}, k). The
joint jet lenses are expansions obtained through jet expand(q, L, {γl ◦ hl−1}l∈[L], k) that are
aimed at highlighting the residual contributions of each block non-linearity, rather than the iterative
refinement of the residual stream.
Jet bi-grams and skip-n-grams statistics. We consider transformer-based large language mod-
els with alternating self-attentions and MLPs, which are particular instances of residual nets. 4

Our framework allows us to directly extract n-gram statistics from an existing LLM without any
probing datasets. Concretely, we can systematically evaluate relevant jet paths (for small n’s)
on the entire input space, usually the vocabulary and its Cartesian products, independently from
individual contexts. For example, bi-grams statistics related to Pq(z2|z1, . . .) can be computed
by evaluating bi-gram paths, which we can obtain by expanding the LLM with Algorithm 2 and
filtering out all paths that involve self-attention modules. Specifically in our case studies (Sec-
tion 5.1), we focus on encoding-decoding bi-gram path, obtainable via expanding the LLM with
jet expand(q, L, {η}, k = 0), and the bi-gram paths involving up to one MLP module, which
can also be obtained via applying Algorithm 1 twice. We can obtain skip-n-gram statistics relating
to Pq(zn|zn−1, . . . , zn−2, . . . , z1, . . .), where dots indicate any number of interceding tokens, by
evaluating jet paths with self-attentions (the fewer self-attentions, the lower the n) and isolated sin-
gle query-key products. Such jet n-gram statistics offer a data-free tool to sketch LLMs via casting
them into (symbolic) n-gram databases. Thus they allows us to perform symbolic model diffing
between any two models that share a common vocabulary, as opposed to take differences in the
parameter space, harder to interpret and only possible for same-architecture models.

3Other special cases include expansions where each center set is a singleton and the convergence radius of
the expanded non-linearities is infinite.

4We disregard positional embeddings for simplicity and leave their study to future work.

5

function

 – how close the expansions are to the model output depends on the specific choice

 centers and order. In experiments we show however how δ’s

small and the cosine similarity

network logits can be close to 1; see Figure 3

Algorithm 2 exp jet expansion(q, k) Require: Residual network q; order k ∈ N; Ensure: ξ is a set of equally weighted input-to- output jet paths, |ξ| = 2L, and δ is a re- minder. 1: ξ ← {η, γ1 ◦ η} 2: for l ∈ [L] do 3: (ξ, δ) ← jet expand(q, l, ξ, k) 4: ξ ← {e(·, 1/|ξ|)}e∈ξ

-

sec- tion

-

 the

that allows for

.1

 jet expand(q, L, {η}, k = 0), and the bi-gram paths involving up to one MLP module, which can also be obtained via applying Algorithm 1 twice. We can obtain skip-n-gram statistics relating to Pq(zn|zn−1, . . . , zn−2, . . . , z1, . . .), where dots indicate any number of interceding tokens, by evaluating jet paths with self-attentions (the fewer self-attentions, the lower the n) and isolated sin- gle query-key products. Such jet n-gram statistics offer a data-free tool to sketch LLMs via casting them into (symbolic) n-gram databases. Thus they allows us to perform symbolic model diffing between any two models that share a common vocabulary, as opposed to take differences in the parameter space, harder to interpret and only possible for same-architecture models.

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
Block 4 (7.81%) _impover (1.62%) _unpop (1.29%) _impover (1.31%) _impover (1.28%) _impover (1.25%) _Neural (1.22%) former (1.20%) _Networks (1.32%)

Block 24 (6.02%) , (5.74%) _infographic (8.48%) _network (8.76%) _unve (8.45%) _unve (7.67%) _Neural (7.51%) former (7.39%) _model (8.45%)
Block 30 (6.24%) _â ¦" (5.29%) _ (1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) Â (1.31%)
Block 31 (7.76%) !!" (5.33%) _ (1.33%) _network (1.31%) _for (1.29%) _the (1.26%) _Conv (1.23%) former (1.23%) , (1.32%)
Block 32 (7.84%) â ¦." (3.56%) !?" (1.37%) _network (1.36%) , (1.33%) _and (1.28%) _neural (1.24%) former (1.25%) _model (1.32%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 2: Example of a joint jet lens on GPT-Neo 2.7B with k = 1, visualizing the seven blocks with highest
average jet weights after optimization. Each table cell indicates the most likely token of the jet path related
to each block non-linearity. Optimized jet weight are in brackets. We used a diverging blue-to-red color map
tracking logit scores, centered around zero. The bottom table shows the model logits and the expansion logits,
with cosine similarity in brackets 0.993; in this case, all top-1 tokens perfectly coincide.

5 INTERPRETING LLMS WITH JET EXPANSIONS

Our framework provides users with freedom in terms of choosing the computational paths they
wish to focus on. Jet expansions support studies across various levels, including model-level global
analysis (jet n-grams), component-level analysis (jet paths), and example-level analysis (jet lens).

5.1 SETUP

We experiment with several popular open-sourced large language models families: GPT-2 (Radford
et al., 2019), GPT-Neo Black et al. (2021), Llama (Touvron et al., 2023a;b; Rozière et al., 2024)
and OLMo (Groeneveld et al., 2024), showcasing the generality of the algorithm. Our main ex-
periments run on 128 CPU servers with 1 TB memory, while jet lens experiment run on a single
laptop. The experiments on jet lenses uses higher-order jet. We optimize jet weights of joint jet
lenses with gradient descent, minimizing the loss introduced in remark 2. In the rest of the ex-
periments, we use zeroth order jet bi-grams (from the paths that go through MLPs and the direct
embedding-unembedding paths) and tri-grams (from the paths that pass through the corresponding
attention heads). Each path el : Z → Y is obtained by applying algorithm 1 twice (expect for the
embedding-unembedding path, which requires only one call): if γl is the non-linearity of interest
(either an MLP or a self-attention head), we first call êl, δ̂ =jet expand(q, l, {η}, 0) and then call
ẽl, δ =jet expand(q, L, {ê, (·, 1)}, 0), finally setting el = ẽ(·, 1). 5 We further detail algorithmic
procedures in appendix C.

We define some metrics used in our empirical study. 1) ∆ Logit after Intervention. We measure
the logit for an n-gram before and after applying an intervention (e.g., removing an attention head)
and compute the change at the last position. 2) One-to-One and Many-to-Many Bi-grams. One-
to-one bi-grams are unimodal, concentrating probability on a single token (e.g., z1 = &, z2 = amp).
Many-to-many bi-grams have multi-modal distributions, where multiple tokens can follow z1 or
precede z2 (e.g., z1 = make, z2 = sure). 3) Total Mass of Key Bi-grams. The total mass
metric measures the cumulative probability of the top 1K bigrams, weighted by an empirical un-
igram distribution. Formally, it is Total Mass =

∑
(z1,z2)∈Top-1K Pet(z2|z1)PD(z1), where et is the

embedding-unembedding path at step t, (z1, z2) are the bigrams, Pet(z2|z1) is the model probabil-
ity of z2 given z1, PD(z1) is the unigram probability of z1 from the empirical distribution. This
metric evaluates how well the model assigns “correct” probability mass to bigrams, considering the
unigram probability of z1, and reflects alignment with the empirical distribution during pretraining.

5.2 ANALYZING LLM INNER WORKING

LLMs are notorious for their lack of interpretability due to their inherent model complexity and size,
made worse by the usual opaque training process and unknown training data. Understanding their
inner working contributes to calibrating trust for users to use them appropriately. We showcase how
jet expansion along user-selected computational paths (jet paths) can help us discover and locate
learned associations akin to studies in mechanistic interpretability Templeton et al. (2024).

Jet lenses. We use jet lenses introduced in Section 4 to analyze LLM’s mechanism when process-
ing individual examples. Figure 2 visualize a joint jet lens for GPT-Neo 2.7B (Black et al., 2021)

5With a small abuse of notation, we identify singleton sets with their single member.

6

Example

 0.993

coincide

5.1 SETUP

-

The experiments on jet lenses uses higher-order jet. We optimize jet weights of joint jet lenses with gradient descent, minimizing the loss introduced in remark 2. In the rest of the ex- periments, we use zeroth order jet bi-grams (from the paths that go through MLPs and the direct embedding-unembedding paths) and tri-grams (from the paths that pass through the corresponding attention heads). Each path el : Z → Y is obtained by applying algorithm 1 twice (expect for the embedding-unembedding path, which requires only one call): if γl is the non-linearity of interest (either an MLP or a self-attention head), we first call ˆel, ˆδ =jet expand(q, l, {η}, 0) and then call e˜ l, δ =jet expand(q, L, {ˆe, (·, 1)}, 0), finally setting el = ˜e(·, 1).

 We further detail algorithmic procedures in appendix C. We define some metrics used in our empirical study.

) ∆ Logit after Intervention. We measure the logit for an n-gram before and after applying an intervention (e.g., removing an attention head) and compute the change at the last position. 2) One-to-One and Many-to-Many Bi-grams. One- to-one bi-grams are unimodal, concentrating probability on a single token (e.g., z1 = &, z2 = amp). Many-to-many bi-grams have multi-modal distributions, where multiple tokens can follow z1 or precede z2 (e.g., z1 = make, z2 = sure). 3) Total Mass of Key Bi-grams. The total mass metric measures the cumulative probability of the top 1K bigrams, weighted by an empirical un- igram distribution. Formally, it is Total Mass = P (z1,z2)∈Top-1K Pet(z2|z1)PD(z1), where et is the embedding-unembedding path at step t, (z1, z2) are the bigrams, Pet (z2|z1) is the model probabil- ity of z2 given z1, PD(z1) is the unigram probability of z1 from the empirical distribution. This metric evaluates how well the model assigns “correct” probability mass to bigrams, considering the unigram probability of z1, and reflects alignment with the empirical distribution during pretraining. 5.2

5With a small abuse of notation, we identify singleton sets with

ir single member.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3
Jet order (k)

0.85

0.90

0.95

1.00

Co
sin

e
sim

ila
rit

y

Joint jet lenses
GPT2; w=opt. (left) or k = 0 (right)
GPT2; w = avg. (left) or k = 1 (right)
GPT2-large; w=opt. (left) or k = 0 (right)
GPT2-large; w = avg. (left) or k = 1 (right)
GPT-Neo 2.7B; w=opt. (left) or k = 0 (right)
GPT-Neo 2.7B; w = avg. (left) or k = 1 (right) 0 10 20 30

Block index

0.85

0.90

0.95

1.00

Co
sin

e
sim

ila
rit

y

Iterative jet lenses

Figure 3: Plots of average cosine similarities between model logits and jet lenses logits. (Left) jet lens of the
joint variant (left) and jet lens of the iterative variant (right). In the right plot, the solid lines of all colors
correspond to the LogitLens (k = 0), and dashed lines to the iterative jet lens for k = 1.

(other examples can be found in Appendix H). Here, a block contains one self-attention and one
MLP module. All table cells depict top-1 tokens for the corresponding path, following conventions
from prior work (Belrose et al., 2023). We observe that the joint jet lens captures the synergy among
different blocks, as the model prediction is decomposed into several jet paths. Our preliminary anal-
ysis supports recent work on super-position (Elhage et al., 2022) and neuron polysemy (Bricken
et al., 2023), suggesting that interactions among components may have ensemble effects, which can
broadly vary across model families. In this sense, the jet lenses with k > 0 may serve as tools to
systematically discover such synergic behaviors. We also find that higher-orders (k > 0) help iter-
ative lenses deliver more meaningful interpretations than the logit lens (k = 0) for GPT-Neo-2.7B
(see Figures 7 to 9). This is potentially due to their capability to trace indirect impacts of early
layers on the final logits, which were otherwise missing under logit lens. Our findings are consistent
with nostalgebraist (2021a); Cancedda (2024) where naive implementations of logit lens are shown
to fail on GPT-Neo model family. Figure 3 present cosine similarities (against the original model
logits) of joint and iterative jet lenses for various GPT models and jet orders, averaged over 100 ex-
ample sentences. The similarities are high and close to 1 for various k’s, showing however different
behavior across model families and sizes. In particular, the right plot compares the similarities of
the logits obtained through iterative jet lenses for k = 0 (solid, line, the same as LogitLens) and for
k = 1 (dashed lines), indicating an higher correlation of the latter with model outputs, potentially
providing more faithful interpretations.

Jet paths of individual components. By examining the representative jet bi-grams that are cap-
tured by each MLP path, we find some MLPs that perform special linguistic functions. For example,
in OLMo-7B, the jet path which passes through the 3rd MLP promotes the addition of the “-ing”
suffixes to the current token. Similar MLPs with certain linguistic functions are listed in Table 1.
Note that the relationship between functions and components are not necessarily one-to-one map-
pings. Particularly we find that the paths through multiple MLPs might work together to complete
one linguistic function e.g. MLP 6 and MLP 18 in Llama-2-7B can add “-ing” suffix. One MLP
might also do multiple linguistic jobs e.g. MLP 1 in OLMo 7B adding “-ly” and “- else” suf-
fixes. This echos work on circuit discovery (Conmy et al., 2023; Ferrando & Voita, 2024) and
superposition (Elhage et al., 2022), where the role of each component cannot be easily dissected
and multiple components collaborate to fulfill a function. Table 2 reports a role identification study
on attention heads in the first self-attention of OLMo-7B using jet tri-grams. Specifically, we find
heads associated with math and programming, e.g. head 1 on Math/Latex; heads promoting digits
and dash composition into dates, e.g. head 25; and heads constituting phrase templates, e.g. head
15 managing a “for x purposes”, where x is a placeholder. To verify the roles we revealed, we
further perform preliminary intervention experiments where we ablate MLPs or attention heads and
compute variations in model logits. After the interventions, the logits drop consistently in all cases,
suggesting our jet n-grams indeed can help identify certain roles for selected components. Varying
impact on logit differences is likely due to overdetermination (Mueller, 2024) and our partial selec-
tion of jet paths (e.g. for tri-grams we only selected encoding-attention-decoding paths, excluding
any MLP).

5.3 ANALYZING PRETRAINING DYNAMICS

Pretraining an LLM is usually extremely resource intensive. Therefore it is crucial to monitor the
progress of a pretraining run to prevent wasting of time and compute. In this section, we show how
jet bi-grams can serve as an effective signaling tool to trace the pretraining dynamics, providing
insights about the model’s maturity. Such signals are especially useful to understand what happens

7

0

2

Jet order (k) 1.00 0.95 0.90 0.85 Joint jet lenses GPT2; w=opt. (left) or k=0 (right) GPT2; w=avg. (left) or k=1 (right) GPT2-large; w=opt. (left) or k=0 (right) GPT2-large; w=avg. (left) or k=1 (right) GPT-Neo 2.7B; w=opt. (left) or k=0 (right) GPT-Neo 2.7B; w=avg. (left) or k=1 (right) 0 10 20

Block index 1.00 0.95 0.90 0.85 Iterative jet lenses Figure 3: Plots of average cosine similarities between model logits and jet lenses logits. (Left) jet lens of the joint variant (left) and jet lens of the iterative variant (right). In the right plot, the solid lines of all colors correspond to the LogitLens (k = 0), and dashed lines to the iterative jet lens

 k = 1. (other examples can be found in Appendix H). Here, a block contains one self-attention and one MLP module. All table cells depict top-1 tokens for the corresponding path, following conventions from prior work (Belrose et al., 2023). We observe that the joint jet lens captures the synergy among different blocks, as the model prediction is decomposed into several jet paths. Our preliminary anal- ysis supports recent work on super-position (Elhage et al., 2022) and neuron polysemy (Bricken et al., 2023), suggesting that interactions among components may have ensemble effects, which can broadly vary across model families. In this sense, the jet lenses with k > 0 may serve as tools to systematically discover such synergic behaviors. We also find that higher-orders (k > 0) help iter- ative lenses deliver more meaningful interpretations than the logit lens (k = 0) for

7

9

 3

(against the original model logits)

jet

-

’s

In particular, the right plot compares the similarities of the logits obtained through iterative

lenses for k = 0 (solid, line, the same as LogitLens) and for k = 1 (dashed lines), indicating an higher correlation of the latter

 more

preliminary

,

-

3

Cosine similarity Cosine similarity

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams
extracted from the corresponding jet paths.

OLMo-7B Llama-2-7B

MLP Index 1 3 9 17 19 6 7 18 19

Role -ly, - else -ing -’t - than -s -ing -es -ing,-ity -ly
∆ logit after intervention −4.19,−3.35 −0.58 −9.73 −4.26 −7.42 −14.61 −3.55 −9.69,−11.93 −9.14

Table 2: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri-
grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head.

Head Index 2 16 26 30

Role Math/LaTeX “for . . . purposes” date composition “into account/consideration . . . ”
Example 3-gram (Lemma, let, s) (for, use, purposes) (20, 23, -) (into, account, possible)

∆logit after intervention −0.1570 −0.0019 −0.0093 −0.0001

with the model when the pretraining loss shows marginal improvements and fails to reflect the
changes inside the model.

Identifying the top bi-grams. To assess the model’s progression, we extracted jet bi-grams from
OLMo-7B model checkpoints across 555K pretraining steps. Table 4 presents a summary of the
top 10 jet bi-grams at different stages of training. Due to space reason, we only show the top 10
jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as
“ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at
least”. This process of acquiring sensible bi-grams stabilizes around step 200K, indicating that
the model is reaching a level of maturity where the top 10 bi-grams capture common meaning.

Learning schemes for different bi-grams. To understand if there are any differences between the
learning schemes of different bi-grams, we can trace the progression of the jet bi-gram scores for
selected bi-grams. Figure 4 provides a visual comparison of how different bi-grams are promoted
or suppressed during the pretraining process. The different slopes and levels of the lines indicate
varying rates of learning for the respective bi-grams. We observe that, the model first acquires ran-
dom bi-grams due to random parameter initialization. These random bi-grams, like “ICUirling”
and “VENT thanks”, are quickly suppressed in the early steps and never regain high scores. In
contrast, one-to-many bi-grams like “at least” are first promoted to very high scores but then
get suppressed perhaps due to the model seeing more of the scope of the token “at”. One-to-one
bi-grams like “&” (HTML code) are gradually promoted and stabilize. Many-to-many bi-grams
like “make sure” takes the most time to learn and the scores are still increasing even at the end
of pretraining. Our findings suggest that the training process effectively promotes certain “good” bi-
grams, but at different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as targeted training
on more relevant bi-grams or adjusting the training data to improve the pretraining speed.

5.4 ANALYZING FINE-TUNING EFFECT

Fine-tuning is an important phase where the raw pretrained LLMs are guided to perform particular
tasks. We would like to understand how the model inner knowledge changes during fine-tuning pro-
cesses. While parameter diffing can be a straightforward solution, jet n-grams provides an alternative
approach, where the diffs are human readable and directly reflect the change of knowledge retained
by the LLMs. Such insights would allow us to better decide the mixture of data for fine-tuning, and
the number of steps for fine-tuning, which are currently a mix of heuristics and trial-and-error.

Code fine-tuning promotes coding-relevant bi-grams. We analyze the changes due to code fine-
tuning via diffing jet bi-grams extracted from Llama-2-7B and its fine-tuned versions, Codellama-
7B and Codellama-Python-7B. As highlighted in Table 5 with orange coloring, the jet bi-gram diff
reveals coding-relevant keywords, suggesting jet bi-gram can be a tool for verifying if the fine-tuning
is effective.

Does RLHF fine-tuning remove toxicity? We compare the original pretrained model, Llama-2-
7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment (Bai et al., 2022) is widely believed
to detoxify LLMs, as indicated by the ToxiGen scores (Hartvigsen et al., 2022). However, it remains

8

Table 1: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams extracted from the corresponding jet paths. OLMo-7B Llama-2-7B MLP Index 1 3

17 19

18 19 Role -ly, - else -ing -’t - than -s -ing -es -ing,-ity -ly ∆ logit after intervention −4.19, −3.35 −0.58 −9.73 −4.26 −7.42 −14.61 −3.55 −9.69, −11.93 −9.14 Table 2: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri- grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head. Head Index

16 26 30 Role Math/LaTeX “for . . . purposes” date composition “into account/consideration . . . ” Example 3-gram (Lemma, let, s) (for, use, purposes) (20, 23, -) (into, account, possible) ∆logit after intervention −0.1570 −0.0019 −0.0093 −0.0001 with the model when the pretraining loss shows marginal improvements and fails to reflect the changes inside the model. Identifying the top

grams. To assess the model’s progression, we extracted jet bi-grams from

 model checkpoints across 555K

steps. Table 4 presents a summary of the top 10

grams at different stages of training. Due to space reason, we only show the top 10 jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as “ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at

5.4 ANALYZING FINE-TUNING EFFECT Fine-tuning is an important phase where the raw pretrained LLMs are guided to perform particular tasks. We would like to understand how the model inner knowledge changes during fine-tuning pro- cesses. While parameter diffing can be a straightforward solution, jet n-grams provides an alternative approach, where the diffs are human readable and directly reflect the change of knowledge retained by the LLMs. Such insights would allow us to better decide the mixture of data for fine-tuning, and the number of steps for fine-tuning, which are currently a mix of heuristics and trial-and-error. Code fine-tuning promotes coding-relevant bi-grams. We analyze the changes due to code fine- tuning via diffing jet bi-grams extracted from Llama-2-7B and its fine-tuned versions, Codellama- 7B and Codellama-Python-7B. As highlighted in Table 5 with orange coloring, the jet bi-gram diff reveals coding-relevant keywords, suggesting jet bi-gram can be a tool for verifying if the fine-tuning is effective. Does RLHF fine-tuning remove toxicity? We compare the original pretrained model, Llama-2- 7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment (Bai et al., 2022) is widely believed to detoxify LLMs, as indicated by the ToxiGen scores (Hartvigsen et al., 2022). However, it remains

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 100000 200000 300000 400000 500000
Pretraining Steps

0.0

0.2

0.4

0.6

0.8

Sc
or

e

Jet Bigram Score
ICUirling
VENT thanks
&
at least
make sure

Figure 4: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.

Table 3: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different methods: ToxiGen, jet bi-
grams, and RealToxicityPrompts challenge prompting. Higher numbers indicate higher toxicity scores on the
corresponding benchmarks and higher toxic knowledge possession for jet bi-grams.

ToxiGen Score Jet Bi-grams RTP Challenging Prompts

Hartvigsen et al. (2022) Mass of “toxic” bi-grams No Very mild Medium Hard

Llama-2-7B 21.25 0.03445 38% 49% 64% 88%
Llama-2-7B-chat 0.0 0.03377 23% 35% 64% 84%

easy to prompt LLMs to bypass this alignment and produce toxic content. In table 3, we demonstrate
this with dataset-based toxicity scores on a subset of challenging prompts in the RealToxicityPrompts
(RTP) dataset (Gehman et al., 2020): the gap in toxicity potential between the two models narrows
as we prepend to RTP prompts increasingly ”explicit” (short) context. Specifically, for hard context,
Llama-2-7B-Chat shows an 84% probability of producing toxic content, close to that of Llama-2-7B.
This suggests that the RLHF model is not completely detoxified but rather hides the toxicity knowl-
edge from the “surface”, which however can be easily triggered by specific contexts. To quantify the
toxicity knowledge embedded in these models, we use jet bi-gram probability scores and calculate
the cumulative conditional probability mass for a set of “toxic” bi-grams, which are combinations of
tokens associated with toxic meanings from a predefined list of keywords. Interestingly, we observe
a small change in mass from 0.03445 to 0.03377 after RLHF. Thus, although the ToxiGen score may
suggest that the model has been effectively detoxified, the jet bi-gram mass reflects retention of toxic
knowledge after RLHF, aligning with the scores obtained by introducing medium or hard explicit
context and computing a toxicity score (via a second scorer model, (Hanu & Unitary team, 2020))
on RealToxicityPrompts dataset (Gehman et al., 2020). This showcases a potential application of jet
bi-grams in constructing data-free indices that reveal embedded knowledge, offering complimentary
views beyond traditional data-driven benchmark evaluations.

6 RELATED WORK

Interpreting transformers. There has been much effort in interpreting the inner computations
of transformer models. In particular, mechanistic interpretability Ferrando et al. (2024), focuses
on reverse-engineering such computations by identifying, clustering and labelling model behavior
(Shah et al., 2024; Meng et al., 2022; Bricken et al., 2023) in human understandable terms and
attributing them with certain model components, e.g., MLPs Geva et al. (2021; 2022), or typical
“circuits” (Conmy et al., 2023; Ferrando & Voita, 2024). Authors discussed limitations of cur-
rents approaches to MI. For example, Templeton et al. (2024) found it generally hard to conclude
neuron-level intepretabilities, compared with feature representations; while Bolukbasi et al. (2021);
Goldowsky-Dill et al. (2023) points out that conclusions drawn are generally limited to the chosen
data distribution. On a high level, allowing taking any portion of compute out of the original trans-
former, jet expansions abstract and generalize previous characterizations on the computational paths
(Veit et al., 2016; Elhage et al., 2021), where non-linear components with significant roles, e.g. lay-
ernorm and MLPs, are either ignored or over-simplified for the ease of analysis. Our approach also
does not require extra datasets that are used for probe fitting in methods such as Belrose et al. (2023)
nor sampling, as needed in (Conmy et al., 2023; Ferrando & Voita, 2024; Voita et al., 2024).

9

0 100000 200000 300000 400000 500000 Pretraining Steps 0.0 0.2 0.4 0.6 0.8 Jet Bigram Score ICUirling VENT thanks & at least make sure Figure 4: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.

easy to prompt LLMs to

table

-

does not require extra datasets that are used for probe fitting in methods such as Belrose et al. (2023) nor sampling, as needed in (Conmy et al., 2023; Ferrando & Voita, 2024; Voita et al., 2024).

Score

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

n-gram models. The early applications of n-gram models in languages dates back to (Shannon,
1948), where n-grams modeled the statistics of English. The n-gram based approaches have been
an important baseline in language processing, e.g., general language modelling (Goodman, 2001)
with applications like machine translation (Brants et al., 2007). There have been regained interests
on combining n-gram with neural network model-based approaches (e.g. Liu et al., 2024). Several
recent works have explored the relationships between LLMs and n-gram language models, such as
analyzing the representational capacity of transformers to simulate n-gram LMs (Svete & Cotterell,
2024) and measuring agreement between LLM predictions and n-gram rulesets (Nguyen, 2024).

Taylor expansion and jets Taylor expansions are popular tools in analyzing learning behaviours
(Jastrzebski et al., 2017), notably linearization (k = 1). For example, Belrose et al. (2024) applied
Taylor expansion on the loss function to demonstrate the learning preference of neural network
models. Xu et al. (2022) introduced a second-order Taylor expansion over the data distribution to
interpret optimal features. The generalized jet notions was introduced in machine learning in the
context automatic differentiation tools by Bettencourt et al. (2019), and is an experimental feature
in Jax (Bradbury et al., 2018), but has been studied before (see e.g. Griewank & Walther, 2008).

7 CONCLUSION AND DISCUSSION

We introduced jet expansion, a novel framework for expanding the computational graphs of neu-
ral networks. The method, which we specialize in this paper to deep residual nets, can be used
to disentangle contributions of user-selected computational paths from the overall graph. Comple-
mentary to other dataset-dependent methods in MI, our method enables various dataset-free global
interpretability studies, such as mapping computation to linguistic roles. We have validated jet ex-
pansions in terms of cosine similarity against model outputs and through interventional experiments
(section 5.2). We applied our data-free method to transformer LMs, showing how we can sketch the
original model with input-output probability databases, extracting LM bi-and-tri-gram statistics.

Limitations. Although rooted in Taylor series theory, expansions obtained via our frameworks do
not (seek to) approximate the input function in any strict sense. Rather, our framework is amed at
facilitating interpretation of model behavior: we can use jet expansion to rewrite an input compu-
tational graph as a sum of “interpretable” polynomial terms and a (computable) remainder. How
large is a reminder and how expansions align with model outputs remains at the moment an em-
pirical question, implying that the jet order and weight optimization routines should generally be
considered as hyperparameters of the method. Furthermore, expansions are not unique (but higher
order expansions ”contain” lower order one). We leave a deeper investigation of these aspects to
future work. From a runtime standpoint, we note that even though graph manipulation is almost
immediate, systematic evaluation of jet paths may be time consuming (especially for k ≫ 0 and
when optimizing jet weights). If the input space is large, one may need to resort to sub-sampling or
search heuristics. Finally, we limited our study of n-gram expansions of LMs to bi-and-tri-grams,
unearthing compelling behaviors. This leaves the study of longer-context expansions to future work.

Implications and future work. Our work opens up several research directions. From a theoretical
standpoint, we will extend the expansion procedure to cover finer granularities, e.g. at neuron (sub-
space) levels; incorporate established attribution methods such as the Shapley value (Shapley et al.,
1953), including recent extensions to deal with probabilistic models (Franceschi et al., 2024); de-
velop concepts of (approximate) equivalence classes over models leveraging the jet spaces, which, in
turn, may further ground the model diffing procedure sketched in our case studies. Furthermore, we
will take inspiration from the numerous tools in linear algebra to provide further depth into the anal-
ysis, deepening the link to linear residual structures and establishing relations with Markov chains
and hidden Markov models, recently employed e.g. by Zhang et al. (2023) for constrained (struc-
tured) decoding. We plan to investigate the implication of the super-exponential number of paths
in the residual networks depth unearthed by algorithm 2. From an applications standpoint, besides
studying jet n-grams for n > 3, we envision several fruitful applications in safety and transparency,
such as developing “search features” to systematically detect unwanted associations, or leaked pri-
vate content. Although our experiments are primarily observational, we speculate that jet expand
may also become an useful tool to guide interventions, supplementing other techniques like causal
tracing (Meng et al., 2022) and path patching (Goldowsky-Dill et al., 2023).

10

section

2

algorithm

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens. arXiv preprint arXiv:2303.08112, 2023.

Nora Belrose, Quintin Pope, Lucia Quirke, Alex Mallen, and Xiaoli Fern. Neural networks learn
statistics of increasing complexity. arXiv preprint arXiv:2402.04362, 2024.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Jesse Bettencourt, Matthew J. Johnson, and David Duvenaud. Taylor-mode automatic differentiation
for higher-order derivatives in JAX. In Program Transformations for ML Workshop at NeurIPS
2019, 2019. URL https://openreview.net/forum?id=SkxEF3FNPH.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for bert. arXiv preprint arXiv:2104.07143, 2021.

Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty Xiong,
Daniel Zhang, and Percy Liang. The foundation model transparency index. arXiv preprint
arXiv:2310.12941, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Thorsten Brants, Ashok Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean. Large language models
in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 858–867, 2007.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Nicola Cancedda. Spectral filters, dark signals, and attention sinks, 2024.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318–16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

Charles Ehresmann. Les prolongements d’une variété différentiable: l’espace des jets d’ordre r de
vn dans vm. C. R. Acad. Sci. Paris, 233:777–779, 1951.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. ICLR,
2020.

11

https://openreview.net/forum?id=SkxEF3FNPH
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
http://github.com/google/jax
http://github.com/google/jax
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy model/index.html.

Javier Ferrando and Elena Voita. Information flow routes: Automatically interpreting language
models at scale. arXiv preprint arXiv:2403.00824, 2024.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and Marta R Costa-jussà. A primer on the inner
workings of transformer-based language models. arXiv preprint arXiv:2405.00208, 2024.

Luca Franceschi, Michele Donini, Cédric Archambeau, and Matthias Seeger. Explaining probabilis-
tic models with distributional values. ICML, 2024.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxic-
ityPrompts: Evaluating neural toxic degeneration in language models. In Trevor Cohn, Yulan
He, and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 3356–3369, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.findings-emnlp.301. URL https://aclanthology.org/2020.
findings-emnlp.301.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446.

Mor Geva, Avi Caciularu, Kevin Wang, and Yoav Goldberg. Transformer feed-forward layers build
predictions by promoting concepts in the vocabulary space. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 30–45, 2022.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model
behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.

Joshua T Goodman. A bit of progress in language modeling. Computer Speech & Language, 15(4):
403–434, 2001.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of algo-
rithmic differentiation. SIAM, 2008.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/detoxify, 2020.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Ka-
mar. ToxiGen: A large-scale machine-generated dataset for adversarial and implicit hate speech
detection. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 3309–3326, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.234. URL https://aclanthology.org/2022.
acl-long.234.

12

https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/2021.emnlp-main.446
https://aclanthology.org/2022.acl-long.234
https://aclanthology.org/2022.acl-long.234

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

S Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation MIT-Press,
1997.

Stanislaw Jastrzebski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and Yoshua Bengio.
Residual connections encourage iterative inference. arXiv preprint arXiv:1710.04773, 2017.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-
gram: Scaling unbounded n-gram language models to a trillion tokens. arXiv preprint
arXiv:2401.17377, 2024.

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint
arXiv:1705.07874, 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
style vector arithmetic. arXiv e-prints, pp. arXiv–2305, 2023.

Aaron Mueller. Missed causes and ambiguous effects: Counterfactuals pose challenges for inter-
preting neural networks. arXiv preprint arXiv:2407.04690, 2024.

Timothy Nguyen. Understanding transformers via n-gram statistics. arXiv preprint
arXiv:2407.12034, 2024.

nostalgebraist. logit lens on non-gpt2 models + extensions, 2021a. URL https://colab.
research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA.

nostalgebraist. interpreting gpt: the logit lens, 2021b. URL https://www.lesswrong.
com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#
HEf5abD7hqqAY2GSQ.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In 2016 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pp. 475–480, 2016.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and editing predictions by
modeling model computation. arXiv preprint arXiv:2404.11534, 2024.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Lloyd S Shapley et al. A value for n-person games. 1953.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. arXiv preprint
arXiv:1505.00387, 2015.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

13

https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://colab.research.google.com/drive/1MjdfK2srcerLrAJDRaJQKO0sUiZ-hQtA
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens#HEf5abD7hqqAY2GSQ

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. arXiv preprint
arXiv:2404.14994, 2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29, 2016.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of the Association for Computational Linguistics ACL 2024, pp. 1288–1301, Bangkok, Thailand
and virtual meeting, August 2024. Association for Computational Linguistics. URL https:
//aclanthology.org/2024.findings-acl.75.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Xiangxiang Xu, Shao-Lun Huang, Lizhong Zheng, and Gregory W Wornell. An information theo-
retic interpretation to deep neural networks. Entropy, 24(1):135, 2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Honghua Zhang, Meihua Dang, Nanyun Peng, and Guy Van den Broeck. Tractable control for au-
toregressive language generation. In International Conference on Machine Learning, pp. 40932–
40945. PMLR, 2023.

14

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://aclanthology.org/2024.findings-acl.75
https://aclanthology.org/2024.findings-acl.75

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON JETS

A jet of a function represents an equivalence class. We thus can perform algebraic operations among
functional equivalence classes using jet algebra stated below.
Proposition 1 (Jet algebra). Let f, g ∈ C∞(Rd,Rd) and k ∈ N+. Then,

(i) Jk(af + bg)(x) = a Jk(f)(x) + b Jk(g)(x), for a, b ∈ R (linearity);

(ii) Jkf(x) ◦ g ∈ Jkf(x) and Jkf(x) ◦ g(y) = Jkf(x)(g(y)) (jet after endomorphisms);

(iii) g ◦ Jkf(x) = {g ◦ u : u ∈ Jkf(x)} (endomorphism after jet);

(iv) Jk(f ◦ g)(x) = Jkf(g(x)) ◦ Jkg(x) (composition of jets);

Properties (i)-(iii) follow directly from the definition; (iv) is a consequence of the chain rule and
truncation.

Proof of Lemma 1 Take y ∈ Rd, N ≥ 1, xi ∈ Rd for i ∈ [N], w ∈ △N−1 and an order k ≥ 0.
Since w belongs to the simplex△N−1, we have

∑N
i=1 wi = 1. Multiplying f(y) on both hands, we

obtain

f(y) =

N∑
i=1

wif(y) =

N∑
i=1

wi

[
f(xi) +

k∑
s=1

Dsf(xi)(y − xi)
⊗s +O(∥y − xi∥k+1)

]

=

N∑
i=1

wiJ
kf(xi)(y) +O(wi∥y − xi∥k+1),

by applying eq. (6) (Taylor expansion) and the definition of jet with each xi as the center. At the
same time, we can expand f(y) with

∑N
i=1 xi as the center

f(y) = Jkf(

N∑
i=1

xi)(y) +O(∥y −
∑

xi∥k+1).

Now let us take y =
∑N

i=1 xi and observe that O(∥y −
∑

xi∥k+1) = 0 and O(wi∥y − xi∥k+1) =
O(wi∥xi −

∑
j xj∥k+1). Finally we observe that the class of functions in the last O are dominated

by the class of function in O(rk+1) where r = maxi{wi∥xi−
∑

j xj∥} is the maximum remainder.
This concludes the proof.

As a side note, jet weights would not need to form convex combinations, but rather linear combina-
tions

∑
i wi = 1. However, restricting to convex combinations has two major advantages:

• optimizing over a convex set guarantees the existence of maxima and minima (Weierstrass
theorem) and uniqueness of minima if we are optimizing a strictly convex loss as in general
is the case for expansions that only affect the decoder module.

• weights within the probability simplex have a clearer interpretation for interpretability pur-
poses.

B ADDITIONAL DETAILS ON RUNTIME

We report in fig. 5 a plot of the runtime for evaluating expansions originating from the joint jet lenses
of section 5.2 as a ratio of the input model evaluation (forward pass), for both the uniform and the
optimized jet weights w setup, for different jet orders k.

C ADDITIONAL DETAILS ON JET n-GRAMS

General Concept of n-Gram Models The general concept of n-gram models linked to
(transformer-based) LMs involves defining or constructing mappings that functionally depend only
on n − 1 input tokens (with the n-th token being the output token) to capture and describe the be-
haviour of the original LM. We are not the first to explore this idea; for instance Nguyen (2024) fits
n-grams on the same dataset used to train the LM.

15

eq.

DETAILS ON RUNTIME We report in fig. 5 a plot of the runtime for evaluating expansions originating from the joint jet lenses of section 5.2 as a ratio of the input model evaluation (forward pass), for both the uniform and the optimized jet weights w setup, for different jet orders k

DETAILS ON

n-GRAMS General Concept of n-Gram Models The general concept of n-gram models linked to (transformer-based) LMs involves defining or constructing mappings that functionally depend only on n − 1 input tokens (

 n-th token being the output token) to capture and describe the be- haviour of the original LM

are not the first to explore this idea; for instance Nguyen (2024) fits n-grams on

 same dataset used

 train the LM

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 5: Empirical runtime of evaluations of jet expansions originating form the joint jet lenses as a ratio of
the evaluation of the input model.

Jet Expansions for In-Model n-Grams Jet expansions allow us to define n-grams statistics that
are derived solely and directly from the model itself – producing in-model n-grams rather than
in-data n-grams. This approach offers at least two significant advantages:

• No Dataset Preparation: It eliminates the need for dataset preparation to collect activation
patterns when interpreting the model globally, thereby saving time and computational re-
sources. This process can be conducted entirely on CPU, which is approximately 10 times
cheaper per hour compared to GPUs in the current market.

• Avoidance of Fitting Artifacts: It avoids potential artifacts that could arise from the se-
lection of external n-gram fitting methods.

We describe the detailed relationship between the bi-gram/tri-gram, which we used in our case
studies, and the jet expansion as follows.

Jet Bi-Grams Jet bi-grams are paths that do not pass through self-attention layers. In experiments,
we focus on two types of bi-gram paths. a) the embedding-unembedding path that can be obtained
as jet expand(q, L, {η}, 0). b) paths that pass through one MLP module, assuming MLPs are at odd
block indices in the residual network architecture, the procedure to extract the path is:

C ={η}
for l = 1, 3, . . . , L− 1 :

ξ, δ = jet expand(q, l, {η}, 0)
C = C ∪ {e(·, 1)}e∈ξ

ξ, δ = jet expand(q, L, C, 0)

This procedure results in a series of functions in ξ—one for each MLP layer—that depend only on
the last input token. Applying softmax normalization to their logit output allows these functions
to define (conditional) bi-grams. Similar constructions can be performed for paths through multiple
MLPs. We will release code for these procedures and also provide equivalent algorithms that directly
use transformer modules.

Jet Tri-Grams Jet tri-grams involve paths that pass through at least one self-attention layer, with
a need to isolate the contribution from the first token of the tri-gram. The procedure for extracting
a 0-th order jet trigram path that passes through the ith self-attention layer (assuming it has one
head and σ2 is a function that extracts the last two tokens from a sequence of length at least 2) is as
follows:

Define σ2(z) = (zt−1, zt)

Compute ξ, δ = jet expand(q, i, {η ◦ σ2}, 0)
Compute ξ, δ = jet expand(q, L, {e(·, 1)}e∈ξ, 0)

16

Figure 5: Empirical runtime of evaluations of jet expansions originating form the joint jet lenses as a ratio of the evaluation of the input model. Jet Expansions for In-Model n-Grams Jet expansions allow us to define n-grams statistics that are derived solely and directly from the model itself – producing in-model n-grams rather than in-data n-grams. This approach offers at least two significant advantages: • No Dataset Preparation: It eliminates the need for dataset preparation to collect activation patterns when interpreting the model globally, thereby saving time and computational re- sources. This process can be conducted entirely on CPU, which is approximately 10 times cheaper per hour compared to GPUs in the current market. • Avoidance of Fitting Artifacts: It avoids potential artifacts that could arise from the se- lection of external n-gram fitting methods. We describe the detailed relationship between the bi-gram/tri-gram, which we used in our case studies, and the jet expansion as follows. Jet Bi-Grams Jet bi-grams are paths that do not pass through self-attention layers. In experiments, we focus on two types of bi-gram paths. a) the embedding-unembedding path that can be obtained as jet expand(q, L, {η}, 0). b) paths that pass through one MLP module, assuming MLPs are at odd block indices in the residual network architecture, the procedure to extract the path is: C ={η} for l = 1, 3, . . . , L − 1 : ξ, δ = jet expand(q, l, {η}, 0) C = C ∪ {e(·, 1)}e∈ξ ξ, δ = jet expand(q, L, C, 0) This procedure results in a series of functions in ξ—one for each MLP layer—that depend only on the last input token. Applying softmax normalization to their logit output allows these functions to define (conditional) bi-grams. Similar constructions can be performed for paths through multiple MLPs. We will release code for these procedures and also provide equivalent algorithms that directly use transformer modules. Jet Tri-Grams Jet tri-grams involve paths that pass through at least one self-attention layer, with a need to isolate the contribution from the first token of the tri-gram. The procedure for extracting a 0-th order jet trigram path that passes through the ith self-attention layer (assuming it has one head and σ2 is a function that extracts the last two tokens from a sequence of length at least 2) is as follows: Define σ2(z) = (zt−1, zt) Compute ξ, δ = jet expand(q, i, {η ◦ σ2}, 0) Compute ξ, δ = jet expand(q, L, {e(·, 1)}e∈ξ, 0) 16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This procedure yields a map that depends only on two input tokens, isolating the contribution of the
ith self-attention layer on pairs of tokens. Once softmax normalization is applied, this defines a tri-
gram. The tri-gram could represent either a skip trigram or a contiguous trigram, depending on how
positional information is encoded (e.g., absolute positional embeddings versus rotary embeddings).

D ADDITIONAL DETAILS ON THE EXPERIMENTAL METRICS

∆ logit after intervention To compute ∆ logits, we calculate the logits for the given n-gram both
before and after applying the intervention, then determine the change in the logits. For example,
consider the trigram (Lemma, let, s). We compute the logit of “s” conditioned on the input “Lemma
let”. The intervention involves removing the corresponding attention head (e.g., head 2). We then
measure and report the change in the logit for “s” as a result of this intervention.

One-to-one bi-grams like and Many-to-many bi-grams One-to-one bi-bigrams are (approxi-
mately) unimodal bi-grams that concentrate all mass on a single token: i.e. given z1, P D(z2|z1) ≈ 1
and given z2, PD(z1|z2) ≈ 1 for a specific pair of token and close to 0 for all others. In the example
in the paper, z1 = “&”, and z2 = “amp”. PD is the probability distribution induced by the pre-
training data. Many-to-many bi-grams we refer to the opposite scenario where both the conditional
probabilities are highly multi-modal. In the example z1 =”make” and z2 =”sure” we have that
many other tokens can succeed z1 =”make” or precede z2 =”sure”.

Hit Ratios of bi-grams The Hit Ratio (HR@n), often referred to as hit rate, is a metric commonly
used in ranking tasks. In our context, we treat each checkpoint of the language model as a ”ranker”
of bigrams. The Hit Ratio measures how effectively the current model checkpoint retrieves high-
quality bigrams from the set of all possible bigrams. To quantify the model’s progress, we define
the bigrams at the final step as the “good” bigrams and measure how quickly the model approaches
these high-quality bigrams. Specifically, we compute the HR@n to evaluate how often the model’s
output bigrams match those in the “true” top n ranked bi-grams given by the final step. Formally,
the Hit Ratio@n is given by

HR@n =
1

n

n∑
i=1

I(the i-th bigram output by the current model ∈ True Top n)

where n is the number of top predictions being considered and

• I is the indicator function that returns 1 if the i-th bigram output by the model is present in
the True Top n bigrams, and 0 otherwise,

• True Top n represents the set of ”good” bigrams, which in our case is the set of the top n
scoring bigrams from the final model step.

Total Mass of Bi-grams We use the total mass as a metric to measure the cumulative probabilities
of bi-grams from the top 1K bi-grams, weighted by an empirical unigram distribution derived from
real data. Formally, it is given by: Total Mass =

∑
(z1,z2)∈Top-1K Pet(z2|z1)PD(z1) where:

• et is the embedding-unembedding path at the t-th pre-training step,

• (z1, z2) are the bigrams being considered,

• Pet(z2|z1) is the probability assigned by the model et (the embedding-unembedding path)
for the token z2 given token z1,

• PD(z1) is the probability of z1 under the empirical distribution D, which is the unigram
probability given by the Infini-gram API (?) on the Dolma dataset (?) (the dataset used to
pretrain the model checkpoints).

This metric is designed to evaluate how much ”correct” probability mass the model checkpoints
assign to bigrams (z1, z2), taking into account the empirical unigram probability of z1. It provides
insight into how well the model aligns with the empirical distribution of real-world data during the
pretraining process.

17

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 Under review as a conference paper at ICLR 2025 This procedure yields a map that depends only on two input tokens, isolating the contribution of the ith self-attention layer on pairs of tokens. Once softmax normalization is applied, this defines a tri- gram. The tri-gram could represent either a skip trigram or a contiguous trigram, depending on how positional information is encoded (e.g., absolute positional embeddings versus rotary embeddings). D ADDITIONAL DETAILS ON THE EXPERIMENTAL METRICS ∆ logit after intervention To compute ∆ logits, we calculate the logits for the given n-gram both before and after applying the intervention, then determine the change in the logits. For example, consider the trigram (Lemma, let, s). We compute the logit of “s” conditioned on the input “Lemma let”. The intervention involves removing the corresponding attention head (e.g., head 2). We then measure and report the change in the logit for “s” as a result of this intervention. One-to-one bi-grams like and Many-to-many bi-grams One-to-one bi-bigrams are (approxi- mately) unimodal bi-grams that concentrate all mass on a single token: i.e. given z1, P D(z2|z1) ≈ 1 and given z2, PD(z1|z2) ≈ 1 for a specific pair of token and close to 0 for all others. In the example in the paper, z1 = “&”, and z2 = “amp”. PD is the probability distribution induced by the pre- training data. Many-to-many bi-grams we refer to the opposite scenario where both the conditional probabilities are highly multi-modal. In the example z1 =”make” and z2 =”sure” we have that many other tokens can succeed z1 =”make” or precede z2 =”sure”. Hit Ratios of bi-grams The Hit Ratio (HR@n), often referred to as hit rate, is a metric commonly used in ranking tasks. In our context, we treat each checkpoint of the language model as a ”ranker” of bigrams. The Hit Ratio measures how effectively the current model checkpoint retrieves high- quality bigrams from the set of all possible bigrams. To quantify the model’s progress, we define the bigrams at the final step as the “good” bigrams and measure how quickly the model approaches these high-quality bigrams. Specifically, we compute the HR@n to evaluate how often the model’s output bigrams match those in the “true” top n ranked bi-grams given by the final step. Formally, the Hit Ratio@n is given by HR@n = 1 n Xn i=1 I(the i-th bigram output by the current model ∈ True Top n) where n is the number of top predictions being considered and • I is the indicator function that returns 1 if the i-th bigram output by the model is present in the True Top n bigrams, and 0 otherwise, • True Top n represents the set of ”good” bigrams, which in our case is the set of the top n scoring bigrams from the final model step. Total Mass of Bi-grams We use the total mass as a metric to measure the cumulative probabilities of bi-grams from the top 1K bi-grams, weighted by an empirical unigram distribution derived from real data. Formally, it is given by: Total Mass = P (z1,z2)∈Top-1K Pet(z2|z1)PD(z1) where: • et is the embedding-unembedding path at the t-th pre-training step, • (z1, z2) are the bigrams being considered, • Pet (z2|z1) is the probability assigned by the model et (the embedding-unembedding path) for the token z2 given token z1, • PD(z1) is the probability of z1 under the empirical distribution D, which is the unigram probability given by the Infini-gram API (?) on the Dolma dataset (?) (the dataset used to pretrain the model checkpoints). This metric is designed to evaluate how much ”correct” probability mass the model checkpoints assign to bigrams (z1, z2), taking into account the empirical unigram probability of z1. It provides insight into how well the model aligns with the empirical distribution of real-world data during the pretraining process. 17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 100000 200000 300000 400000 500000
Pretraining Steps

2

3

4

5

6

7

8

9

10

Pr
et

ra
in

in
g

Lo
ss

Pretraining Loss

0.0

0.2

0.4

0.6

0.8

1.0

H
it

s
Ra

ti
o

@
1K

Hits Ratio @1K

(a) Top 1K jet bi-gram hit ratios w.r.t. the final step.

0 100000 200000 300000 400000 500000
Pretraining Steps

2

3

4

5

6

7

8

9

10

Pr
et

ra
in

in
g

Lo
ss

Pretraining Loss

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

To
ta

l M
as

s

Total Mass

(b) Top 1K jet bi-gram mass w.r.t. empirical data.

Figure 6: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression.

E ADDITIONAL DETAILS ON JET n-GRAM DIFFING

We derive the top-K bi-grams for each model from their embedding-unembedding path, which can
be obtained as jet expand(q, L, {η}, 0). These bigrams are then saved into CSVs, allowing us to
represent models via their respective bigram files. By comparing these files directly, much like
comparing text files, we bypass the challenges of comparing the models in the parameter space,
where measuring behavioral-level differences can be difficult. For example, we extract the bigram
files for Llama-2-7B, and its coding finetuned versions. In summary, by transforming models into
bigram files (Model → Bigram File), we can effectively compare their behavior via bigram file
differences (Model Diff → Bigram File Diff). We will include a demonstration in supplementary
material.

F ADDITIONAL ANALYSIS INTO THE BI-GRAMS LEARNING SPEED DURING
PRETRAINING

To evaluate the learning speed of jet bi-grams during pretraining, we consider the jet bi-grams at
the final training step (555K) as the ground-truth bi-grams. We then chart the hit ratios of these
ground-truth bi-grams at each pretraining step, as illustrated in Figure 6a. Interestingly, even though
the pretraining loss (the blue curve) shows only minor improvements after the initial 50K steps, the
model’s acquisition of effective bi-grams continues to progress in a steady, consistent manner. Hence
bi-grams learning dynamics are active throughout the training procedure, even after the training loss
stabilizes. This indicates that there is significant behavior change in the model which is not well cap-
tured by the training loss, an observation that is studied also in grokking and double-descent (Zhang
et al., 2021; Power et al., 2022). In other words, jet bi-grams may offer another point of view for
analyzing the learning dynamics compared to pretraining loss. In addition, fig. 6b characterizes the
total pseudo-joint probability mass of top 1K bi-grams from empirical data (Liu et al., 2024). We
derive a pseudo-joint jet bi-gram probability using statistical uni-grams from (Liu et al., 2024). We
observe that the model gradually accumulates probability mass that aligns with the real corpus data
distribution.

G ADDITIONAL TABLES FOR JET BI-GRAMS

See table 4 and table 5.

H ADDITIONAL PLOTS OF JET LENSES

See plots below, referring to the main paper for details. Note that for iterative lenses the last block
coincides with the model logits for all k by design. We omit the iterative lens for GPT2-large for
k = 2 due to low cosine similarity.

18

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 Under review as a conference paper at ICLR 2025 0 100000 200000 300000 400000 500000 Pretraining Steps 9 8 7 6 5 4 3 2 10 Pretraining Loss 0.0 0.2 0.4 0.6 0.8 1.0 Hits Ratio @1K (a) Top 1K jet bi-gram hit ratios w.r.t. the final step. 0 100000 200000 300000 400000 500000 Pretraining Steps 9 8 7 6 5 4 3 2 10 Pretraining Loss 0.022 0.020 0.018 0.016 0.014 0.012 0.010 0.008 Total Mass (b) Top 1K jet bi-gram mass w.r.t. empirical data. Figure 6: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression. E ADDITIONAL DETAILS ON JET n-GRAM DIFFING We derive the top-K bi-grams for each model from their embedding-unembedding path, which can be obtained as jet expand(q, L, {η}, 0). These bigrams are then saved into CSVs, allowing us to represent models via their respective bigram files. By comparing these files directly, much like comparing text files, we bypass the challenges of comparing the models in the parameter space, where measuring behavioral-level differences can be difficult. For example, we extract the bigram files for Llama-2-7B, and its coding finetuned versions. In summary, by transforming models into bigram files (Model → Bigram File), we can effectively compare their behavior via bigram file differences (Model Diff → Bigram File Diff). We will include a demonstration in supplementary material. F ADDITIONAL ANALYSIS INTO THE BI-GRAMS LEARNING SPEED DURING PRETRAINING To evaluate the learning speed of jet bi-grams during pretraining, we consider the jet bi-grams at the final training step (555K) as the ground-truth bi-grams. We then chart the hit ratios of these ground-truth bi-grams at each pretraining step, as illustrated in Figure 6a. Interestingly, even though the pretraining loss (the blue curve) shows only minor improvements after the initial 50K steps, the model’s acquisition of effective bi-grams continues to progress in a steady, consistent manner. Hence bi-grams learning dynamics are active throughout the training procedure, even after the training loss stabilizes. This indicates that there is significant behavior change in the model which is not well cap- tured by the training loss, an observation that is studied also in grokking and double-descent (Zhang et al., 2021; Power et al., 2022). In other words, jet bi-grams may offer another point of view for analyzing the learning dynamics compared to pretraining loss. In addition, fig. 6b characterizes the total pseudo-joint probability mass of top 1K bi-grams from empirical data (Liu et al., 2024). We derive a pseudo-joint jet bi-gram probability using statistical uni-grams from (Liu et al., 2024). We observe that the model gradually accumulates probability mass that aligns with the real corpus data distribution. G ADDITIONAL TABLES FOR JET BI-GRAMS See table 4 and table 5. H ADDITIONAL PLOTS OF JET LENSES See plots below, referring to the main paper for details. Note that for iterative lenses the last block coincides with the model logits for all k by design. We omit the iterative lens for GPT2-large for k = 2 due to low cosine similarity. 18 Pretraining Loss Hits Ratio @1K Pretraining Loss Total Mass

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while
each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The
number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks
up meaningful bi-grams after starting from senseless bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least & & &
1 ICUirling at least ’s at least its own its own
2 ords architect its own & its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal iums iums more than his own your own
6 Charg@{ you’re you’re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ’my more than make sure can’t iums

Table 5: The bi-grams before and after coding-finetuning. For space reason, we only show the bi-grams at
every 50 ranks among the top 1000 bi-grams. We highlight the bi-grams that are relevant to coding, such as
“**kwargs” a keyword in python programming. This demonstrate that our method has the capability to extract
representative bi-grams that reflect fine-tuning quality.

Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B

0 (more, than) (like, wise) (like, wise)
50 (Now, here) (just, ification) (Like, wise)
100 (system, atically) (in, case) (all, udes)
150 (all, erg) (get, ters) (no, isy)
200 (on, ions) (któber, s) (output, ted)
300 (other, world) (all, ud) (Object, ive)
350 (Just, ified) (gebiet, s) (as, cii)
400 (trust, ees) (Protest, s) (can, nab)
450 (at, he) (deploy, ment) (transport, ation)
500 (book, mark) (Class, room) (Tag, ging)
550 (from,) (access, ory) (personal, ized)
600 (WHEN, ever) (In, variant) (excess, ive)
650 (where, about) (I, am) (Add, itional)
700 (ag, ged) (add, itionally) (**, kwargs)
750 (he, he) (invalid, ate) (name, plates)
800 (all, anto) (div, ision) (select, ive)
850 (Tom, orrow) (process, ors) (Assert, ions)
900 (for, ays) (Program, me) (blog, ger)
950 (Bach, elor) (set, up) (can, cellation)

new _simple _neural _architecture , _the _Trans former
Block 1 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 2 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 3 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 4 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 5 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 6 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 7 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 8 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 9 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters

Block 10 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 11 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 12 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 13 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 14 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 15 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 16 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 17 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 18 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 19 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 20 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 21 Supporters Supporters Supporters Supporters Engineers Supporters Supporters Supporters
Block 22 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Introduced
Block 23 Supporters Supporters Supporters Supporters Introduced Supporters Supporters Introduced
Block 24 Supporters Supporters Supporters Supporters Nonetheless Nonetheless Supporters Introduced
Block 25 Supporters Supporters Supporters Supporters Attempts Nonetheless Supporters Introduced
Block 26 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 27 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 28 Supporters Supporters Supporters Supporters Attempts Nonetheless Introduced Introduced
Block 29 foreseen Supporters Supporters Supporters foreseen Nonetheless Charges Introduced
Block 30 foreseen Supporters Supporters Attempts foreseen foreseen Charges Introduced
Block 31 Supporters Supporters Supporters _for _the aminer former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 7: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-Neo-2.7B
with the input sentence “new simple neural architecture, the Transformer”.

19

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 Under review as a conference paper at ICLR 2025

7

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 , ton _network _for _which _first former ,
Block 2 Supporters ton _network _for _which _first former ,
Block 3 Supporters ton _network _for _which _first former ,
Block 4 Supporters ton _network _for _which _first former ,
Block 5 Supporters ton _network _for _which _first former ,
Block 6 Supporters ton _network _for _which _first former ,
Block 7 Supporters ton _network _for _which _first former ,
Block 8 Supporters ton _network _for _which _first former ,
Block 9 Supporters ton _network _for _which _first former ,

Block 10 Supporters ton _network _for _which _first former ,
Block 11 Supporters ton _network _for _which _first former ,
Block 12 Supporters ton _network _for _which _first former ,
Block 13 Supporters ton _network _for _which _first former ,
Block 14 Supporters ton _network _for _which _first former ,
Block 15 Supporters ton _network _for _which _first former ,
Block 16 Supporters ton _network _for _which _first former ,
Block 17 Supporters ton _network _for _which _first former ,
Block 18 Supporters ton _network _for _which _first former ,
Block 19 Supporters ton _network _for _which _first former ,
Block 20 Supporters ton _network _for _which _first former ,
Block 21 Supporters ton _network _for _which _first former ,
Block 22 Supporters ton _network _for _which _first former ,
Block 23 Supporters ton _network _for _which _first former ,
Block 24 Supporters ton _network _for _which _so former ,
Block 25 Supporters ton _network _for _which _first former ,
Block 26 Supporters ton _network _for _which _first former ,
Block 27 Supporters ton _network _for _which _first former ,
Block 28 Supporters ton _network _for _which _first former ,
Block 29 foreseen ton _network _for _which _first former ,
Block 30 foreseen ton _network _for _which _first former ,
Block 31 Supporters _ _network _for _which _first former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 8: Iterative jet lens (k = 1), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 _the _ _nets !: _â ¦" _â ¦" former !:
Block 2 _the _ _network _outper _â ¦" _â ¦" former _[
Block 3 _the _ _network _for _trained _Conv former _[
Block 4 _the _ _network _for _the _Conv former ,
Block 5 _the _ _network _for _the _neural former ,
Block 6 _the _ _network _for _the _neural former ,
Block 7 _the _ _network _for _the _architecture former ,
Block 8 _the _ _network _for _the _architecture former ,
Block 9 _the _ _network _for _the _architecture former ,

Block 10 _the _ _network _for _the _architecture former ,
Block 11 _the _ _network _for _the _architecture former ,
Block 12 _the _ _network _for _the _architecture former ,
Block 13 _the _ _network _for _the _architecture former ,
Block 14 _the _ _network _for _the _neural former ,
Block 15 _the _ _network _for _the _neural former ,
Block 16 _the _ _network _for _the _neural former ,
Block 17 _the _ _network _for _the _neural former ,
Block 18 _the _ _network _for _the _neural former ,
Block 19 _the _ _network _for _the _neural former ,
Block 20 _the _ _network _for _the _neural former ,
Block 21 _the _ _network _for _the _neural former ,
Block 22 _the _ _network _for _the _neural former ,
Block 23 _the _ _network _for _the _neural former ,
Block 24 _the _ _network _for _the _neural former ,
Block 25 _the _ _network _for _the _neural former ,
Block 26 _the _ _network _for _the _neural former ,
Block 27 _the _ _network _for _the _neural former ,
Block 28 _the _ _network _for _the _neural former ,
Block 29 _the _ _network _for _the _neural former ,
Block 30 _the _ _network _for _and _neural former ,
Block 31 , _ _network _for _and _neural former ,
Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 9: Iterative jet lens (k = 2), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”

20

8

9

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 bie _simple _neural _architecture _and _the fig former
Block 2 bie _simple _neural _architecture _and _main ient former
Block 3 bie _simple _neural _architecture _and _new ient former
Block 4 bie _way _neural _architecture _and _first ient _titan
Block 5 bie _way _networks _architecture _and _next ient _Prime
Block 6 bie _enough _networks _architecture _and _next ient _Matrix
Block 7 _href _enough _networks _architecture _and _first ient _Prime
Block 8 _iTunes _enough _neural _architecture _which _first ient _Revolution
Block 9 , _enough _neural _architecture _which _first ient _Prime

Block 10 , _enough _network _architecture _which _first ient _Revolution
Block 11 , _enough _network _model _which _only ient _Pro
Block 12 , _enough _network _architecture _which _only ient _Pro
Block 13 , _enough _network _model _which _first ient _Pro
Block 14 , _enough _network _model _which _first ient _Pro
Block 15 , _enough _network _model _which _only ient _Pro
Block 16 , - _network _model _which _only ient _Revolution
Block 17 , - _system _model _which _only ient _Prime
Block 18 , - _system _model _which _only ient _Prime
Block 19 , - _system _model _which _only ient _Prime
Block 20 , - _system _model _which _only ient _Prime
Block 21 , - _system _model _which _only ient _Prime
Block 22 , - _network _model _which _only ient _Prime
Block 23 , ton _network _model _which _only ient _Prime
Block 24 , ton _network _model _which _only ient _Prime
Block 25 , ton _network _model _which _first ient _Prime
Block 26 , ton _network _model _which _only ient _Prime
Block 27 , ton _network _for _which _first ient _Prime
Block 28 , - _network " _which _only ient _Prime
Block 29 , - _network " _which _neural ient _Prime
Block 30 , " _network " _which _neural ient ,
Block 31 , " _network " _which _neural ient ,
Block 32 , " _network " _which _neural ient ,
Block 33 , " _network _for _which _neural ient ,
Block 34 , " _network ' _which _neural ient ,
Block 35 , " _network ' _which _neural c ,
Block 36 _ " _network ' _which _neural c ,

Logits _ " _network ' _which _neural c ,

Figure 10: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-2-large
with the input sentence “new simple neural architecture, the Transformer”.

new _simple _neural _architecture , _the _Trans former
Block 1 bie " _network " _which _neural c _is
Block 2 bie " _network ' _which _neural c _is
Block 3 bie " _network ' _which _neural c _is
Block 4 _ " _network ' _which _neural c _is
Block 5 _ " _network ' _which _neural c _is
Block 6 _ " _network ' _which _neural c _is
Block 7 _ " _network ' _which _neural c _is
Block 8 _ " _network ' _which _neural c _is
Block 9 _ " _network ' _which _neural c _is

Block 10 , " _network ' _which _neural c _is
Block 11 , " _network ' _which _neural c _is
Block 12 , " _network ' _which _neural c ,
Block 13 , " _network ' _where _neural c ,
Block 14 , " _network ' _and _neural c ,
Block 15 , " _network ' _and _neural c ,
Block 16 , " _network ' _and _neural c ,
Block 17 , " _network ' _and _neural c ,
Block 18 , " _network ' _and _neural c ,
Block 19 , " _network ' _and _neural c ,
Block 20 , " _network ' _and _neural c ,
Block 21 , " _network ' _and _neural c ,
Block 22 , " _network ' _and _neural c ,
Block 23 , " _network ' _the _neural c ,
Block 24 , " _network ' _and _neural c ,
Block 25 , " _network ' _and _neural c ,
Block 26 , " _network ' _and _neural c ,
Block 27 , " _network ' _and _neural c ,
Block 28 , " _network ' _and _neural c ,
Block 29 , " _network ' _and _human c ,
Block 30 , " _network ' _and _same c ,
Block 31 , " _network ' _and _same c ,
Block 32 , " _network ' _and _same c ,
Block 33 , " _network ' _and _neural c ,
Block 34 , " _network ' _which _neural c ,
Block 35 - " _network ' _which _neural c ,
Block 36 _ " _network ' _which _neural c ,

Logits _ " _network ' _which _neural c ,

Figure 11: Iterative jet lens (k = 1), applied over GPT-2-large with the input sentence “new simple neural
architecture, the Transformer”

21

10

11

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (4.40%) , (6.62%) _simple (3.91%) _neural (4.42%) _architecture (3.97%) _which (4.07%) _same (4.37%) cend (3.93%) former (3.91%)
Block 2 (4.15%) , (6.59%) _retro (3.85%) _prog (4.32%) _error (3.74%) _including (3.93%) _resulting (4.14%) ference (3.69%) _Robo (2.99%)
Block 3 (4.23%) , (6.59%) ove (4.13%) _Matter (4.12%) killer (3.51%) _which (4.00%) _AVG (4.01%) em (3.56%) Mars (3.91%)
Block 4 (4.11%) _the (6.59%) _reg (3.51%) lect (4.37%) OX (3.68%) _found (4.05%) netflix (4.09%) Charge (2.95%) Â® (3.69%)
Block 5 (6.11%) , (6.59%) ware (3.54%) _product (3.68%) _towards (3.70%) _evolution (3.88%) _ones (3.74%) it (20.20%) _Mant (3.57%)
Block 6 (3.91%) , (6.58%) ies (3.59%) _networks (4.11%) _developed (3.45%) _developed (3.55%) _Mehran (3.45%) ition (3.54%) bur (3.01%)
Block 7 (4.00%) , (6.56%) face (3.75%) _studies (3.88%) _based (3.52%) _hackers (3.76%) _Turing (3.73%) _Series (2.97%) _Suite (3.83%)
Block 8 (4.06%) , (6.42%) key (3.83%) _model (4.18%) _based (3.53%) _requiring (3.49%) _algorithm (4.14%) ient (3.62%) _II (3.25%)
Block 9 (4.09%) , (7.45%) _clutter (4.08%) _model (3.69%) _test (3.40%) _which (3.11%) _neural (3.55%) verse (3.82%) _Cube (3.66%)

Block 10 (10.50%) . (16.50%) lists (9.61%) g (4.99%) _of (16.60%) _which (11.47%) _neural (5.79%) _neural (3.50%) _is (15.56%)
Block 11 (25.30%) , (16.96%) " (27.59%) _networks (28.89%) " (24.52%) _the (26.92%) _new (29.14%) m (22.95%) _neural (25.40%)
Block 12 (25.13%) , (6.56%) . (28.62%) _net (29.35%) , (26.40%) _the (27.77%) _the (29.85%) c (25.27%) . (27.23%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) , - _network _of _which _" - _is

Figure 12: Joint jet lens with learnable weightings (k = 0), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (15.30%) . (7.49%) " (16.78%) _networks (16.96%) ", (18.37%) _neural (14.61%) _neural (14.05%) verse (16.45%) _Neural (17.73%)

Block 2 (4.57%) , (13.81%) json (3.21%) _networks (3.29%) _model (3.46%) _which (3.11%) _neural (3.02%) cend (3.23%) _Neural (3.45%)
Block 3 (4.49%) , (14.25%) tons (3.25%) _networks (2.82%) _architecture (3.32%) _neural (3.10%) _neural (3.00%) porter (3.03%) _Neural (3.17%)
Block 4 (4.10%) . (11.55%) tons (3.28%) _networks (3.27%) _leveraging (3.19%) _synt (3.04%) _neural (2.98%) verse (2.90%) _Neural (2.57%)
Block 5 (4.02%) . (9.58%) tons (3.05%) _networks (3.25%) _algorithm (3.45%) _which (3.14%) _neural (2.99%) mitter (3.24%) _Neural (3.47%)
Block 6 (3.02%) . (2.75%) _linkage (2.65%) _net (3.04%) _algorithms (3.26%) _detecting (2.94%) _neural (2.80%) cend (3.30%) _Neural (3.45%)
Block 7 (2.91%) . (2.98%) _teleportation (2.78%) _nets (3.19%) _approach (3.24%) _specifically (2.49%) _cortex (2.58%) genic (3.07%) _Cortex (2.95%)
Block 8 (4.60%) bid (3.10%) nex (7.64%) _network (2.63%) _platform (2.62%) _neural (4.81%) _participant (9.06%) cription (3.50%) _Neural (3.45%)
Block 9 (7.44%) iaries (3.10%) url (5.60%) _networks (7.77%) _intelligence (4.86%) _Torch (14.64%) _welcoming (13.48%) Secure (7.21%) _conv (2.83%)

Block 10 (15.04%) akings (13.99%) widget (14.80%) _network (16.20%) _None (13.05%) _Bund (15.37%) _safest (14.72%) cend (16.11%) _disabling (16.06%)
Block 11 (16.50%) ity (3.19%) ton (18.47%) _network (18.79%) _architecture (20.49%) _which (16.34%) _neural (15.62%) istor (18.84%) â ¢ (20.28%)
Block 12 (18.00%) , (14.21%) - (18.49%) _network (18.78%) _that (20.68%) _which (16.41%) _neural (15.70%) ient (19.11%) _is (20.60%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) akings json _networks _framework _neural _neural cend _Neural

Figure 13: Joint jet lens with learnable weightings (k = 1), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.58%) Supporters (1.55%) Supporters (3.24%) Supporters (3.46%) Supporters (5.37%) Supporters (5.08%) Supporters (3.52%) Supporters (3.88%) Supporters (2.56%)
Block 2 (2.13%) foreseen (1.61%) foreseen (2.97%) foreseen (1.15%) Introduced (3.96%) foreseen (1.09%) foreseen (1.54%) Supporters (3.67%) Supporters (1.03%)
Block 3 (2.07%) Amid (1.65%) Supporters (2.01%) Across (1.32%) gewater (1.14%) Supporters (3.66%) Supporters (2.93%) Supporters (2.58%) leground (1.28%)
Block 4 (1.57%) _impover (1.97%) _unpop (2.18%) _unpop (1.46%) _impover (1.33%) _impover (1.39%) _impover (1.71%) _uphe (1.27%) _impover (1.27%)
Block 5 (1.47%) Attempts (1.76%) _municip (2.15%) _airst (1.45%) _linem (1.29%) amiliar (1.32%) pelling (1.38%) rieving (1.26%) _linem (1.13%)
Block 6 (1.45%) Residents (1.76%) _athlet (2.17%) rha (1.44%) _twent (1.34%) _way (1.05%) ters (1.40%) rha (1.23%) _Xuan (1.25%)
Block 7 (3.57%) Ironically (1.63%) celona (2.74%) wrap (3.78%) _look (5.71%) _airstrike (1.22%) _equivalent (2.63%) _different (6.30%) _hollow (4.58%)
Block 8 (4.63%) Supporters (1.61%) imura (3.91%) vantage (3.03%) anoia (5.48%) foreseen (6.13%) ileen (4.55%) Enlarge (5.70%) assador (6.59%)
Block 9 (3.14%) Ironically (1.65%) erguson (2.00%) certain (2.53%) OUR (1.28%) _local (3.54%) erguson (1.80%) enter (5.43%) bec (6.89%)

Block 10 (1.73%) foreseen (1.65%) foreseen (2.01%) Engineers (1.20%) Engineers (2.88%) asury (1.19%) thinkable (1.40%) Attempts (2.53%) uddenly (0.96%)
Block 11 (1.71%) likely (1.57%) extremely (1.88%) aples (1.18%) _screenplay (1.29%) earances (1.30%) earances (4.13%) oother (1.20%) _resurg (1.12%)
Block 12 (4.53%) Ironically (1.73%) Phones (3.91%) ADVERTISEMENT (4.39%) ADVERTISEMENT (6.03%) isively (4.65%) _Blvd (4.46%) ADVERTISEMENT (6.08%) ADVERTISEMENT (4.99%)
Block 13 (2.80%) _a (1.68%) aji (2.83%) imbabwe (1.33%) rone (1.28%) OTOS (5.38%) ppard (3.08%) ppard (1.07%) aji (5.76%)
Block 14 (2.91%) foreseen (1.66%) ADVERTISEMENT (1.83%) Marginal (3.82%) chell (1.32%) _Appalach (1.33%) _Caucasus (4.66%) _still (5.47%) , (3.23%)
Block 15 (1.47%) ormons (1.78%) _confir (1.89%) uring (1.34%) ured (1.25%) _AoE (1.38%) _Caucas (1.68%) _lineman (1.25%) _topple (1.22%)
Block 16 (3.98%) Against (1.82%) folios (1.93%) @ (6.49%) thinkable (3.49%) _tsun (1.26%) _D (4.65%) l (5.84%) arsh (6.38%)
Block 17 (2.89%) urses (1.38%) untled (4.46%) ortunate (3.72%) ithub (1.21%) _our (4.69%) ortment (1.51%) erenn (4.91%) ombies (1.21%)
Block 18 (5.12%) foreseen (1.63%) Supporters (4.53%) Nonetheless (6.62%) Ironically (5.07%) Thankfully (5.66%) Shortly (4.52%) af (5.80%) _is (7.12%)
Block 19 (2.96%) pherd (1.47%) _enough (4.91%) ag (3.58%) _for (5.69%) incerity (1.08%) incerity (2.75%) extreme (3.01%) phabet (1.21%)
Block 20 (5.68%) (2.06%) (5.07%) _just (7.05%) (6.91%) Attempts (6.51%) paralleled (4.49%) - (6.53%) , (6.87%)
Block 21 (1.46%) ription (1.60%) ription (2.15%) _Playoffs (1.48%) isdom (1.06%) _frontrunner (1.36%) _frontrunner (1.69%) _TBD (1.24%) pered (1.06%)
Block 22 (4.55%) _in (3.36%) _first (5.29%) _two (7.06%) _one (6.98%) _which (6.97%) _one (4.56%) _isEnabled (1.03%) elligence (1.15%)
Block 23 (5.21%) , (4.80%))] (5.23%) _" (7.13%)) (6.26%) _while (6.31%) _point (4.57%) albeit (1.15%) B (6.21%)
Block 24 (6.13%) _a (5.62%) _m (5.26%) _first (7.18%) _for (7.33%) _the (7.33%) _so (4.70%) _trans (5.70%) rieving (5.90%)
Block 25 (1.55%) foreseen (1.67%) acly (2.14%) _enthus (1.49%) _anecd (1.35%) _trainers (1.43%) _subreddits (1.74%) ithub (1.28%) _Trainer (1.27%)
Block 26 (2.61%) - (6.25%) _simple (2.08%) _simple (5.95%) ername (1.30%) haar (1.34%) _satell (1.74%) igsaw (1.02%) _headphone (1.17%)
Block 27 (2.65%) _â (7.40%) _â (5.48%) _DSM (1.35%) heid (1.30%) dayName (1.38%) _artif (1.75%) --+ (1.27%) _nostalg (1.30%)
Block 28 (2.39%) _fps (8.56%) >>\ (2.30%) _Oo (1.42%) _tacos (1.30%) _msec (1.41%) _unbeliev (1.75%) _hrs (1.12%) _reminis (1.28%)
Block 29 (1.97%) _â ¦" (5.17%) _convol (2.18%) ricanes (1.47%) _Gujar (1.25%) acerb (1.38%) cffff (1.74%) _negoti (1.28%) _automakers (1.27%)
Block 30 (1.84%) _â ¦" (4.01%) _anecd (2.24%) _unve (1.49%) _overwhel (1.37%) !?" (1.43%) 20439 (1.78%) _negoti (1.29%) _calculates (1.12%)
Block 31 (4.61%) !!" (8.40%) _â ¦" (2.57%) _greets (1.35%) _entert (1.80%) \\\\ (4.44%) \\\\ (6.14%) "! (5.27%) '/ (6.88%)
Block 32 (5.64%) â ¦." (9.55%) !?" (4.42%) â ¦." (2.29%) â ¦." (5.37%) _â ¦" (6.35%) _\' (9.03%) ©¶æ¥µ (3.34%) â ¦." (4.75%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.977) _the _and - _for _the _first - ,

Figure 14: Joint jet lens with learnable weightings (k = 0), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

22

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

12

13

14

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
Block 3 (1.31%) _File (1.62%) _ (1.29%) _network (1.31%) _for (1.28%) _which (1.25%) _CNN (1.22%) former (1.20%) , (1.32%)
Block 4 (7.81%) _impover (5.74%) _unpop (8.48%) _impover (8.76%) _impover (8.45%) _impover (7.67%) _Neural (7.51%) former (7.39%) _Networks (8.45%)
Block 5 (1.79%) User (5.29%) _ (1.31%) _network (1.30%) _for (1.29%) _which (1.29%) _neural (1.26%) former (1.25%) , (1.31%)
Block 6 (1.79%) Instance (5.33%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.26%) _neural (1.23%) former (1.23%) , (1.32%)
Block 7 (1.59%) File (3.56%) _ (1.37%) _network (1.36%) _for (1.33%) _which (1.28%) _neural (1.24%) former (1.25%) , (1.32%)
Block 8 (1.70%) Supporters (5.02%) _ (1.29%) _network (1.28%) _for (1.25%) _which (1.24%) _Neural (1.17%) former (1.12%) , (1.21%)
Block 9 (1.77%) Enlarge (5.04%) _ (1.37%) _network (1.37%) _for (1.32%) _which (1.26%) _neural (1.23%) former (1.25%) , (1.31%)

Block 10 (4.41%) foreseen (5.36%) _ (5.77%) _network (6.19%) _for (5.99%) _which (1.15%) _neural (0.93%) former (2.45%) , (7.42%)
Block 11 (1.31%) , (1.90%) _ (1.30%) _network (1.29%) _for (1.20%) _which (1.18%) _neural (1.19%) former (1.19%) , (1.24%)
Block 12 (1.21%) , (1.74%) _ (1.11%) _network (1.17%) _for (1.10%) _which (1.16%) _neural (1.15%) former (1.07%) , (1.21%)
Block 13 (1.37%) _ (1.94%) _ (1.36%) _network (1.35%) _for (1.32%) _which (1.23%) _neural (1.21%) former (1.23%) , (1.32%)
Block 14 (1.22%) , (1.82%) _ (1.18%) _network (1.22%) _for (1.12%) _which (1.15%) _neural (1.09%) former (1.04%) , (1.12%)
Block 15 (1.34%) _ (1.90%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.21%) _neural (1.20%) former (1.20%) , (1.28%)
Block 16 (1.31%) ((1.91%) _ (1.28%) _network (1.28%) _for (1.24%) _which (1.18%) _neural (1.19%) former (1.18%) _model (1.23%)
Block 17 (1.31%) _ (1.90%) _ (1.29%) _network (1.28%) _for (1.26%) _which (1.14%) _neural (1.12%) former (1.16%) , (1.29%)
Block 18 (4.55%) , (1.65%) _ (5.16%) _network (3.55%) _for (5.49%) _which (6.28%) _neural (6.05%) former (5.05%) , (3.17%)
Block 19 (1.24%) , (1.84%) _ (1.23%) _network (1.17%) _for (1.18%) _which (1.23%) _neural (0.97%) former (1.10%) _model (1.18%)
Block 20 (3.30%) (1.84%) _ (2.30%) _network (1.16%) _for (4.21%) _which (6.29%) _neural (5.89%) former (2.70%) _architecture (2.00%)
Block 21 (1.87%) _ (1.80%) _ (1.21%) _network (1.12%) _for (1.15%) _which (3.82%) _neural (3.71%) former (1.10%) , (1.02%)
Block 22 (4.81%) - (1.91%) _infographic (8.14%) _network (3.50%) _outper (5.92%) _which (6.89%) _neural (6.76%) former (1.57%) _[(3.83%)
Block 23 (2.01%) , (1.91%) _ (1.14%) _network (1.40%) _learns (1.38%) _which (3.94%) _Conv (3.99%) former (1.14%) _model (1.18%)
Block 24 (6.02%) , (1.94%) _infographic (8.04%) _network (7.20%) _unve (8.00%) _unve (7.47%) _Neural (7.02%) former (3.53%) _model (4.98%)
Block 25 (1.19%) _ (1.87%) _ (1.19%) _network (1.09%) _for (1.22%) _which (0.96%) _â (1.07%) former (1.06%) , (1.04%)
Block 26 (1.55%) _ (1.89%) _ (1.18%) _network (2.18%) _called (1.22%) _which (1.25%) _Conv (1.09%) former (2.57%) , (1.06%)
Block 27 (2.23%) _ (1.93%) ton (3.53%) _network (1.09%) _for (1.21%) _which (0.99%) _model (1.13%) former (6.67%) , (1.25%)
Block 28 (2.76%) _ (1.73%) json (1.02%) _network (3.49%) _for (1.84%) _which (0.95%) _Neural (3.31%) former (6.31%) , (3.42%)
Block 29 (3.22%) _â ¦" (6.01%) _ (1.32%) _network (1.00%) _for (1.01%) _and (1.74%) _neural (1.90%) former (7.25%) , (5.54%)
Block 30 (6.24%) _â ¦" (6.04%) _ (3.56%) _network (7.34%) _for (5.45%) _which (6.05%) _neural (6.14%) former (7.30%) Â (8.04%)
Block 31 (7.76%) !!" (5.96%) _ (8.27%) _network (8.68%) _for (8.36%) _the (7.67%) _Conv (7.46%) former (7.35%) , (8.37%)
Block 32 (7.84%) â ¦." (5.81%) !?" (8.35%) _network (8.78%) , (8.43%) _and (7.70%) _neural (7.51%) former (7.57%) _model (8.53%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 15: Joint jet lens with learnable weightings (k = 1), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.19%) bie (4.48%) _simple (4.99%) _neural (0.98%) _architecture (1.08%) _and (5.08%) _the (5.85%) fig (2.07%) former (1.01%)
Block 2 (1.81%) _arrivals (2.43%) tons (1.22%) _rack (3.83%) _model (1.07%) _the (1.01%) _main (1.01%) ient (3.10%) _generation (0.85%)
Block 3 (2.49%) _entry (5.53%) _fitting (5.41%) _clusters (3.05%) _det (1.14%) _thanks (0.99%) _second (1.00%) cription (0.97%) _barrier (1.86%)
Block 4 (3.02%) bies (3.47%) _private (5.64%) _env (5.41%) _clusters (1.18%) _aspirin (1.09%) _hypothesis (1.08%) cript (5.55%) _Mund (0.75%)
Block 5 (1.75%) _mansion (3.47%) _Transcript (1.03%) ous (2.48%) _suit (1.15%) chuk (1.11%) _Oracle (1.17%) _Card (2.55%) cknow (1.00%)
Block 6 (1.84%) _Parables (2.46%) _Bald (1.45%) izer (0.99%) sche (1.21%) %); (1.11%) ija (1.18%) ione (5.34%) atti (1.01%)
Block 7 (2.51%) DERR (2.47%) _sp (1.62%) _wired (3.21%) inea (1.19%))* (1.02%) _gloss (1.17%) aways (4.96%) _system (4.48%)
Block 8 (1.80%) , (2.32%) _Tall (1.04%) _experiments (0.89%) MIT (1.21%) mac (1.06%) fts (1.16%) rock (5.75%) con (0.97%)
Block 9 (1.79%) , (2.19%) onel (1.11%) _layer (5.70%) _hum (1.10%) arily (1.06%) _Hots (1.20%) iter (0.98%) _boxes (0.96%)

Block 10 (2.17%) , (2.18%) tested (1.09%) / (6.21%) _deployed (1.18%) _disrupt (3.01%) ew (1.11%) _INS (0.76%) _Drive (1.80%)
Block 11 (1.20%) , (2.18%) azon (1.10%) ã ³ã ¸ (1.00%) ea (1.20%) Ro (1.10%) _Dive (1.10%) _Revised (0.95%) _Prol (1.00%)
Block 12 (1.17%) , (2.20%) _Think (1.05%) _Dish (0.86%) _Layer (1.11%) _Sing (0.99%) uts (1.16%) _button (0.94%) _proble (1.02%)
Block 13 (1.88%) _and (2.22%) _ab (2.77%) ourt (4.71%) _Malf (1.20%) _REPL (0.99%) _naked (1.17%) oran (0.98%) _cred (1.01%)
Block 14 (1.60%) _and (2.22%) alg (1.06%) _underestimated (0.97%) _percentile (1.19%) _which (2.35%) _nonetheless (1.15%) igo (3.05%) _Hut (0.81%)
Block 15 (2.19%) _and (2.24%) - (4.45%) _Subst (1.01%) chan (1.16%) ATURES (1.09%) _hitch (1.19%) _Mini (0.99%) _Bre (5.41%)
Block 16 (2.24%) _and (2.26%) _image (5.83%) _cell (4.89%) _packs (1.05%) _marked (0.91%) _Finn (1.09%) omes (0.89%) _Cipher (0.99%)
Block 17 (1.72%) _and (2.27%) Ä (1.11%) _formulation (0.96%) isen (1.22%) _modular (1.08%) _Space (0.99%) _Neural (0.85%) _Trainer (5.29%)
Block 18 (1.54%) _and (2.21%) _bond (1.06%) _IPM (1.01%) _((4.36%) build (0.97%) plex (1.04%) brand (0.78%) _Quest (0.91%)
Block 19 (2.17%) _and (2.13%) _cross (3.75%) _proceeds (5.61%) _named (2.11%) _called (0.93%) _parallel (1.08%) Shares (0.96%) _lost (0.81%)
Block 20 (2.64%) , (3.62%) ": (0.98%) rons (1.15%) _Neural (2.26%) _coupled (4.39%) _omn (2.30%) fect (4.73%) _Fly (1.73%)
Block 21 (1.27%) , (3.47%) _ft (0.97%) ysis (1.03%) _template (1.09%) _with (0.83%) _latter (1.09%) adic (0.79%) â ¢ (0.87%)
Block 22 (3.88%) , (3.56%) types (0.98%) _Turing (2.15%) . (7.00%) _which (4.55%) _most (5.96%) gress (1.06%) _VT (5.74%)
Block 23 (3.17%) , (3.95%) tv (1.07%) blade (0.96%) _..." (1.16%) _i (2.87%) _model (5.98%) du (4.83%) _erg (4.52%)
Block 24 (5.36%) , (3.89%) _prayers (5.37%) _Turing (6.05%) , (6.95%) _which (5.59%) _brain (6.37%) Memory (5.62%) als (3.00%)
Block 25 (2.84%) , (3.80%) _complex (0.86%) _surgery (0.93%) " (0.97%) _Neural (1.57%) _one (5.52%) _EEG (3.47%) , (5.60%)
Block 26 (5.61%) , (3.63%) _dot (6.73%) _Turing (6.16%) _for (7.62%) _then (6.26%) _Neural (5.36%) ocy (5.16%) _robot (3.94%)
Block 27 (4.91%) , (3.64%) ?" (7.12%) _algorithm (2.21%) ". (6.61%) _where (5.86%) _so (5.87%) vier (1.80%) _or (6.21%)
Block 28 (3.91%) , (2.94%) _solution (0.91%) _simulation (4.19%) ", (5.57%) _which (5.97%) _F (6.14%) imil (0.95%) _Mega (4.63%)
Block 29 (4.07%) , (1.51%) _life (6.69%) _network (2.58%)] (2.36%) _using (5.32%) _neural (6.09%) Washington (4.30%) _brains (3.73%)
Block 30 (5.05%) , (1.96%) Ã (5.52%) _net (5.50%) _that (7.83%) _neural (6.24%) _neural (6.05%) _underground (4.91%) _Brain (2.39%)
Block 31 (5.02%) , (2.04%) " (6.84%) _Machine (3.46%) ," (7.99%) _neural (6.56%) _neural (6.10%) onet (0.95%) _neural (6.19%)
Block 32 (5.00%) , (2.06%) ' (5.21%) _net (0.94%) ' (7.68%) _called (6.27%) _simple (6.34%) haus (5.11%) 3 (6.41%)
Block 33 (3.65%) , (2.08%) ' (0.83%) _assembly (5.90%) ' (1.61%) _to (5.86%) _TW (1.51%) Global (5.96%) _LL (5.41%)
Block 34 (2.57%) , (2.10%) _to (1.01%) _vide (0.99%) , (2.72%) _and (1.15%) _class (1.00%) lc (5.89%) , (5.73%)
Block 35 (1.67%) , (2.12%) client (1.09%) _NET (1.00%) (3.33%) _and (2.74%) _reservoir (1.16%) Draft (1.02%) _scripts (0.93%)
Block 36 (1.28%) (2.69%) (1.06%) gil (1.03%) (1.15%) (1.01%) _Leopard (1.22%) artist (1.05%) stals (1.02%)

Logits _ " _network ' _which _neural c ,
Expan. (0.980) , - _network _for _which _neural - ,

Figure 16: Joint jet lens with learnable weightings (k = 0), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

23

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

15

16

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (3.50%) bie (3.17%) " (4.75%) _network (5.93%) " (3.61%) _which (1.15%) _neural (1.60%) c (5.06%) _is (2.74%)
Block 2 (3.14%) _ (0.84%) " (4.15%) _network (5.49%) ' (1.80%) _which (4.28%) _neural (4.04%) c (3.60%) _is (0.93%)
Block 3 (1.19%) _ (0.86%) " (0.91%) _network (0.84%) ' (1.05%) _which (1.81%) _neural (2.17%) c (0.78%) _is (1.08%)
Block 4 (1.08%) - (0.77%) ton (1.88%) _network (1.27%) ' (0.99%) _we (0.96%) _neural (0.94%) c (0.75%) _is (1.07%)
Block 5 (0.98%) _ (0.74%) " (1.03%) _network (0.98%) ' (1.06%) _where (1.01%) _brain (1.00%) c (0.88%) _is (1.13%)
Block 6 (1.29%) _ (3.29%) " (1.01%) _network (0.93%) ' (1.07%) _and (1.00%) _neural (1.00%) c (0.93%) _is (1.06%)
Block 7 (1.32%) _ (3.60%) " (1.04%) _network (0.97%) ' (1.10%) _which (1.00%) _neural (1.00%) parent (0.89%) _is (0.97%)
Block 8 (1.35%) _ (3.71%) " (1.05%) _network (0.95%) ' (1.07%) _which (0.98%) _researchers (0.99%) ient (0.97%) _is (1.10%)
Block 9 (1.44%) , (3.74%) " (1.04%) _network (0.83%) ' (1.07%) _which (0.99%) _neural (0.99%) c (0.94%) _is (1.91%)

Block 10 (1.47%) - (3.73%) " (1.04%) _network (1.44%) ' (1.07%) _which (0.97%) _neural (0.99%) former (0.93%) _AI (1.57%)
Block 11 (1.36%) - (3.71%) " (0.98%) _network (1.01%) ' (1.12%) _which (0.98%) _neural (0.98%) c (0.99%) _is (1.10%)
Block 12 (1.36%) _ (3.69%) " (1.00%) _network (1.04%) ' (1.08%) _which (0.97%) _neural (0.97%) c (1.03%) , (1.12%)
Block 13 (1.35%) _ (3.65%) " (1.01%) _network (1.04%) " (1.10%) _where (0.96%) _neural (0.96%) c (1.01%) _Cortex (1.09%)
Block 14 (1.31%) _ (3.61%) " (1.00%) _network (1.02%) ' (1.07%) _a (0.74%) _neural (0.92%) ient (1.00%) _is (1.10%)
Block 15 (1.30%) _ (3.54%) " (0.99%) _network (1.03%) ' (1.07%) _which (0.93%) _neural (0.93%) c (1.00%) _chip (0.90%)
Block 16 (1.30%) _ (3.43%) " (1.04%) _network (0.95%) ' (1.09%) _and (0.89%) _neural (0.89%) c (0.99%) , (1.13%)
Block 17 (1.28%) _ (3.36%) " (0.97%) _network (0.95%) ' (1.09%) _which (0.90%) _neural (0.86%) c (0.99%) . (1.10%)
Block 18 (1.14%) _ (2.81%) _ (0.92%) _network (1.00%) ' (0.90%) _a (0.74%) _more (0.79%) c (0.90%) _chip (1.09%)
Block 19 (0.99%) _ (0.98%) " (0.84%) _network (0.88%) ' (0.95%) _or (1.44%) _neural (0.76%) c (0.98%) _architecture (1.10%)
Block 20 (1.53%) , (0.95%) x (0.88%) _network (0.95%) ' (0.99%) _we (3.52%) _authors (3.11%) c (0.77%) _is (1.07%)
Block 21 (1.23%) , (0.96%) " (0.86%) _networks (0.90%) ' (1.04%) _neural (1.93%) _network (1.16%) c (1.93%) _is (1.07%)
Block 22 (1.92%) - (0.96%) " (2.47%) _network (0.88%) ' (1.05%) _we (4.10%) _neural (4.13%) c (0.78%) _Brain (0.98%)
Block 23 (2.10%) _ (0.90%) _stuff (0.79%) _network (1.16%) ' (0.85%) _similar (3.67%) _cu (4.65%) c (3.79%) _is (0.99%)
Block 24 (3.00%) _ (0.93%) " (2.25%) _network (4.69%) ' (2.88%) ' (4.60%) _ART (4.85%) c (2.96%) , (0.85%)
Block 25 (3.99%) "]=> (3.39%) ton (4.25%) _net (2.85%) ' (2.19%) _with (4.38%) _loc (4.88%) c (5.43%) _S (4.59%)
Block 26 (3.96%) Instance (3.52%) ' (3.67%) _network (3.98%) ' (4.45%) _Cooper (4.93%) _first (4.80%) c (4.25%) , (2.07%)
Block 27 (4.99%) _ (3.24%) tons (5.87%) _network (4.56%) _of (5.90%) _but (4.78%) _neuron (4.83%) c (4.85%) _Memory (5.85%)
Block 28 (5.13%) _ (3.08%) ton (5.20%) _network (5.48%) _for (5.93%) _NI (4.98%) _first (4.92%) ient (5.17%) _uses (6.28%)
Block 29 (5.04%) _ (3.27%) me (5.80%) _network (5.64%) ". (5.22%) _NAT (4.95%) _authors (4.94%) ient (5.52%) _3000 (5.00%)
Block 30 (4.88%) _ (3.40%) _kitchen (4.88%) _network (5.69%) " (5.41%) _prototyp (4.94%) _algorithm (4.88%) ient (5.55%) _uses (4.30%)
Block 31 (5.31%) _ (3.61%) x (6.06%) _network (3.85%) ' (6.79%) _geared (5.16%) _traditional (5.00%) c (5.28%) _XL (6.76%)
Block 32 (5.51%) - (3.70%) _white (5.66%) _network (5.56%) " (6.48%) ", (5.09%) _WS (5.03%) c (5.33%) _is (7.26%)
Block 33 (5.75%) , (3.73%) " (6.05%) _network (6.01%) " (6.91%) _which (5.15%) _neural (5.05%) c (5.66%) _Robot (7.46%)
Block 34 (5.88%) , (3.73%) ton (6.26%) _network (6.49%) ", (6.91%) _which (5.15%) _neural (5.04%) ient (5.96%) _Cortex (7.50%)
Block 35 (5.77%) - (3.74%) " (6.11%) _network (6.26%) _model (6.90%) _modeled (5.03%) _neural (4.97%) ient (6.03%) _model (7.17%)
Block 36 (5.85%) _ (3.67%) " (6.29%) _network (6.51%) ' (6.77%) _which (4.95%) _neural (5.00%) c (6.10%) _is (7.52%)

Logits _ " _network ' _which _neural c ,
Expan. (0.994) _ " _network ' _and _neural c _is

Figure 17: Joint jet lens with learnable weightings (k = 1), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”

24

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

17

24

	Introduction
	Residual networks and their rewritings
	Recursive expansion of residual networks with jets
	Notable expansions and their implications
	Interpreting LLMs with jet expansions
	Setup
	Analyzing LLM inner working
	Analyzing pretraining dynamics
	Analyzing fine-tuning effect

	Related work
	Conclusion and discussion
	Additional details on jets
	Additional Details on Runtime
	Additional details on jet n-grams
	Additional details on the experimental metrics
	Additional details on jet n-gram diffing
	Additional analysis into the bi-grams learning speed during pretraining
	Additional Tables for Jet Bi-grams
	Additional plots of jet lenses

