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ABSTRACT

We introduce a framework for expanding residual networks using jets, opera-
tors that generalize truncated Taylor series. Our method provides a systematic
approach to disentangle contributions of different computational paths to model
predictions. In contrast to existing techniques such as distillation, probing, or
early decoding, our expansions rely solely on the model itself and requires no
data, training, or sampling from the model. We demonstrate how our framework
grounds and subsumes the logit lens, reveals a (super-)exponential path structure
in the network depth and opens up several applications. These include the ex-
traction of n-gram statistics from a transformer large language model, and the
definition of data-free toxicity scores. Our approach enables data-free analysis of
residual networks for model interpretation, development, and evaluation.

1 INTRODUCTION

Machine learning models, particularly large-scale foundation models, have become increasingly
prevalent and impactful across a wide range of domains (Wei et al., 2021; Bommasani et al., 2023;
Touvron et al., 2023b). While delivering strong results, their black-box nature has led to the de-
velopment of techniques to assess their behavior and gain insights into their internal mechanisms.
In this space, mechanistic interpretability (MI) (see e.g. Bereska & Gavves, 2024; Ferrando et al.,
2024, for recent surverys) has emerged as an alternative to more classic local attribution methods
such as SHAP (Lundberg, 2017) or integrated gradient (Sundararajan et al., 2017). Contrary to these
methods, which seeks to trace output behavior back to the network input, MI focuses on tracing be-
havior back to the model itself. It seeks to uncover learned “algorithms” that are embedded in the
model weights and computational structure, with the aim of developing a global understanding of –
and, ultimately, to reverse engineer – neural computation.

The great majority of MI work uses a hypothesis-and-dataset-driven approach (see for example
Goldowsky-Dill et al. (2023)), in that it first formalizes a hypothesis, then chooses or curates a
dataset to probe the model, it applies techniques such as path patching (Wang et al., 2022) or causal
tracing (Meng et al., 2022), and then possibly refines the initial hypothesis. While this approach
to MI is valuable, it can limit the ability to perform open-ended exploration-driven studies aimed
at uncovering global behavior and charting “maps” that connect computation to behavior. In this
regard, studies such as Veit et al. (2016) or Elhage et al. (2021) focus on the intrinsic computation
that is carried out by a model, offering complementary views to the hypothesis-and-dataset-driven
approach. Yet, these studies often make unrealistic assumptions of the model, making it unclear how
much of the derived understanding can be transferred to real-world models and applications.

This paper contributes to this latter direction, presenting a general-purpose framework to manipulate
a residual computational graph with the aim of decomposing it into individual input-to-output com-
putational paths, which we can then further analyze to extract behaviors. Our method is based on
the simple observation that we can recursively expand a residual computational graph by selectively
applying jet operators (Ehresmann, 1951), which one can think of as the functional counterpart of
truncated Taylor series. This process, which we call the jet expansion of a model, gives rise to a class
of equivalent functional rewritings of the original network into the sum of polynomial terms (that
we see as input-to-output functions and dub jet paths) and non-linear remainders. The framework
does not make particular assumptions on the input model and, as it operates in the space of func-
tions (rather than function evaluations), it requires no input data. For transformer language models,
we show how specific instantiations linked to n-gram models make it feasible to exhaustively eval-
uate the jet paths over the entire input space, enabling end-to-end data-free global interpretability.
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We focus on residual networks (He et al., 2016), particularly transformers (Vaswani et al., 2017),
operating at the granularity of residual blocks (e.g., self-attention or MLP blocks). This approach
simplifies our presentation, aligns with (Veit et al., 2016), and remains relevant given the ubiquity
of residual computation in practice. In section 4, we describe several instantiations of our frame-
work, some encompassing previously proposed interpretability tools like LogitLens (nostalgebraist,
2021b). Based on these instantiations, we present extensive case studies on auto-regressive large
language models (LLMs) from varying families and sizes, including GPT, Llama and OLMo. Our
findings demonstrate that jet expansion offers a versatile toolkit – jet lens, jet paths and jet n-grams
– for interpreting LLMs: i) analyzing their inner working (section 5.2); ii) debugging pretraining
dynamic (section 5.3); and iii) examining fine-tuning effects (section 5.4), contributing to more
transparent and responsible LLM usage. We conclude with a discussion about potential future re-
search directions that this work opens, alongside its current limitations.

2 RESIDUAL NETWORKS AND THEIR REWRITINGS

We start by reviewing the archetypal computational structure of residual networks and discuss the
case of linear residual networks as a canonical example of functions that are intrinsically expanded.
Residual networks. We focus on network architectures whose main body consists of multiple
recursive residual blocks, while the input and output are managed respectively by an encoding and
a decoding module. Let Z be an input space (e.g., sequences of tokens), c ∈ N+ be the number
of classes (e.g., a vocabulary size), Y = Rc be a space of output logits and d ∈ N+ be a hidden
dimension. Formally, we are concerned with functions q : Z → Y described as follows:

q = υ ◦ hL, where hL : Z → Rd, hL =⃝L
l=1βl ◦ η, (1)

where L ∈ N+ is the number of residual blocks (e.g. recursive depth), η : Z → Rd is an input
encoding module (e.g. token embedding layer),⃝ denotes repeated functional composition, and

βl : Rd → Rd for l ∈ [L] βl = id + γl, γl : Rd → Rd, (2)

υ : Rd → Y υ(x) = U γL+1(x) U ∈ Rc×d, γ : Rd → Rd, (3)
are respectively residual blocks with nonlinearities γl’s (e.g., input-normalized causal self-attentions
or MLPs), and the output decoding module (e.g., an unembedding projection U after a layer nor-
malization γL+1); id is the identity map. We leave all parameters implicit and assume all func-
tions are C∞. Optimized for classification (e.g., next token prediction for autoregressive lan-
guage models), the function q outputs unnormalized conditional probabilities (or logits) in that
Pq(“z belongs to class i”|z) = Softmax[q(z)]i, for z ∈ Z . In residual networks, the recursive
links allow the “storage” of computation from all previous layers and the embedded input, leading
to an accumulation of information across depths. This is highlighted by unrolling the computation
of eq. (1) up to a block l ∈ [L], setting h0 = η:

hl =⃝l
j=1βj ◦ η = η +

∑l
j=1 γj ◦ hj−1; q = υ ◦ η +

∑L
l=1 υ ◦ γl ◦ hl−1 (4)

Elhage et al. (2021) introduces the term residual stream to describe hl, a concept that can be traced
back to Hochreiter & Schmidhuber (1997) and Srivastava et al. (2015). Veit et al. (2016) describe
and study the unrolled structure of the final residual stream hL, which reveals a number of paths
from the input to the decoder that grows linearly with the network depth.
Linear residual networks. The presence of non-linearities at each block (and at the decoding
module) prevents us from directly expanding the input-to-output computation further.1 Linear resid-
ual networks do not have this impediment. Indeed, if γi(x) = Aix for some Ai ∈ Rd×d, η = E and
γ = id, we have that

q = U(
∑

S∈2[L]

∏
j∈S Aj)E =

∑
S∈2[L] qS (5)

where 2[L] is the power set of [L] = {1, . . . , L} and the qS = U(
∏

j∈S Aj)E = UWSE, with
W∅ = I . Equation (5) writes (“expands”) the linear network into a combination of 2L input-
to-output paths qS : Z → Y , themselves linear functions. This enables a detailed analysis of
each path’s contributions (e.g. one may look at the norm of each WS as a measure of global path
importance), roles, and interactions, as well as understanding global input-output relationships.

1One can still recover an exponential expansion of gradient paths when considering ∇q, e.g. to analyze
behavior during training, as Veit et al. (2016) do. In this work, however, we solely focus on the forward
dynamic of the network.
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Figure 1: Representation of a two-blocks residual net (a, a-bis) and its exponential expansion steps (b, c).

3 RECURSIVE EXPANSION OF RESIDUAL NETWORKS WITH JETS

To tackle non-linearities and enable expansions in general residual networks similar to that of eq. (5),
we turn to jets (Ehresmann, 1951)In this section, we first introduce key concepts pertaining jets and
then move to describe the general algorithm for expanding residual computation.
Jet operators and their convex combinations We recall that, for a function f ∈ Ck+1(Rd,Rd)
and x, y ∈ Rd, Taylor’s theorem asserts that

f(y) = f(x) +
∑k

j=1(j!)
−1Djf(x)(y − x)⊗j +O(∥y − x∥k+1) (6)

where x, y are respectively the center and variate, Dj denotes the j-th differential, (y−x)⊗j denotes
the j-fold tensor product, and O(∥y − x∥k+1) denotes the class of functions that vanish at least as
fast as a degree-(k + 1) polynomial M∥y − x∥k+1 as y → x for some M > 0. The k-th order jet
operator of a function f maps vectors to equivalence classes of degree-k polynomial functions (we
denote the resulting quotient space by P k in the equation below, details in the appendix) as follows:

Jkf : Rd → Pk Jkf(x) = f(x) +
∑k

j=1(j!)
−1 Djf(x). (7)

Evaluating the jet at a variate y ∈ Rd yields the truncated Taylor expansion Jkf(x)(y) ∈ Rd, that is,
eq. (6) without the “O” term. The main advantage of working with jets rather than Taylor expansions
is that we can work directly with functions rather than vectors. We will make extensive use of the
following lemma. Its proof, alongside further details about jets, is in appendix A.
Lemma 1 (Convex combinations of jets). Let f ∈ C∞(Rd,Rd), k ∈ N, and C = {xi}i∈[N ] be a
set of centers, for some N ∈ N+. Then,

Jkf
(∑N

i=1 xi

)
=

∑N
i=1 wiJ

kf(xi) +O(r(w, C)k+1) for any w ∈ △N+1,

where r(w, C) = maxi{wi∥xi −
∑

j xj∥}. We call any vector w in the simplex a jet weight.

Remark 1 (Jet centers and variates as functions). We will often want to trace the computation of a
jet back to the input space Z . In such cases, we interpret the jet centers x’s and the variates y’s as
functions of the original network input z ∈ Z onto Rd or Y . Thus, we have that Jkf(x)(y) : Z →
Rd (or Y) which evaluates as follows: Jkf(x)(y)(z) = Jkf(x(z))(y(z)).

Exponential expansion of a two-blocks network Before introducing the main algorithm, we start
with a minimal example of an expansion of a network with two residual blocks into four input-to-
output paths. The network, represented in fig. 1 (a-I) and (a-II), is given by:

q = υ ◦ h; h2 = β2 ◦ β1 ◦ η = η + γ1 ◦ η + γ2 ◦ (η + γ1 ◦ η) (8)

The final residual stream h2 is a sum of three terms (input-to-hidden-space functions). In a trans-
former network, γ1 could represent a self-attention block and γ2 an MLP block – typically both
transformations being input-normalized. Critically, the last term γ2 ◦ (η + γ1 ◦ η) does not allow us
to directly single out contributions that involve γ2 and η or γ1 ◦ η alone. To recover such paths, we
can jet-expand β2 and apply lemma 1 choosing as centers x∅ = η and x{1} = γ1 ◦ η, obtaining:

Jkβ2(x∅ + x{1}) =w1J
kβ2(x∅) + w2J

kβ2(x{1}) +O(rk+1)

=x∅ + x{1} + w1J
kγ2(x∅) + w2J

kγ2(x{1}) +O(rk+1
β2

),
(9)
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where the last equality holds for k ≥ 1. 2 This operation is represented in fig. 1 (b). These terms
still do not yield input-to-output paths, as in general γ3 ̸= id (in transformer architecture this is
typically a normalization operation, e.g. layer norm). We can again proceed with a jet expansion,
this time of the decoding module υ = U γ3. Continuing with our example, we apply lemma 1
using as centers the outputs of the previous expansion, namely x∅, x{1}, x{2} = w1J

kγ2(x∅) and
x{1,2} = w2J

kγ2(x{1}), obtaining

Jkυ(x∅ + x{1} + x{2} + x{1,2}) =
∑

S∈2[2] ω1U Jkγ3(xS) +O(rk+1
υ ) (10)

where ω ∈ ∆3 is a vector of jet weights. With this operation, represented by fig. 1 (c), we have ob-
tained four input-to-output paths, mimicking the exponential rewriting of the linear case; cf. Equa-
tion (5). For instance, the zeroth order (k = 0) path that passes through the second non-linearity
only, skipping the first, is given by the function z ∈ Z → ω3U γ3(w1γ2(η(z))) ∈ Y . This example
demonstrates the key principles of our approach: recursive expansion of the computational graph
using jets, and the use of convex combinations of jets to isolate specific paths. However, for deeper
networks with many blocks, manually expanding each layer becomes impractical. To address this,
we generalize this process into an algorithmic framework, which we develop next.

Algorithm 1 jet expand(q, l, C, k)

Require: Residual net q, block index l ∈ [L];
jet centers C = {xi}i∈[N ]; order k ∈ N;

Ensure: ξ is a set of (partial) jet paths with
weights w ∈ △N−1 and δ is a reminder.

1: ξ ← {wiJ
kγl+1(xi)}i∈[N ]

2: if l < L then
3: ξ ← ξ ∪ {wiJ

kid(xi)}i∈[N ]

4: δ ← hl+1 −
∑

e∈ξ e

5: else δ ← γL+1 ◦ hL −
∑

e∈ξ e

jet-expand algorithm Algorithm 1
presents the key operation of the framework.
The algorithm applies lemma 1 to a residual
transformation or to the decoding non-linearity
for a given (user-defined) set of centers C. It
yields a set of expanded polynomial terms
ξ, which can be seen as a set-valued func-
tion ξ : Z × △N−1 → E , where E is an
appropriate power set of functions, and a
non-linear remainder δ : Z × △N−1 → Rd.
The remainder encompasses both the residuals
stemming from eq. (6) and lemma 1. As we
showed above, centers can be the outputs of
previous expansions, enabling the propagation of the expansion through the entire network and
effectively ’unrolling’ the computation graph into distinct paths. Importantly, once we apply
the algorithm for l = L we obtain a way to rewrite the computational graph of q as a sum of
expanded terms (input-to-output paths), which we call expansion, and a non-linear remainder.
Indeed, if (ξL, δL) =jet expand(q, L, C, k) for some C and k, the following class of functional
equivalences holds:

q =
∑

e∈ξL
U e(·, w) + δL(·, w) for w ∈ △N−1. (11)

Runtime The runtime of algorithm 1 is negligible as it operates on the original computational
graph. Evaluating ξ (and δ) at any z ∈ Z requires computing kth-order jets with a complexity of
O(|C|(F+kB)), where F and B are the costs of forward and backward evaluations of q. In practice,
higher-order jets can be computed efficiently using stored computation (Griewank & Walther, 2008;
Bettencourt et al., 2019). Specifically, k-th order derivatives can be computed using recurrence
Dkf(x)(y − x) = jvp(Dk−1f, x, y − x), where jvp computes the Jacobian-vector product and
it is available in most mainstream automatic differentiation frameworks like Pytorch. Appendix B
reports an example of runtime scaling with the jet order k in our implementation.

Remark 2 (Jet weights optimization). Jet weights w can be fixed, e.g. wi = 1/N or optimized to
minimize the remainder at any given z, such as after projection into the logit space. This optimiza-
tion can be done efficiently as ∥UδL(z, w)∥2 = ∥γL(hL(z))−

∑
e∈ξL

e(z, w)∥2UTU , which amounts
to the squared distance between the expansion and the original residual stream in the representa-
tion space Rd with the metric induced by the unembedding matrix. In our jet lens experiments in
section 5.2, we optimized jet weights with gradient descent.

Remark 3 (Non-vanishing remainders). In general, we cannot expect reminders to vanish (as k
grows). Indeed, even if the convergence radius of the Taylor series is infinite, the arguments of
residuals introduced by applications of Lemma 1 do not vanish. If q is a linear residual network,

2For k = 0 the weights apply also to the center terms since J0id(x{1}+x{2}) = w1x{1}+w2x{2}+O(r1).
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however, δ = 0 for k ≥ 1, showing that Algorithm 1 recovers (after reorganizing terms) the rewrite
of Equation (5) for every choice of w. 3 Hence, in light of Equation (11), jet expansions should
be seen as ways to rewrite computational graphs rather than function approximations – how close
the expansions are to the model output depends on the specific choice of centers and order. In
experiments we show however how δ’s can be small and the cosine similarity between expansion
and original network logits can be close to 1; see Figure 3.

4 NOTABLE EXPANSIONS AND THEIR IMPLICATIONS

We introduce some particular expansions as application of the introduced jet expand algorithm,
setting the stage for the numerical case studies of the next section.

Algorithm 2 exp jet expansion(q, k)

Require: Residual network q; order k ∈ N;
Ensure: ξ is a set of equally weighted input-to-

output jet paths, |ξ| = 2L, and δ is a re-
minder.

1: ξ ← {η, γ1 ◦ η}
2: for l ∈ [L] do
3: (ξ, δ)← jet expand(q, l, ξ, k)
4: ξ ← {e(·, 1/|ξ|)}e∈ξ

(Super)exponential expansion. Algorithm 2
generalizes the exponential expansion we per-
formed onto the two-blocks network in sec-
tion 3, using uniform jet weights. One can
interpret the algorithm as performing a “max-
imal” expansion (when remaining at the grain
of the blocks) which yields 2L input-to-output
paths. In fact, for k ≥ 1, we can further isolate
each degree of the expanded terms into separate
input-to-output paths that highlight interactions
among various blocks. This further refinement,
which we will focus on in future work, may suggests that residual networks may in fact behave as
super-exponential ensembles of (shallower) functions.
Jet lenses and the logit lens. The logit lens (nostalgebraist, 2021b; Geva et al., 2021; 2022;
Merullo et al., 2023; Belrose et al., 2023) is an interpretability method that consists in applying
the decoder to intermediate representations as follows:

LogitLensl(z) = Uγ(hl(z)) = J0υ(hl(z))(hL(z)).

The logit lens, aimed at highglighting the iterative refinement of the prediction across blocks, is
related to early exiting (or early decoding) in the context of conditional computation (see e.g. Panda
et al., 2016; Elbayad et al., 2020; Geva et al., 2022). It is immediate to verify that LogitLensl
is equivalent to the expansion yielded by jet expand(q, L, {hl}, 0). This suggests two general-
izations, which we dub iterative and joint jet lenses, respectively. The iterative jet lens is a direct
extension of the logit lenses that allows for higher order jets: jet expand(q, L, {hl}, k). The
joint jet lenses are expansions obtained through jet expand(q, L, {γl ◦ hl−1}l∈[L], k) that are
aimed at highlighting the residual contributions of each block non-linearity, rather than the iterative
refinement of the residual stream.
Jet bi-grams and skip-n-grams statistics. We consider transformer-based large language mod-
els with alternating self-attentions and MLPs, which are particular instances of residual nets. 4

Our framework allows us to directly extract n-gram statistics from an existing LLM without any
probing datasets. Concretely, we can systematically evaluate relevant jet paths (for small n’s)
on the entire input space, usually the vocabulary and its Cartesian products, independently from
individual contexts. For example, bi-grams statistics related to Pq(z2|z1, . . . ) can be computed
by evaluating bi-gram paths, which we can obtain by expanding the LLM with Algorithm 2 and
filtering out all paths that involve self-attention modules. Specifically in our case studies (Sec-
tion 5.1), we focus on encoding-decoding bi-gram path, obtainable via expanding the LLM with
jet expand(q, L, {η}, k = 0), and the bi-gram paths involving up to one MLP module, which
can also be obtained via applying Algorithm 1 twice. We can obtain skip-n-gram statistics relating
to Pq(zn|zn−1, . . . , zn−2, . . . , z1, . . . ), where dots indicate any number of interceding tokens, by
evaluating jet paths with self-attentions (the fewer self-attentions, the lower the n) and isolated sin-
gle query-key products. Such jet n-gram statistics offer a data-free tool to sketch LLMs via casting
them into (symbolic) n-gram databases. Thus they allows us to perform symbolic model diffing
between any two models that share a common vocabulary, as opposed to take differences in the
parameter space, harder to interpret and only possible for same-architecture models.

3Other special cases include expansions where each center set is a singleton and the convergence radius of
the expanded non-linearities is infinite.

4We disregard positional embeddings for simplicity and leave their study to future work.
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Algorithm 2 exp jet expansion(q, k) Require: Residual network q; order k ∈ N; Ensure: ξ is a set of equally weighted input-to- output jet paths, |ξ| = 2L, and δ is a re- minder. 1: ξ ← {η, γ1 ◦ η} 2: for l ∈ [L] do 3: (ξ, δ) ← jet expand(q, l, ξ, k) 4: ξ ← {e(·, 1/|ξ|)}e∈ξ 

- 

sec- tion

- 

 the

that allows for 

 

.1

 jet expand(q, L, {η}, k = 0), and the bi-gram paths involving up to one MLP module, which can also be obtained via applying Algorithm 1 twice. We can obtain skip-n-gram statistics relating to Pq(zn|zn−1, . . . , zn−2, . . . , z1, . . . ), where dots indicate any number of interceding tokens, by evaluating jet paths with self-attentions (the fewer self-attentions, the lower the n) and isolated sin- gle query-key products. Such jet n-gram statistics offer a data-free tool to sketch LLMs via casting them into (symbolic) n-gram databases. Thus they allows us to perform symbolic model diffing between any two models that share a common vocabulary, as opposed to take differences in the parameter space, harder to interpret and only possible for same-architecture models.



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (7.36%) , (3.40%) ton (8.06%) _network (8.57%) _for (8.22%) _which (7.51%) _first (7.30%) former (7.43%) , (8.36%)
Block 2 (4.83%) - (2.39%) _ (5.23%) _network (6.91%) _for (4.98%) _which (4.60%) _neural (4.77%) former (5.09%) , (4.68%)
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Block 24 (6.02%) , (5.74%) _infographic (8.48%) _network (8.76%) _unve (8.45%) _unve (7.67%) _Neural (7.51%) former (7.39%) _model (8.45%)
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Block 32 (7.84%) â ¦." (3.56%) !?" (1.37%) _network (1.36%) , (1.33%) _and (1.28%) _neural (1.24%) former (1.25%) _model (1.32%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 2: Example of a joint jet lens on GPT-Neo 2.7B with k = 1, visualizing the seven blocks with highest
average jet weights after optimization. Each table cell indicates the most likely token of the jet path related
to each block non-linearity. Optimized jet weight are in brackets. We used a diverging blue-to-red color map
tracking logit scores, centered around zero. The bottom table shows the model logits and the expansion logits,
with cosine similarity in brackets 0.993; in this case, all top-1 tokens perfectly coincide.

5 INTERPRETING LLMS WITH JET EXPANSIONS

Our framework provides users with freedom in terms of choosing the computational paths they
wish to focus on. Jet expansions support studies across various levels, including model-level global
analysis (jet n-grams), component-level analysis (jet paths), and example-level analysis (jet lens).

5.1 SETUP

We experiment with several popular open-sourced large language models families: GPT-2 (Radford
et al., 2019), GPT-Neo Black et al. (2021), Llama (Touvron et al., 2023a;b; Rozière et al., 2024)
and OLMo (Groeneveld et al., 2024), showcasing the generality of the algorithm. Our main ex-
periments run on 128 CPU servers with 1 TB memory, while jet lens experiment run on a single
laptop. The experiments on jet lenses uses higher-order jet. We optimize jet weights of joint jet
lenses with gradient descent, minimizing the loss introduced in remark 2. In the rest of the ex-
periments, we use zeroth order jet bi-grams (from the paths that go through MLPs and the direct
embedding-unembedding paths) and tri-grams (from the paths that pass through the corresponding
attention heads). Each path el : Z → Y is obtained by applying algorithm 1 twice (expect for the
embedding-unembedding path, which requires only one call): if γl is the non-linearity of interest
(either an MLP or a self-attention head), we first call êl, δ̂ =jet expand(q, l, {η}, 0) and then call
ẽl, δ =jet expand(q, L, {ê, (·, 1)}, 0), finally setting el = ẽ(·, 1). 5 We further detail algorithmic
procedures in appendix C.

We define some metrics used in our empirical study. 1) ∆ Logit after Intervention. We measure
the logit for an n-gram before and after applying an intervention (e.g., removing an attention head)
and compute the change at the last position. 2) One-to-One and Many-to-Many Bi-grams. One-
to-one bi-grams are unimodal, concentrating probability on a single token (e.g., z1 = &, z2 = amp).
Many-to-many bi-grams have multi-modal distributions, where multiple tokens can follow z1 or
precede z2 (e.g., z1 = make, z2 = sure). 3) Total Mass of Key Bi-grams. The total mass
metric measures the cumulative probability of the top 1K bigrams, weighted by an empirical un-
igram distribution. Formally, it is Total Mass =

∑
(z1,z2)∈Top-1K Pet(z2|z1)PD(z1), where et is the

embedding-unembedding path at step t, (z1, z2) are the bigrams, Pet(z2|z1) is the model probabil-
ity of z2 given z1, PD(z1) is the unigram probability of z1 from the empirical distribution. This
metric evaluates how well the model assigns “correct” probability mass to bigrams, considering the
unigram probability of z1, and reflects alignment with the empirical distribution during pretraining.

5.2 ANALYZING LLM INNER WORKING

LLMs are notorious for their lack of interpretability due to their inherent model complexity and size,
made worse by the usual opaque training process and unknown training data. Understanding their
inner working contributes to calibrating trust for users to use them appropriately. We showcase how
jet expansion along user-selected computational paths (jet paths) can help us discover and locate
learned associations akin to studies in mechanistic interpretability Templeton et al. (2024).

Jet lenses. We use jet lenses introduced in Section 4 to analyze LLM’s mechanism when process-
ing individual examples. Figure 2 visualize a joint jet lens for GPT-Neo 2.7B (Black et al., 2021)

5With a small abuse of notation, we identify singleton sets with their single member.
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Figure 3: Plots of average cosine similarities between model logits and jet lenses logits. (Left) jet lens of the
joint variant (left) and jet lens of the iterative variant (right). In the right plot, the solid lines of all colors
correspond to the LogitLens (k = 0), and dashed lines to the iterative jet lens for k = 1.

(other examples can be found in Appendix H). Here, a block contains one self-attention and one
MLP module. All table cells depict top-1 tokens for the corresponding path, following conventions
from prior work (Belrose et al., 2023). We observe that the joint jet lens captures the synergy among
different blocks, as the model prediction is decomposed into several jet paths. Our preliminary anal-
ysis supports recent work on super-position (Elhage et al., 2022) and neuron polysemy (Bricken
et al., 2023), suggesting that interactions among components may have ensemble effects, which can
broadly vary across model families. In this sense, the jet lenses with k > 0 may serve as tools to
systematically discover such synergic behaviors. We also find that higher-orders (k > 0) help iter-
ative lenses deliver more meaningful interpretations than the logit lens (k = 0) for GPT-Neo-2.7B
(see Figures 7 to 9). This is potentially due to their capability to trace indirect impacts of early
layers on the final logits, which were otherwise missing under logit lens. Our findings are consistent
with nostalgebraist (2021a); Cancedda (2024) where naive implementations of logit lens are shown
to fail on GPT-Neo model family. Figure 3 present cosine similarities (against the original model
logits) of joint and iterative jet lenses for various GPT models and jet orders, averaged over 100 ex-
ample sentences. The similarities are high and close to 1 for various k’s, showing however different
behavior across model families and sizes. In particular, the right plot compares the similarities of
the logits obtained through iterative jet lenses for k = 0 (solid, line, the same as LogitLens) and for
k = 1 (dashed lines), indicating an higher correlation of the latter with model outputs, potentially
providing more faithful interpretations.

Jet paths of individual components. By examining the representative jet bi-grams that are cap-
tured by each MLP path, we find some MLPs that perform special linguistic functions. For example,
in OLMo-7B, the jet path which passes through the 3rd MLP promotes the addition of the “-ing”
suffixes to the current token. Similar MLPs with certain linguistic functions are listed in Table 1.
Note that the relationship between functions and components are not necessarily one-to-one map-
pings. Particularly we find that the paths through multiple MLPs might work together to complete
one linguistic function e.g. MLP 6 and MLP 18 in Llama-2-7B can add “-ing” suffix. One MLP
might also do multiple linguistic jobs e.g. MLP 1 in OLMo 7B adding “-ly” and “- else” suf-
fixes. This echos work on circuit discovery (Conmy et al., 2023; Ferrando & Voita, 2024) and
superposition (Elhage et al., 2022), where the role of each component cannot be easily dissected
and multiple components collaborate to fulfill a function. Table 2 reports a role identification study
on attention heads in the first self-attention of OLMo-7B using jet tri-grams. Specifically, we find
heads associated with math and programming, e.g. head 1 on Math/Latex; heads promoting digits
and dash composition into dates, e.g. head 25; and heads constituting phrase templates, e.g. head
15 managing a “for x purposes”, where x is a placeholder. To verify the roles we revealed, we
further perform preliminary intervention experiments where we ablate MLPs or attention heads and
compute variations in model logits. After the interventions, the logits drop consistently in all cases,
suggesting our jet n-grams indeed can help identify certain roles for selected components. Varying
impact on logit differences is likely due to overdetermination (Mueller, 2024) and our partial selec-
tion of jet paths (e.g. for tri-grams we only selected encoding-attention-decoding paths, excluding
any MLP).

5.3 ANALYZING PRETRAINING DYNAMICS

Pretraining an LLM is usually extremely resource intensive. Therefore it is crucial to monitor the
progress of a pretraining run to prevent wasting of time and compute. In this section, we show how
jet bi-grams can serve as an effective signaling tool to trace the pretraining dynamics, providing
insights about the model’s maturity. Such signals are especially useful to understand what happens
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Table 1: MLPs in OLMo-7B and Llama-2-7B performing certain linguistic functions based on jet bi-grams
extracted from the corresponding jet paths.

OLMo-7B Llama-2-7B

MLP Index 1 3 9 17 19 6 7 18 19

Role -ly, - else -ing -’t - than -s -ing -es -ing,-ity -ly
∆ logit after intervention −4.19,−3.35 −0.58 −9.73 −4.26 −7.42 −14.61 −3.55 −9.69,−11.93 −9.14

Table 2: Several attention heads in the first residual block of OLMo-7B and their roles identified with jet tri-
grams extracted from corresponding jet paths. We also include an example tri-gram captured by each head.

Head Index 2 16 26 30

Role Math/LaTeX “for . . . purposes” date composition “into account/consideration . . . ”
Example 3-gram ( Lemma, let, s) ( for, use, purposes) (20, 23, -) ( into, account, possible)

∆logit after intervention −0.1570 −0.0019 −0.0093 −0.0001

with the model when the pretraining loss shows marginal improvements and fails to reflect the
changes inside the model.

Identifying the top bi-grams. To assess the model’s progression, we extracted jet bi-grams from
OLMo-7B model checkpoints across 555K pretraining steps. Table 4 presents a summary of the
top 10 jet bi-grams at different stages of training. Due to space reason, we only show the top 10
jet bi-grams every 100K steps. Initially, the network exhibits nonsensical jet bi-grams, such as
“ICUirling”. As training advances, it gradually learns more meaningful combinations, like “at
least”. This process of acquiring sensible bi-grams stabilizes around step 200K, indicating that
the model is reaching a level of maturity where the top 10 bi-grams capture common meaning.

Learning schemes for different bi-grams. To understand if there are any differences between the
learning schemes of different bi-grams, we can trace the progression of the jet bi-gram scores for
selected bi-grams. Figure 4 provides a visual comparison of how different bi-grams are promoted
or suppressed during the pretraining process. The different slopes and levels of the lines indicate
varying rates of learning for the respective bi-grams. We observe that, the model first acquires ran-
dom bi-grams due to random parameter initialization. These random bi-grams, like “ICUirling”
and “VENT thanks”, are quickly suppressed in the early steps and never regain high scores. In
contrast, one-to-many bi-grams like “at least” are first promoted to very high scores but then
get suppressed perhaps due to the model seeing more of the scope of the token “at”. One-to-one
bi-grams like “&amp” (HTML code) are gradually promoted and stabilize. Many-to-many bi-grams
like “make sure” takes the most time to learn and the scores are still increasing even at the end
of pretraining. Our findings suggest that the training process effectively promotes certain “good” bi-
grams, but at different paces, where they might be suppressed later depending on their occurrences
and linguistic nature. These insights could inform future training strategies, such as targeted training
on more relevant bi-grams or adjusting the training data to improve the pretraining speed.

5.4 ANALYZING FINE-TUNING EFFECT

Fine-tuning is an important phase where the raw pretrained LLMs are guided to perform particular
tasks. We would like to understand how the model inner knowledge changes during fine-tuning pro-
cesses. While parameter diffing can be a straightforward solution, jet n-grams provides an alternative
approach, where the diffs are human readable and directly reflect the change of knowledge retained
by the LLMs. Such insights would allow us to better decide the mixture of data for fine-tuning, and
the number of steps for fine-tuning, which are currently a mix of heuristics and trial-and-error.

Code fine-tuning promotes coding-relevant bi-grams. We analyze the changes due to code fine-
tuning via diffing jet bi-grams extracted from Llama-2-7B and its fine-tuned versions, Codellama-
7B and Codellama-Python-7B. As highlighted in Table 5 with orange coloring, the jet bi-gram diff
reveals coding-relevant keywords, suggesting jet bi-gram can be a tool for verifying if the fine-tuning
is effective.

Does RLHF fine-tuning remove toxicity? We compare the original pretrained model, Llama-2-
7B, with its RLHF version, Llama-2-7B-Chat. RLHF alignment (Bai et al., 2022) is widely believed
to detoxify LLMs, as indicated by the ToxiGen scores (Hartvigsen et al., 2022). However, it remains
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Figure 4: Visualization of OLMo-7B’s promotion and suppression dynamics of jet bi-grams scores.

Table 3: Toxicity indexes for Llama-2-7B and Llama-2-7B-chat using different methods: ToxiGen, jet bi-
grams, and RealToxicityPrompts challenge prompting. Higher numbers indicate higher toxicity scores on the
corresponding benchmarks and higher toxic knowledge possession for jet bi-grams.

ToxiGen Score Jet Bi-grams RTP Challenging Prompts

Hartvigsen et al. (2022) Mass of “toxic” bi-grams No Very mild Medium Hard

Llama-2-7B 21.25 0.03445 38% 49% 64% 88%
Llama-2-7B-chat 0.0 0.03377 23% 35% 64% 84%

easy to prompt LLMs to bypass this alignment and produce toxic content. In table 3, we demonstrate
this with dataset-based toxicity scores on a subset of challenging prompts in the RealToxicityPrompts
(RTP) dataset (Gehman et al., 2020): the gap in toxicity potential between the two models narrows
as we prepend to RTP prompts increasingly ”explicit” (short) context. Specifically, for hard context,
Llama-2-7B-Chat shows an 84% probability of producing toxic content, close to that of Llama-2-7B.
This suggests that the RLHF model is not completely detoxified but rather hides the toxicity knowl-
edge from the “surface”, which however can be easily triggered by specific contexts. To quantify the
toxicity knowledge embedded in these models, we use jet bi-gram probability scores and calculate
the cumulative conditional probability mass for a set of “toxic” bi-grams, which are combinations of
tokens associated with toxic meanings from a predefined list of keywords. Interestingly, we observe
a small change in mass from 0.03445 to 0.03377 after RLHF. Thus, although the ToxiGen score may
suggest that the model has been effectively detoxified, the jet bi-gram mass reflects retention of toxic
knowledge after RLHF, aligning with the scores obtained by introducing medium or hard explicit
context and computing a toxicity score (via a second scorer model, (Hanu & Unitary team, 2020))
on RealToxicityPrompts dataset (Gehman et al., 2020). This showcases a potential application of jet
bi-grams in constructing data-free indices that reveal embedded knowledge, offering complimentary
views beyond traditional data-driven benchmark evaluations.

6 RELATED WORK

Interpreting transformers. There has been much effort in interpreting the inner computations
of transformer models. In particular, mechanistic interpretability Ferrando et al. (2024), focuses
on reverse-engineering such computations by identifying, clustering and labelling model behavior
(Shah et al., 2024; Meng et al., 2022; Bricken et al., 2023) in human understandable terms and
attributing them with certain model components, e.g., MLPs Geva et al. (2021; 2022), or typical
“circuits” (Conmy et al., 2023; Ferrando & Voita, 2024). Authors discussed limitations of cur-
rents approaches to MI. For example, Templeton et al. (2024) found it generally hard to conclude
neuron-level intepretabilities, compared with feature representations; while Bolukbasi et al. (2021);
Goldowsky-Dill et al. (2023) points out that conclusions drawn are generally limited to the chosen
data distribution. On a high level, allowing taking any portion of compute out of the original trans-
former, jet expansions abstract and generalize previous characterizations on the computational paths
(Veit et al., 2016; Elhage et al., 2021), where non-linear components with significant roles, e.g. lay-
ernorm and MLPs, are either ignored or over-simplified for the ease of analysis. Our approach also
does not require extra datasets that are used for probe fitting in methods such as Belrose et al. (2023)
nor sampling, as needed in (Conmy et al., 2023; Ferrando & Voita, 2024; Voita et al., 2024).
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n-gram models. The early applications of n-gram models in languages dates back to (Shannon,
1948), where n-grams modeled the statistics of English. The n-gram based approaches have been
an important baseline in language processing, e.g., general language modelling (Goodman, 2001)
with applications like machine translation (Brants et al., 2007). There have been regained interests
on combining n-gram with neural network model-based approaches (e.g. Liu et al., 2024). Several
recent works have explored the relationships between LLMs and n-gram language models, such as
analyzing the representational capacity of transformers to simulate n-gram LMs (Svete & Cotterell,
2024) and measuring agreement between LLM predictions and n-gram rulesets (Nguyen, 2024).

Taylor expansion and jets Taylor expansions are popular tools in analyzing learning behaviours
(Jastrzebski et al., 2017), notably linearization (k = 1). For example, Belrose et al. (2024) applied
Taylor expansion on the loss function to demonstrate the learning preference of neural network
models. Xu et al. (2022) introduced a second-order Taylor expansion over the data distribution to
interpret optimal features. The generalized jet notions was introduced in machine learning in the
context automatic differentiation tools by Bettencourt et al. (2019), and is an experimental feature
in Jax (Bradbury et al., 2018), but has been studied before (see e.g. Griewank & Walther, 2008).

7 CONCLUSION AND DISCUSSION

We introduced jet expansion, a novel framework for expanding the computational graphs of neu-
ral networks. The method, which we specialize in this paper to deep residual nets, can be used
to disentangle contributions of user-selected computational paths from the overall graph. Comple-
mentary to other dataset-dependent methods in MI, our method enables various dataset-free global
interpretability studies, such as mapping computation to linguistic roles. We have validated jet ex-
pansions in terms of cosine similarity against model outputs and through interventional experiments
(section 5.2). We applied our data-free method to transformer LMs, showing how we can sketch the
original model with input-output probability databases, extracting LM bi-and-tri-gram statistics.

Limitations. Although rooted in Taylor series theory, expansions obtained via our frameworks do
not (seek to) approximate the input function in any strict sense. Rather, our framework is amed at
facilitating interpretation of model behavior: we can use jet expansion to rewrite an input compu-
tational graph as a sum of “interpretable” polynomial terms and a (computable) remainder. How
large is a reminder and how expansions align with model outputs remains at the moment an em-
pirical question, implying that the jet order and weight optimization routines should generally be
considered as hyperparameters of the method. Furthermore, expansions are not unique (but higher
order expansions ”contain” lower order one). We leave a deeper investigation of these aspects to
future work. From a runtime standpoint, we note that even though graph manipulation is almost
immediate, systematic evaluation of jet paths may be time consuming (especially for k ≫ 0 and
when optimizing jet weights). If the input space is large, one may need to resort to sub-sampling or
search heuristics. Finally, we limited our study of n-gram expansions of LMs to bi-and-tri-grams,
unearthing compelling behaviors. This leaves the study of longer-context expansions to future work.

Implications and future work. Our work opens up several research directions. From a theoretical
standpoint, we will extend the expansion procedure to cover finer granularities, e.g. at neuron (sub-
space) levels; incorporate established attribution methods such as the Shapley value (Shapley et al.,
1953), including recent extensions to deal with probabilistic models (Franceschi et al., 2024); de-
velop concepts of (approximate) equivalence classes over models leveraging the jet spaces, which, in
turn, may further ground the model diffing procedure sketched in our case studies. Furthermore, we
will take inspiration from the numerous tools in linear algebra to provide further depth into the anal-
ysis, deepening the link to linear residual structures and establishing relations with Markov chains
and hidden Markov models, recently employed e.g. by Zhang et al. (2023) for constrained (struc-
tured) decoding. We plan to investigate the implication of the super-exponential number of paths
in the residual networks depth unearthed by algorithm 2. From an applications standpoint, besides
studying jet n-grams for n > 3, we envision several fruitful applications in safety and transparency,
such as developing “search features” to systematically detect unwanted associations, or leaked pri-
vate content. Although our experiments are primarily observational, we speculate that jet expand
may also become an useful tool to guide interventions, supplementing other techniques like causal
tracing (Meng et al., 2022) and path patching (Goldowsky-Dill et al., 2023).
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A ADDITIONAL DETAILS ON JETS

A jet of a function represents an equivalence class. We thus can perform algebraic operations among
functional equivalence classes using jet algebra stated below.
Proposition 1 (Jet algebra). Let f, g ∈ C∞(Rd,Rd) and k ∈ N+. Then,

(i) Jk(af + bg)(x) = a Jk(f)(x) + b Jk(g)(x), for a, b ∈ R (linearity);

(ii) Jkf(x) ◦ g ∈ Jkf(x) and Jkf(x) ◦ g(y) = Jkf(x)(g(y)) (jet after endomorphisms);

(iii) g ◦ Jkf(x) = {g ◦ u : u ∈ Jkf(x)} (endomorphism after jet);

(iv) Jk(f ◦ g)(x) = Jkf(g(x)) ◦ Jkg(x) (composition of jets);

Properties (i)-(iii) follow directly from the definition; (iv) is a consequence of the chain rule and
truncation.

Proof of Lemma 1 Take y ∈ Rd, N ≥ 1, xi ∈ Rd for i ∈ [N ], w ∈ △N−1 and an order k ≥ 0.
Since w belongs to the simplex△N−1, we have

∑N
i=1 wi = 1. Multiplying f(y) on both hands, we

obtain

f(y) =

N∑
i=1

wif(y) =

N∑
i=1

wi

[
f(xi) +

k∑
s=1

Dsf(xi)(y − xi)
⊗s +O(∥y − xi∥k+1)

]

=

N∑
i=1

wiJ
kf(xi)(y) +O(wi∥y − xi∥k+1),

by applying eq. (6) (Taylor expansion) and the definition of jet with each xi as the center. At the
same time, we can expand f(y) with

∑N
i=1 xi as the center

f(y) = Jkf(

N∑
i=1

xi)(y) +O(∥y −
∑

xi∥k+1).

Now let us take y =
∑N

i=1 xi and observe that O(∥y −
∑

xi∥k+1) = 0 and O(wi∥y − xi∥k+1) =
O(wi∥xi −

∑
j xj∥k+1). Finally we observe that the class of functions in the last O are dominated

by the class of function in O(rk+1) where r = maxi{wi∥xi−
∑

j xj∥} is the maximum remainder.
This concludes the proof.

As a side note, jet weights would not need to form convex combinations, but rather linear combina-
tions

∑
i wi = 1. However, restricting to convex combinations has two major advantages:

• optimizing over a convex set guarantees the existence of maxima and minima (Weierstrass
theorem) and uniqueness of minima if we are optimizing a strictly convex loss as in general
is the case for expansions that only affect the decoder module.

• weights within the probability simplex have a clearer interpretation for interpretability pur-
poses.

B ADDITIONAL DETAILS ON RUNTIME

We report in fig. 5 a plot of the runtime for evaluating expansions originating from the joint jet lenses
of section 5.2 as a ratio of the input model evaluation (forward pass), for both the uniform and the
optimized jet weights w setup, for different jet orders k.

C ADDITIONAL DETAILS ON JET n-GRAMS

General Concept of n-Gram Models The general concept of n-gram models linked to
(transformer-based) LMs involves defining or constructing mappings that functionally depend only
on n − 1 input tokens (with the n-th token being the output token) to capture and describe the be-
haviour of the original LM. We are not the first to explore this idea; for instance Nguyen (2024) fits
n-grams on the same dataset used to train the LM.
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Figure 5: Empirical runtime of evaluations of jet expansions originating form the joint jet lenses as a ratio of
the evaluation of the input model.

Jet Expansions for In-Model n-Grams Jet expansions allow us to define n-grams statistics that
are derived solely and directly from the model itself – producing in-model n-grams rather than
in-data n-grams. This approach offers at least two significant advantages:

• No Dataset Preparation: It eliminates the need for dataset preparation to collect activation
patterns when interpreting the model globally, thereby saving time and computational re-
sources. This process can be conducted entirely on CPU, which is approximately 10 times
cheaper per hour compared to GPUs in the current market.

• Avoidance of Fitting Artifacts: It avoids potential artifacts that could arise from the se-
lection of external n-gram fitting methods.

We describe the detailed relationship between the bi-gram/tri-gram, which we used in our case
studies, and the jet expansion as follows.

Jet Bi-Grams Jet bi-grams are paths that do not pass through self-attention layers. In experiments,
we focus on two types of bi-gram paths. a) the embedding-unembedding path that can be obtained
as jet expand(q, L, {η}, 0). b) paths that pass through one MLP module, assuming MLPs are at odd
block indices in the residual network architecture, the procedure to extract the path is:

C ={η}
for l = 1, 3, . . . , L− 1 :

ξ, δ = jet expand(q, l, {η}, 0)
C = C ∪ {e(·, 1)}e∈ξ

ξ, δ = jet expand(q, L, C, 0)

This procedure results in a series of functions in ξ—one for each MLP layer—that depend only on
the last input token. Applying softmax normalization to their logit output allows these functions
to define (conditional) bi-grams. Similar constructions can be performed for paths through multiple
MLPs. We will release code for these procedures and also provide equivalent algorithms that directly
use transformer modules.

Jet Tri-Grams Jet tri-grams involve paths that pass through at least one self-attention layer, with
a need to isolate the contribution from the first token of the tri-gram. The procedure for extracting
a 0-th order jet trigram path that passes through the ith self-attention layer (assuming it has one
head and σ2 is a function that extracts the last two tokens from a sequence of length at least 2) is as
follows:

Define σ2(z) = (zt−1, zt)

Compute ξ, δ = jet expand(q, i, {η ◦ σ2}, 0)
Compute ξ, δ = jet expand(q, L, {e(·, 1)}e∈ξ, 0)
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This procedure yields a map that depends only on two input tokens, isolating the contribution of the
ith self-attention layer on pairs of tokens. Once softmax normalization is applied, this defines a tri-
gram. The tri-gram could represent either a skip trigram or a contiguous trigram, depending on how
positional information is encoded (e.g., absolute positional embeddings versus rotary embeddings).

D ADDITIONAL DETAILS ON THE EXPERIMENTAL METRICS

∆ logit after intervention To compute ∆ logits, we calculate the logits for the given n-gram both
before and after applying the intervention, then determine the change in the logits. For example,
consider the trigram (Lemma, let, s). We compute the logit of “s” conditioned on the input “Lemma
let”. The intervention involves removing the corresponding attention head (e.g., head 2). We then
measure and report the change in the logit for “s” as a result of this intervention.

One-to-one bi-grams like and Many-to-many bi-grams One-to-one bi-bigrams are (approxi-
mately) unimodal bi-grams that concentrate all mass on a single token: i.e. given z1, P D(z2|z1) ≈ 1
and given z2, PD(z1|z2) ≈ 1 for a specific pair of token and close to 0 for all others. In the example
in the paper, z1 = “&”, and z2 = “amp”. PD is the probability distribution induced by the pre-
training data. Many-to-many bi-grams we refer to the opposite scenario where both the conditional
probabilities are highly multi-modal. In the example z1 =”make” and z2 =”sure” we have that
many other tokens can succeed z1 =”make” or precede z2 =”sure”.

Hit Ratios of bi-grams The Hit Ratio (HR@n), often referred to as hit rate, is a metric commonly
used in ranking tasks. In our context, we treat each checkpoint of the language model as a ”ranker”
of bigrams. The Hit Ratio measures how effectively the current model checkpoint retrieves high-
quality bigrams from the set of all possible bigrams. To quantify the model’s progress, we define
the bigrams at the final step as the “good” bigrams and measure how quickly the model approaches
these high-quality bigrams. Specifically, we compute the HR@n to evaluate how often the model’s
output bigrams match those in the “true” top n ranked bi-grams given by the final step. Formally,
the Hit Ratio@n is given by

HR@n =
1

n

n∑
i=1

I(the i-th bigram output by the current model ∈ True Top n)

where n is the number of top predictions being considered and

• I is the indicator function that returns 1 if the i-th bigram output by the model is present in
the True Top n bigrams, and 0 otherwise,

• True Top n represents the set of ”good” bigrams, which in our case is the set of the top n
scoring bigrams from the final model step.

Total Mass of Bi-grams We use the total mass as a metric to measure the cumulative probabilities
of bi-grams from the top 1K bi-grams, weighted by an empirical unigram distribution derived from
real data. Formally, it is given by: Total Mass =

∑
(z1,z2)∈Top-1K Pet(z2|z1)PD(z1) where:

• et is the embedding-unembedding path at the t-th pre-training step,

• (z1, z2) are the bigrams being considered,

• Pet(z2|z1) is the probability assigned by the model et (the embedding-unembedding path)
for the token z2 given token z1,

• PD(z1) is the probability of z1 under the empirical distribution D, which is the unigram
probability given by the Infini-gram API (?) on the Dolma dataset (?) (the dataset used to
pretrain the model checkpoints).

This metric is designed to evaluate how much ”correct” probability mass the model checkpoints
assign to bigrams (z1, z2), taking into account the empirical unigram probability of z1. It provides
insight into how well the model aligns with the empirical distribution of real-world data during the
pretraining process.
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(a) Top 1K jet bi-gram hit ratios w.r.t. the final step.
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Figure 6: Analysis of OLMo-7B’s pretraining dynamics via measuring its jet bi-gram progression.

E ADDITIONAL DETAILS ON JET n-GRAM DIFFING

We derive the top-K bi-grams for each model from their embedding-unembedding path, which can
be obtained as jet expand(q, L, {η}, 0). These bigrams are then saved into CSVs, allowing us to
represent models via their respective bigram files. By comparing these files directly, much like
comparing text files, we bypass the challenges of comparing the models in the parameter space,
where measuring behavioral-level differences can be difficult. For example, we extract the bigram
files for Llama-2-7B, and its coding finetuned versions. In summary, by transforming models into
bigram files (Model → Bigram File), we can effectively compare their behavior via bigram file
differences (Model Diff → Bigram File Diff). We will include a demonstration in supplementary
material.

F ADDITIONAL ANALYSIS INTO THE BI-GRAMS LEARNING SPEED DURING
PRETRAINING

To evaluate the learning speed of jet bi-grams during pretraining, we consider the jet bi-grams at
the final training step (555K) as the ground-truth bi-grams. We then chart the hit ratios of these
ground-truth bi-grams at each pretraining step, as illustrated in Figure 6a. Interestingly, even though
the pretraining loss (the blue curve) shows only minor improvements after the initial 50K steps, the
model’s acquisition of effective bi-grams continues to progress in a steady, consistent manner. Hence
bi-grams learning dynamics are active throughout the training procedure, even after the training loss
stabilizes. This indicates that there is significant behavior change in the model which is not well cap-
tured by the training loss, an observation that is studied also in grokking and double-descent (Zhang
et al., 2021; Power et al., 2022). In other words, jet bi-grams may offer another point of view for
analyzing the learning dynamics compared to pretraining loss. In addition, fig. 6b characterizes the
total pseudo-joint probability mass of top 1K bi-grams from empirical data (Liu et al., 2024). We
derive a pseudo-joint jet bi-gram probability using statistical uni-grams from (Liu et al., 2024). We
observe that the model gradually accumulates probability mass that aligns with the real corpus data
distribution.

G ADDITIONAL TABLES FOR JET BI-GRAMS

See table 4 and table 5.

H ADDITIONAL PLOTS OF JET LENSES

See plots below, referring to the main paper for details. Note that for iterative lenses the last block
coincides with the model logits for all k by design. We omit the iterative lens for GPT2-large for
k = 2 due to low cosine similarity.
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Table 4: Bi-gram evolution across pretraining steps for OLMo 7B. Each column represents a distinct step, while
each row corresponds to a different rank. The table entries are the bi-grams at each step for each rank. The
number of tokens seen in association with the pretraining steps is also annotated. The model gradually picks
up meaningful bi-grams after starting from senseless bi-grams (due to random initialization).

Rank 0K [#steps] 100K 200K 300K 400K 555K
0B [#tokens] 442B 885B 1327B 1769B 2455B

0 immortal ’s at least &amp &amp &amp
1 ICUirling at least ’s at least its own its own
2 ords architect its own &amp its own their own their own
3 yaml Adam okerly your own your own at least his own
4 231 next VENT thanks its own their own your own make sure
5 clonal iums iums more than his own your own
6 Charg@{ you’re you’re can’t 2nd 2nd
7 avoir careless Everything v 2nd his own more than at least
8 HOLD worsening erna already you guys 2nd make sure more than
9 Horse dismant ’my more than make sure can’t iums

Table 5: The bi-grams before and after coding-finetuning. For space reason, we only show the bi-grams at
every 50 ranks among the top 1000 bi-grams. We highlight the bi-grams that are relevant to coding, such as
“**kwargs” a keyword in python programming. This demonstrate that our method has the capability to extract
representative bi-grams that reflect fine-tuning quality.

Rank LLAMA2-7B CodeLLAMA-7B CodeLLAMA-Python-7B

0 ( more, than) ( like, wise) ( like, wise)
50 ( Now, here) ( just, ification) ( Like, wise)
100 ( system, atically) ( in, case) ( all, udes)
150 ( all, erg) ( get, ters) ( no, isy)
200 ( on, ions) (któber, s) (output, ted)
300 ( other, world) ( all, ud) (Object, ive)
350 ( Just, ified) (gebiet, s) ( as, cii)
400 ( trust, ees) ( Protest, s) ( can, nab)
450 ( at, he) ( deploy, ment) ( transport, ation)
500 ( book, mark) (Class, room) (Tag, ging)
550 ( from, ) ( access, ory) ( personal, ized)
600 ( WHEN, ever) ( In, variant) ( excess, ive)
650 ( where, about) ( I, am) ( Add, itional)
700 (ag, ged) (add, itionally) ( **, kwargs)
750 ( he, he) ( invalid, ate) (name, plates)
800 ( all, anto) (div, ision) ( select, ive)
850 ( Tom, orrow) ( process, ors) ( Assert, ions)
900 ( for, ays) ( Program, me) (blog, ger)
950 ( Bach, elor) ( set, up) ( can, cellation)

new _simple _neural _architecture , _the _Trans former
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Block 4 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
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Block 7 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 8 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 9 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters

Block 10 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 11 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
Block 12 Supporters Supporters Supporters Supporters Supporters Supporters Supporters Supporters
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Block 32 _ _ _network _for _which _neural former ,

Logits _ _ _network _for _which _neural former ,

Figure 7: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-Neo-2.7B
with the input sentence “new simple neural architecture, the Transformer”.
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Figure 8: Iterative jet lens (k = 1), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”
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Figure 9: Iterative jet lens (k = 2), applied over GPT-Neo-2.7B with the input sentence “new simple neural
architecture, the Transformer”
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Figure 10: Iterative jet lens (k = 0), equivalent to logit lens(nostalgebraist, 2021b), applied over GPT-2-large
with the input sentence “new simple neural architecture, the Transformer”.
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Figure 11: Iterative jet lens (k = 1), applied over GPT-2-large with the input sentence “new simple neural
architecture, the Transformer”

21

10

11

21 



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

new _simple _neural _architecture , _the _Trans former
Block 1 (4.40%) , (6.62%) _simple (3.91%) _neural (4.42%) _architecture (3.97%) _which (4.07%) _same (4.37%) cend (3.93%) former (3.91%)
Block 2 (4.15%) , (6.59%) _retro (3.85%) _prog (4.32%) _error (3.74%) _including (3.93%) _resulting (4.14%) ference (3.69%) _Robo (2.99%)
Block 3 (4.23%) , (6.59%) ove (4.13%) _Matter (4.12%) killer (3.51%) _which (4.00%) _AVG (4.01%) em (3.56%) Mars (3.91%)
Block 4 (4.11%) _the (6.59%) _reg (3.51%) lect (4.37%) OX (3.68%) _found (4.05%) netflix (4.09%) Charge (2.95%) Â® (3.69%)
Block 5 (6.11%) , (6.59%) ware (3.54%) _product (3.68%) _towards (3.70%) _evolution (3.88%) _ones (3.74%) it (20.20%) _Mant (3.57%)
Block 6 (3.91%) , (6.58%) ies (3.59%) _networks (4.11%) _developed (3.45%) _developed (3.55%) _Mehran (3.45%) ition (3.54%) bur (3.01%)
Block 7 (4.00%) , (6.56%) face (3.75%) _studies (3.88%) _based (3.52%) _hackers (3.76%) _Turing (3.73%) _Series (2.97%) _Suite (3.83%)
Block 8 (4.06%) , (6.42%) key (3.83%) _model (4.18%) _based (3.53%) _requiring (3.49%) _algorithm (4.14%) ient (3.62%) _II (3.25%)
Block 9 (4.09%) , (7.45%) _clutter (4.08%) _model (3.69%) _test (3.40%) _which (3.11%) _neural (3.55%) verse (3.82%) _Cube (3.66%)

Block 10 (10.50%) . (16.50%) lists (9.61%) g (4.99%) _of (16.60%) _which (11.47%) _neural (5.79%) _neural (3.50%) _is (15.56%)
Block 11 (25.30%) , (16.96%) " (27.59%) _networks (28.89%) " (24.52%) _the (26.92%) _new (29.14%) m (22.95%) _neural (25.40%)
Block 12 (25.13%) , (6.56%) . (28.62%) _net (29.35%) , (26.40%) _the (27.77%) _the (29.85%) c (25.27%) . (27.23%)

Logits , - _network _that _which _neural ient _is
Expan. (1.000) , - _network _of _which _" - _is

Figure 12: Joint jet lens with learnable weightings (k = 0), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”
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Figure 13: Joint jet lens with learnable weightings (k = 1), applied over GPT2 with the input sentence “new
simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.58%) Supporters (1.55%) Supporters (3.24%) Supporters (3.46%) Supporters (5.37%) Supporters (5.08%) Supporters (3.52%) Supporters (3.88%) Supporters (2.56%)
Block 2 (2.13%) foreseen (1.61%) foreseen (2.97%) foreseen (1.15%) Introduced (3.96%) foreseen (1.09%) foreseen (1.54%) Supporters (3.67%) Supporters (1.03%)
Block 3 (2.07%) Amid (1.65%) Supporters (2.01%) Across (1.32%) gewater (1.14%) Supporters (3.66%) Supporters (2.93%) Supporters (2.58%) leground (1.28%)
Block 4 (1.57%) _impover (1.97%) _unpop (2.18%) _unpop (1.46%) _impover (1.33%) _impover (1.39%) _impover (1.71%) _uphe (1.27%) _impover (1.27%)
Block 5 (1.47%) Attempts (1.76%) _municip (2.15%) _airst (1.45%) _linem (1.29%) amiliar (1.32%) pelling (1.38%) rieving (1.26%) _linem (1.13%)
Block 6 (1.45%) Residents (1.76%) _athlet (2.17%) rha (1.44%) _twent (1.34%) _way (1.05%) ters (1.40%) rha (1.23%) _Xuan (1.25%)
Block 7 (3.57%) Ironically (1.63%) celona (2.74%) wrap (3.78%) _look (5.71%) _airstrike (1.22%) _equivalent (2.63%) _different (6.30%) _hollow (4.58%)
Block 8 (4.63%) Supporters (1.61%) imura (3.91%) vantage (3.03%) anoia (5.48%) foreseen (6.13%) ileen (4.55%) Enlarge (5.70%) assador (6.59%)
Block 9 (3.14%) Ironically (1.65%) erguson (2.00%) certain (2.53%) OUR (1.28%) _local (3.54%) erguson (1.80%) enter (5.43%) bec (6.89%)

Block 10 (1.73%) foreseen (1.65%) foreseen (2.01%) Engineers (1.20%) Engineers (2.88%) asury (1.19%) thinkable (1.40%) Attempts (2.53%) uddenly (0.96%)
Block 11 (1.71%) likely (1.57%) extremely (1.88%) aples (1.18%) _screenplay (1.29%) earances (1.30%) earances (4.13%) oother (1.20%) _resurg (1.12%)
Block 12 (4.53%) Ironically (1.73%) Phones (3.91%) ADVERTISEMENT (4.39%) ADVERTISEMENT (6.03%) isively (4.65%) _Blvd (4.46%) ADVERTISEMENT (6.08%) ADVERTISEMENT (4.99%)
Block 13 (2.80%) _a (1.68%) aji (2.83%) imbabwe (1.33%) rone (1.28%) OTOS (5.38%) ppard (3.08%) ppard (1.07%) aji (5.76%)
Block 14 (2.91%) foreseen (1.66%) ADVERTISEMENT (1.83%) Marginal (3.82%) chell (1.32%) _Appalach (1.33%) _Caucasus (4.66%) _still (5.47%) , (3.23%)
Block 15 (1.47%) ormons (1.78%) _confir (1.89%) uring (1.34%) ured (1.25%) _AoE (1.38%) _Caucas (1.68%) _lineman (1.25%) _topple (1.22%)
Block 16 (3.98%) Against (1.82%) folios (1.93%) @ (6.49%) thinkable (3.49%) _tsun (1.26%) _D (4.65%) l (5.84%) arsh (6.38%)
Block 17 (2.89%) urses (1.38%) untled (4.46%) ortunate (3.72%) ithub (1.21%) _our (4.69%) ortment (1.51%) erenn (4.91%) ombies (1.21%)
Block 18 (5.12%) foreseen (1.63%) Supporters (4.53%) Nonetheless (6.62%) Ironically (5.07%) Thankfully (5.66%) Shortly (4.52%) af (5.80%) _is (7.12%)
Block 19 (2.96%) pherd (1.47%) _enough (4.91%) ag (3.58%) _for (5.69%) incerity (1.08%) incerity (2.75%) extreme (3.01%) phabet (1.21%)
Block 20 (5.68%)  (2.06%)  (5.07%) _just (7.05%)  (6.91%) Attempts (6.51%) paralleled (4.49%) - (6.53%) , (6.87%)
Block 21 (1.46%) ription (1.60%) ription (2.15%) _Playoffs (1.48%) isdom (1.06%) _frontrunner (1.36%) _frontrunner (1.69%) _TBD (1.24%) pered (1.06%)
Block 22 (4.55%) _in (3.36%) _first (5.29%) _two (7.06%) _one (6.98%) _which (6.97%) _one (4.56%) _isEnabled (1.03%) elligence (1.15%)
Block 23 (5.21%) , (4.80%) )] (5.23%) _" (7.13%) ) (6.26%) _while (6.31%) _point (4.57%) albeit (1.15%) B (6.21%)
Block 24 (6.13%) _a (5.62%) _m (5.26%) _first (7.18%) _for (7.33%) _the (7.33%) _so (4.70%) _trans (5.70%) rieving (5.90%)
Block 25 (1.55%) foreseen (1.67%) acly (2.14%) _enthus (1.49%) _anecd (1.35%) _trainers (1.43%) _subreddits (1.74%) ithub (1.28%) _Trainer (1.27%)
Block 26 (2.61%) - (6.25%) _simple (2.08%) _simple (5.95%) ername (1.30%) haar (1.34%) _satell (1.74%) igsaw (1.02%) _headphone (1.17%)
Block 27 (2.65%) _â  (7.40%) _â  (5.48%) _DSM (1.35%) heid (1.30%) dayName (1.38%) _artif (1.75%) --+ (1.27%) _nostalg (1.30%)
Block 28 (2.39%) _fps (8.56%) >>\ (2.30%) _Oo (1.42%) _tacos (1.30%) _msec (1.41%) _unbeliev (1.75%) _hrs (1.12%) _reminis (1.28%)
Block 29 (1.97%) _â ¦" (5.17%) _convol (2.18%) ricanes (1.47%) _Gujar (1.25%) acerb (1.38%) cffff (1.74%) _negoti (1.28%) _automakers (1.27%)
Block 30 (1.84%) _â ¦" (4.01%) _anecd (2.24%) _unve (1.49%) _overwhel (1.37%) !?" (1.43%) 20439 (1.78%) _negoti (1.29%) _calculates (1.12%)
Block 31 (4.61%) !!" (8.40%) _â ¦" (2.57%) _greets (1.35%) _entert (1.80%) \\\\ (4.44%) \\\\ (6.14%) "! (5.27%) '/ (6.88%)
Block 32 (5.64%) â ¦." (9.55%) !?" (4.42%) â ¦." (2.29%) â ¦." (5.37%) _â ¦" (6.35%) _\' (9.03%) ©¶æ¥µ (3.34%) â ¦." (4.75%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.977) _the _and - _for _the _first - ,

Figure 14: Joint jet lens with learnable weightings (k = 0), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”
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Block 14 (1.22%) , (1.82%) _ (1.18%) _network (1.22%) _for (1.12%) _which (1.15%) _neural (1.09%) former (1.04%) , (1.12%)
Block 15 (1.34%) _ (1.90%) _ (1.33%) _network (1.31%) _for (1.29%) _which (1.21%) _neural (1.20%) former (1.20%) , (1.28%)
Block 16 (1.31%) ( (1.91%) _ (1.28%) _network (1.28%) _for (1.24%) _which (1.18%) _neural (1.19%) former (1.18%) _model (1.23%)
Block 17 (1.31%) _ (1.90%) _ (1.29%) _network (1.28%) _for (1.26%) _which (1.14%) _neural (1.12%) former (1.16%) , (1.29%)
Block 18 (4.55%) , (1.65%) _ (5.16%) _network (3.55%) _for (5.49%) _which (6.28%) _neural (6.05%) former (5.05%) , (3.17%)
Block 19 (1.24%) , (1.84%) _ (1.23%) _network (1.17%) _for (1.18%) _which (1.23%) _neural (0.97%) former (1.10%) _model (1.18%)
Block 20 (3.30%)  (1.84%) _ (2.30%) _network (1.16%) _for (4.21%) _which (6.29%) _neural (5.89%) former (2.70%) _architecture (2.00%)
Block 21 (1.87%) _ (1.80%) _ (1.21%) _network (1.12%) _for (1.15%) _which (3.82%) _neural (3.71%) former (1.10%) , (1.02%)
Block 22 (4.81%) - (1.91%) _infographic (8.14%) _network (3.50%) _outper (5.92%) _which (6.89%) _neural (6.76%) former (1.57%) _[ (3.83%)
Block 23 (2.01%) , (1.91%) _ (1.14%) _network (1.40%) _learns (1.38%) _which (3.94%) _Conv (3.99%) former (1.14%) _model (1.18%)
Block 24 (6.02%) , (1.94%) _infographic (8.04%) _network (7.20%) _unve (8.00%) _unve (7.47%) _Neural (7.02%) former (3.53%) _model (4.98%)
Block 25 (1.19%) _ (1.87%) _ (1.19%) _network (1.09%) _for (1.22%) _which (0.96%) _â  (1.07%) former (1.06%) , (1.04%)
Block 26 (1.55%) _ (1.89%) _ (1.18%) _network (2.18%) _called (1.22%) _which (1.25%) _Conv (1.09%) former (2.57%) , (1.06%)
Block 27 (2.23%) _ (1.93%) ton (3.53%) _network (1.09%) _for (1.21%) _which (0.99%) _model (1.13%) former (6.67%) , (1.25%)
Block 28 (2.76%) _ (1.73%) json (1.02%) _network (3.49%) _for (1.84%) _which (0.95%) _Neural (3.31%) former (6.31%) , (3.42%)
Block 29 (3.22%) _â ¦" (6.01%) _ (1.32%) _network (1.00%) _for (1.01%) _and (1.74%) _neural (1.90%) former (7.25%) , (5.54%)
Block 30 (6.24%) _â ¦" (6.04%) _ (3.56%) _network (7.34%) _for (5.45%) _which (6.05%) _neural (6.14%) former (7.30%) Â  (8.04%)
Block 31 (7.76%) !!" (5.96%) _ (8.27%) _network (8.68%) _for (8.36%) _the (7.67%) _Conv (7.46%) former (7.35%) , (8.37%)
Block 32 (7.84%) â ¦." (5.81%) !?" (8.35%) _network (8.78%) , (8.43%) _and (7.70%) _neural (7.51%) former (7.57%) _model (8.53%)

Logits _ _ _network _for _which _neural former ,
Expan. (0.993) _ _ _network _for _which _neural former ,

Figure 15: Joint jet lens with learnable weightings (k = 1), applied over GPT-Neo-2.7B with the input sentence
“new simple neural architecture, the Transformer”

new _simple _neural _architecture , _the _Trans former
Block 1 (3.19%) bie (4.48%) _simple (4.99%) _neural (0.98%) _architecture (1.08%) _and (5.08%) _the (5.85%) fig (2.07%) former (1.01%)
Block 2 (1.81%) _arrivals (2.43%) tons (1.22%) _rack (3.83%) _model (1.07%) _the (1.01%) _main (1.01%) ient (3.10%) _generation (0.85%)
Block 3 (2.49%) _entry (5.53%) _fitting (5.41%) _clusters (3.05%) _det (1.14%) _thanks (0.99%) _second (1.00%) cription (0.97%) _barrier (1.86%)
Block 4 (3.02%) bies (3.47%) _private (5.64%) _env (5.41%) _clusters (1.18%) _aspirin (1.09%) _hypothesis (1.08%) cript (5.55%) _Mund (0.75%)
Block 5 (1.75%) _mansion (3.47%) _Transcript (1.03%) ous (2.48%) _suit (1.15%) chuk (1.11%) _Oracle (1.17%) _Card (2.55%) cknow (1.00%)
Block 6 (1.84%) _Parables (2.46%) _Bald (1.45%) izer (0.99%) sche (1.21%) %); (1.11%) ija (1.18%) ione (5.34%) atti (1.01%)
Block 7 (2.51%) DERR (2.47%) _sp (1.62%) _wired (3.21%) inea (1.19%) )* (1.02%) _gloss (1.17%) aways (4.96%) _system (4.48%)
Block 8 (1.80%) , (2.32%) _Tall (1.04%) _experiments (0.89%) MIT (1.21%) mac (1.06%) fts (1.16%) rock (5.75%) con (0.97%)
Block 9 (1.79%) , (2.19%) onel (1.11%) _layer (5.70%) _hum (1.10%) arily (1.06%) _Hots (1.20%) iter (0.98%) _boxes (0.96%)

Block 10 (2.17%) , (2.18%) tested (1.09%) / (6.21%) _deployed (1.18%) _disrupt (3.01%) ew (1.11%) _INS (0.76%) _Drive (1.80%)
Block 11 (1.20%) , (2.18%) azon (1.10%) ã ³ã ¸ (1.00%) ea (1.20%) Ro (1.10%) _Dive (1.10%) _Revised (0.95%) _Prol (1.00%)
Block 12 (1.17%) , (2.20%) _Think (1.05%) _Dish (0.86%) _Layer (1.11%) _Sing (0.99%) uts (1.16%) _button (0.94%) _proble (1.02%)
Block 13 (1.88%) _and (2.22%) _ab (2.77%) ourt (4.71%) _Malf (1.20%) _REPL (0.99%) _naked (1.17%) oran (0.98%) _cred (1.01%)
Block 14 (1.60%) _and (2.22%) alg (1.06%) _underestimated (0.97%) _percentile (1.19%) _which (2.35%) _nonetheless (1.15%) igo (3.05%) _Hut (0.81%)
Block 15 (2.19%) _and (2.24%) - (4.45%) _Subst (1.01%) chan (1.16%) ATURES (1.09%) _hitch (1.19%) _Mini (0.99%) _Bre (5.41%)
Block 16 (2.24%) _and (2.26%) _image (5.83%) _cell (4.89%) _packs (1.05%) _marked (0.91%) _Finn (1.09%) omes (0.89%) _Cipher (0.99%)
Block 17 (1.72%) _and (2.27%) Ä  (1.11%) _formulation (0.96%) isen (1.22%) _modular (1.08%) _Space (0.99%) _Neural (0.85%) _Trainer (5.29%)
Block 18 (1.54%) _and (2.21%) _bond (1.06%) _IPM (1.01%) _( (4.36%) build (0.97%) plex (1.04%) brand (0.78%) _Quest (0.91%)
Block 19 (2.17%) _and (2.13%) _cross (3.75%) _proceeds (5.61%) _named (2.11%) _called (0.93%) _parallel (1.08%) Shares (0.96%) _lost (0.81%)
Block 20 (2.64%) , (3.62%) ": (0.98%) rons (1.15%) _Neural (2.26%) _coupled (4.39%) _omn (2.30%) fect (4.73%) _Fly (1.73%)
Block 21 (1.27%) , (3.47%) _ft (0.97%) ysis (1.03%) _template (1.09%) _with (0.83%) _latter (1.09%) adic (0.79%) â ¢ (0.87%)
Block 22 (3.88%) , (3.56%) types (0.98%) _Turing (2.15%) . (7.00%) _which (4.55%) _most (5.96%) gress (1.06%) _VT (5.74%)
Block 23 (3.17%) , (3.95%) tv (1.07%) blade (0.96%) _..." (1.16%) _i (2.87%) _model (5.98%) du (4.83%) _erg (4.52%)
Block 24 (5.36%) , (3.89%) _prayers (5.37%) _Turing (6.05%) , (6.95%) _which (5.59%) _brain (6.37%) Memory (5.62%) als (3.00%)
Block 25 (2.84%) , (3.80%) _complex (0.86%) _surgery (0.93%) " (0.97%) _Neural (1.57%) _one (5.52%) _EEG (3.47%) , (5.60%)
Block 26 (5.61%) , (3.63%) _dot (6.73%) _Turing (6.16%) _for (7.62%) _then (6.26%) _Neural (5.36%) ocy (5.16%) _robot (3.94%)
Block 27 (4.91%) , (3.64%) ?" (7.12%) _algorithm (2.21%) ". (6.61%) _where (5.86%) _so (5.87%) vier (1.80%) _or (6.21%)
Block 28 (3.91%) , (2.94%) _solution (0.91%) _simulation (4.19%) ", (5.57%) _which (5.97%) _F (6.14%) imil (0.95%) _Mega (4.63%)
Block 29 (4.07%) , (1.51%) _life (6.69%) _network (2.58%) ] (2.36%) _using (5.32%) _neural (6.09%) Washington (4.30%) _brains (3.73%)
Block 30 (5.05%) , (1.96%) Ã  (5.52%) _net (5.50%) _that (7.83%) _neural (6.24%) _neural (6.05%) _underground (4.91%) _Brain (2.39%)
Block 31 (5.02%) , (2.04%) " (6.84%) _Machine (3.46%) ," (7.99%) _neural (6.56%) _neural (6.10%) onet (0.95%) _neural (6.19%)
Block 32 (5.00%) , (2.06%) ' (5.21%) _net (0.94%) ' (7.68%) _called (6.27%) _simple (6.34%) haus (5.11%) 3 (6.41%)
Block 33 (3.65%) , (2.08%) ' (0.83%) _assembly (5.90%) ' (1.61%) _to (5.86%) _TW (1.51%) Global (5.96%) _LL (5.41%)
Block 34 (2.57%) , (2.10%) _to (1.01%) _vide (0.99%) , (2.72%) _and (1.15%) _class (1.00%) lc (5.89%) , (5.73%)
Block 35 (1.67%) , (2.12%) client (1.09%) _NET (1.00%)  (3.33%) _and (2.74%) _reservoir (1.16%) Draft (1.02%) _scripts (0.93%)
Block 36 (1.28%)  (2.69%)  (1.06%) gil (1.03%)  (1.15%)  (1.01%) _Leopard (1.22%) artist (1.05%) stals (1.02%)

Logits _ " _network ' _which _neural c ,
Expan. (0.980) , - _network _for _which _neural - ,

Figure 16: Joint jet lens with learnable weightings (k = 0), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”
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new _simple _neural _architecture , _the _Trans former
Block 1 (3.50%) bie (3.17%) " (4.75%) _network (5.93%) " (3.61%) _which (1.15%) _neural (1.60%) c (5.06%) _is (2.74%)
Block 2 (3.14%) _ (0.84%) " (4.15%) _network (5.49%) ' (1.80%) _which (4.28%) _neural (4.04%) c (3.60%) _is (0.93%)
Block 3 (1.19%) _ (0.86%) " (0.91%) _network (0.84%) ' (1.05%) _which (1.81%) _neural (2.17%) c (0.78%) _is (1.08%)
Block 4 (1.08%) - (0.77%) ton (1.88%) _network (1.27%) ' (0.99%) _we (0.96%) _neural (0.94%) c (0.75%) _is (1.07%)
Block 5 (0.98%) _ (0.74%) " (1.03%) _network (0.98%) ' (1.06%) _where (1.01%) _brain (1.00%) c (0.88%) _is (1.13%)
Block 6 (1.29%) _ (3.29%) " (1.01%) _network (0.93%) ' (1.07%) _and (1.00%) _neural (1.00%) c (0.93%) _is (1.06%)
Block 7 (1.32%) _ (3.60%) " (1.04%) _network (0.97%) ' (1.10%) _which (1.00%) _neural (1.00%) parent (0.89%) _is (0.97%)
Block 8 (1.35%) _ (3.71%) " (1.05%) _network (0.95%) ' (1.07%) _which (0.98%) _researchers (0.99%) ient (0.97%) _is (1.10%)
Block 9 (1.44%) , (3.74%) " (1.04%) _network (0.83%) ' (1.07%) _which (0.99%) _neural (0.99%) c (0.94%) _is (1.91%)

Block 10 (1.47%) - (3.73%) " (1.04%) _network (1.44%) ' (1.07%) _which (0.97%) _neural (0.99%) former (0.93%) _AI (1.57%)
Block 11 (1.36%) - (3.71%) " (0.98%) _network (1.01%) ' (1.12%) _which (0.98%) _neural (0.98%) c (0.99%) _is (1.10%)
Block 12 (1.36%) _ (3.69%) " (1.00%) _network (1.04%) ' (1.08%) _which (0.97%) _neural (0.97%) c (1.03%) , (1.12%)
Block 13 (1.35%) _ (3.65%) " (1.01%) _network (1.04%) " (1.10%) _where (0.96%) _neural (0.96%) c (1.01%) _Cortex (1.09%)
Block 14 (1.31%) _ (3.61%) " (1.00%) _network (1.02%) ' (1.07%) _a (0.74%) _neural (0.92%) ient (1.00%) _is (1.10%)
Block 15 (1.30%) _ (3.54%) " (0.99%) _network (1.03%) ' (1.07%) _which (0.93%) _neural (0.93%) c (1.00%) _chip (0.90%)
Block 16 (1.30%) _ (3.43%) " (1.04%) _network (0.95%) ' (1.09%) _and (0.89%) _neural (0.89%) c (0.99%) , (1.13%)
Block 17 (1.28%) _ (3.36%) " (0.97%) _network (0.95%) ' (1.09%) _which (0.90%) _neural (0.86%) c (0.99%) . (1.10%)
Block 18 (1.14%) _ (2.81%) _ (0.92%) _network (1.00%) ' (0.90%) _a (0.74%) _more (0.79%) c (0.90%) _chip (1.09%)
Block 19 (0.99%) _ (0.98%) " (0.84%) _network (0.88%) ' (0.95%) _or (1.44%) _neural (0.76%) c (0.98%) _architecture (1.10%)
Block 20 (1.53%) , (0.95%) x (0.88%) _network (0.95%) ' (0.99%) _we (3.52%) _authors (3.11%) c (0.77%) _is (1.07%)
Block 21 (1.23%) , (0.96%) " (0.86%) _networks (0.90%) ' (1.04%) _neural (1.93%) _network (1.16%) c (1.93%) _is (1.07%)
Block 22 (1.92%) - (0.96%) " (2.47%) _network (0.88%) ' (1.05%) _we (4.10%) _neural (4.13%) c (0.78%) _Brain (0.98%)
Block 23 (2.10%) _ (0.90%) _stuff (0.79%) _network (1.16%) ' (0.85%) _similar (3.67%) _cu (4.65%) c (3.79%) _is (0.99%)
Block 24 (3.00%) _ (0.93%) " (2.25%) _network (4.69%) ' (2.88%) ' (4.60%) _ART (4.85%) c (2.96%) , (0.85%)
Block 25 (3.99%) "]=> (3.39%) ton (4.25%) _net (2.85%) ' (2.19%) _with (4.38%) _loc (4.88%) c (5.43%) _S (4.59%)
Block 26 (3.96%) Instance (3.52%) ' (3.67%) _network (3.98%) ' (4.45%) _Cooper (4.93%) _first (4.80%) c (4.25%) , (2.07%)
Block 27 (4.99%) _ (3.24%) tons (5.87%) _network (4.56%) _of (5.90%) _but (4.78%) _neuron (4.83%) c (4.85%) _Memory (5.85%)
Block 28 (5.13%) _ (3.08%) ton (5.20%) _network (5.48%) _for (5.93%) _NI (4.98%) _first (4.92%) ient (5.17%) _uses (6.28%)
Block 29 (5.04%) _ (3.27%) me (5.80%) _network (5.64%) ". (5.22%) _NAT (4.95%) _authors (4.94%) ient (5.52%) _3000 (5.00%)
Block 30 (4.88%) _ (3.40%) _kitchen (4.88%) _network (5.69%) " (5.41%) _prototyp (4.94%) _algorithm (4.88%) ient (5.55%) _uses (4.30%)
Block 31 (5.31%) _ (3.61%) x (6.06%) _network (3.85%) ' (6.79%) _geared (5.16%) _traditional (5.00%) c (5.28%) _XL (6.76%)
Block 32 (5.51%) - (3.70%) _white (5.66%) _network (5.56%) " (6.48%) ", (5.09%) _WS (5.03%) c (5.33%) _is (7.26%)
Block 33 (5.75%) , (3.73%) " (6.05%) _network (6.01%) " (6.91%) _which (5.15%) _neural (5.05%) c (5.66%) _Robot (7.46%)
Block 34 (5.88%) , (3.73%) ton (6.26%) _network (6.49%) ", (6.91%) _which (5.15%) _neural (5.04%) ient (5.96%) _Cortex (7.50%)
Block 35 (5.77%) - (3.74%) " (6.11%) _network (6.26%) _model (6.90%) _modeled (5.03%) _neural (4.97%) ient (6.03%) _model (7.17%)
Block 36 (5.85%) _ (3.67%) " (6.29%) _network (6.51%) ' (6.77%) _which (4.95%) _neural (5.00%) c (6.10%) _is (7.52%)

Logits _ " _network ' _which _neural c ,
Expan. (0.994) _ " _network ' _and _neural c _is

Figure 17: Joint jet lens with learnable weightings (k = 1), applied over GPT-2-large with the input sentence
“new simple neural architecture, the Transformer”
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