
Published as a conference paper at ICLR 2025

HOW DOES CRITICAL BATCH SIZE SCALE IN PRE-
TRAINING?

Hanlin Zhang1 Depen Morwani1,2 Nikhil Vyas1 Jingfeng Wu3

Difan Zou4 Udaya Ghai5 Dean Foster5 Sham Kakade1,2
1Harvard University 2Kempner Institute, Harvard University
3University of California, Berkeley 4The University of Hong Kong 5Amazon

ABSTRACT

Training large-scale models under given resources requires careful design of par-
allelism strategies. In particular, the efficiency notion of critical batch size (CBS),
concerning the compromise between time and compute, marks the threshold be-
yond which greater data parallelism leads to diminishing returns. To operational-
ize it, we propose a measure of CBS and pre-train a series of auto-regressive
language models, ranging from 85 million to 1.2 billion parameters, on the C4
dataset. Through extensive hyper-parameter sweeps and careful control of factors
such as batch size, momentum, and learning rate along with its scheduling, we
systematically investigate the impact of scale on CBS. Then we fit scaling laws
with respect to model and data sizes to decouple their effects. Overall, our re-
sults demonstrate that CBS scales primarily with data size rather than model size,
a finding we justify theoretically through the analysis of infinite-width limits of
neural networks and infinite-dimensional least squares regression. Of indepen-
dent interest, we highlight the importance of common hyper-parameter choices
and strategies for studying large-scale pre-training beyond fixed training dura-
tions.1

1 INTRODUCTION

Efficient optimization is critical in pre-training large models (LMs) at scale (McCandlish et al.,
2018; Shoeybi et al., 2019; Kaplan et al., 2020). In particular, large-batch training is key to acceler-
ating training, as it enables more efficient parallelism across hardware accelerators (You et al., 2017;
Goyal et al., 2018). Specifically, understanding the scaling behavior of the critical batch size (CBS)
is essential for optimizing data parallelism, as it defines the point beyond which increasing the batch
size may result in computational efficiency degradation. Below the CBS, approximately linear scal-
ing is achievable—doubling the batch size can proportionally reduce the number of optimization
steps required to reach a target loss. However, beyond this threshold, further increases in batch
size would lead to diminishing returns, making it essential to balance computational efficiency with
model performance (Shallue et al., 2019; McCandlish et al., 2018). This trade-off presents a chal-
lenge for studying pre-training given resource constraints as practitioners are compelled to navigate
difficult decisions in balancing compute, data, and training time.

We investigate the scaling laws governing CBS in the context of autoregressive transformer-based
language modeling (Vaswani, 2017; Radford et al., 2018). Analyzing CBS in pre-training is chal-
lenging due to the absence of a precise formalism relating it to model and data sizes in the literature
(Kaplan et al., 2020; McCandlish et al., 2018). Moreover, the interwined effects of scaling model
and data sizes proportionally (Hoffmann et al., 2022b) further complicate this analysis. Although
previous works study the effects of batch size on optimization performance (DeepSeek-AI et al.,
2024; Besiroglu et al., 2024; Porian et al., 2024), two crucial differences are (1) they do not decou-
ple model size and data size; (2) they focus on optimal batch size that reaches the minimum loss
instead of critical batch size. We measure critical batch size as a metric, which represents the batch
size that results in certain overhead compared to linear scaling: given a certain target validation loss,

1Code available at https://github.com/hlzhang109/critical-batch-size.

1

https://github.com/hlzhang109/critical-batch-size

Published as a conference paper at ICLR 2025

Empirical Takeaways :

1. In Chinchilla settings, CBS increases when model size N and data size D (or training duration
thereafter, which we will use interchangeably) are jointly scaled up (Figure 1, left).

2. If we scale up training duration D while keeping N fixed (Figure 1, middle), the critical batch
size increases to a similar degree.

3. However, we find that CBS remains nearly invariant when scaling up N while keeping D fixed
(Figure 1, right), suggesting that CBS weakly depends on model size N but more strongly depends
on data size D.

4. Our experiments on small 151M proxy models provide insights into a range of common hyper-
parameters and optimization configurations, including transformer context length adjustments,
and scaling strategies based on width versus depth, among others.

we measure the number of steps to reach it for different batch sizes; we derive the transition points
that incur certain overhead when doubling the batch size; then we fit scaling laws w.r.t. model size
and data size to systematically study the scaling of CBS.

29 210 211 212 213

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2) Chinchilla Setting

Model Size
(Target Loss)

85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

29 210 211 212 213

Batch Size (2x)

Fixed Data Size 3.07B

Model Size
(Target Loss)

85M (3.37)
151M (3.24)
302M (3.16)
604M (3.10)
1.2B (3.06)

29 210 211 212 213

Batch Size (2x)

Fixed Model Size 302M

Target Loss
(Token Size)

3.27 (0.28x)
3.16 (0.5x)
3.06 (1x)
3.00 (2x)
2.94 (4x)

0 500 1000 1500 2000
Model Size (in M)

1000

2000

3000

Cr
iti

ca
l B

at
ch

 S
ize

Chinchilla Setting
Data Type

Fitted
Forecasted

0 500 1000 1500 2000
Model Size (in M)

Fixed Data Size 3.07B
Data Type

Fitted
Forecasted

0 10 20 30 40
Token Size (in B)

Fixed Model Size 302M
Data Type

Fitted
Forecasted

Figure 1: Optimization efficiency and scaling of critical batch size in Chinchilla (left) and
controlled (middle, right) settings. To study the effect of CBS across different model sizes, we
track the relative number of steps required to reach a certain target validation loss. In the Chinchilla
setting (left), we keep the data-to-model size ratio D/N = CChin constant and observe that CBS
increases with scale. However, when controlling for either model size (middle) or data size (right),
the growth in target losses becomes mostly dependent on data size rather than model size (Section 3).

1.1 EMPIRICAL TAKEAWAYS

Conceptually, we formalize the notion of critical batch size and examine the independent effects of
both model and data size. We start by scaling up data size in tandem with model size, as suggested
in the Chinchilla compute-optimal framework (Hoffmann et al., 2022b). Through controlled studies,
we propose scaling laws that decouple the growth of critical batch size from model and data size,
leading to the following takeaways — an aspect underexplored in previous research.
Overall, our empirical finding that CBS scales primarily with data size implies that when scaling
up data, one can reduce serial training time through greater data parallelism due to the increase of
CBS, without a loss in computational efficiency that can be measured by floating point operations
(FLOPs).

2

Published as a conference paper at ICLR 2025

1.2 THEORETICAL IMPLICATIONS

Theoretically, maximal update parameterization suggests that, beyond a certain point, increasing the
width of the neural network (while keeping data size fixed) does not further increase the critical
batch size. In contrast, by analyzing a simple least-squares regression with mini-batch SGD, we
provide a theoretical basis for how the critical batch size continues to scale with increasing data
size. Specifically, we introduce two informal theorems here and refer readers to Section 4 for more
details.

Theorem 1 (Informal version of Theorem 2). In infinite width regimes (Yang & Hu, 2021), training
dynamics and performance of the networks become effectively independent of the model size. Con-
sequently, the critical batch size remains nearly invariant when scaling up the model size beyond
this point, indicating that larger models do not require proportionally larger batch sizes to achieve
optimal training efficiency.

Corollary 1 (Informal version of Corollary 2). Consider mini-batch SGD with D samples in the
least square problems under power-law source and capacity conditions. The CBS, which enables
mini-batch SGD to achieve the minimal expected excess risk while ensuring the fastest possible serial
runtime, is given by B∗(D) = Θ(Dc), where the exponent c ≥ 0 is determined by the exponents of
the source and capacity conditions. In the regime where the variance error tends to be dominant,
we have 0 < c < 1/2, indicating CBS grows with data size.

2 EXPERIMENTAL DESIGN AND EMPIRICAL FINDINGS

We describe the experimental settings and refer readers to Appendix D for extra details. Throughout
this paper, we use the abbreviations ‘M’ for million, ‘B’ for billion, and ‘T’ for trillion.

2.1 EXPERIMENTAL SETTINGS

Model and training details. We train a series of autoregressive LMs with a context length of 512
in different sizes ranging from 85M, 151M, 302M, 604M to 1.2B (Appendix D Table 2) on C4
(Raffel et al., 2020) using Adam (Kingma, 2014) with optimizer-specific hyper-parameters reported
in Table 3. We adopt the tokenizer of Eleuther AI’s gpt-neox-20b that has a vocabulary of size
50280. We use small 151M proxy models to analyze hyper-parameters in most ablation studies.
We set the micro batch size smaller than the global one and use gradient accumulation to simulate
the effects of large global batch sizes. We focus on fully synchronized distributed data parallelism
scenarios where communication is frequent, which simplifies the evaluation and abstracts actual wall
clock savings into a total number of optimization steps. More details on optimizer configurations
and evaluation strategies are included in Appendix D.

Experimental design and outline. To study CBS in Chinchilla settings, we need to consider target
loss on a holdout validation set and measure the number of optimization steps required to reach
it. We consider the optimal batch size as Bopt in the linear scaling regime that incurs no efficiency
overhead as detailed in Appendix C. We consider the validation loss of an optimal batch size Bopt =
256 at step tChin = CChin ×N/(ctx len × B) for each model size N and batch size B with context
length ctx len set to be 512, where CChin is the Chinchilla coefficient.

When scaling up model size jointly with data size, the above implies that each model size would
have a different target loss. Achieving such a goal through the procedure above is challenging not
only due to the combinatorially many hyper-parameters but also the unknown training dynamics of
each model size and batch size. Below, we outline several key aspects to approach the goal:

1. As we focus on the number of training steps needed to achieve a target validation loss, learning
rate decay strategies typically require predefining the total training duration (Loshchilov & Hut-
ter, 2022; Hu et al., 2024; Hägele et al., 2024; Defazio et al., 2024). To address this, we propose
using exponential weight averaging (EWA) (Polyak & Juditsky, 1992) to achieve the desired tar-
get validation loss, a simple approach that matches other popular choices (Figure 2). This enables
training beyond fixed durations or data size, allowing to resume training from checkpoints until
the target validation loss is achieved (Section 2.2).

3

Published as a conference paper at ICLR 2025

2. Training with proper hyper-parameters: ensuring proper sweeps of momentum and learning rate
(Appendix A); adopting well-tuned values for the β2 parameter and the exponential weight aver-
aging decay rate τ , tailored to each batch size (Appendix B).

2.2 TRAINING BEYOND FIXED DURATIONS FOR REACHING TARGET VALIDATION LOSS

26 27 28 29 210 211 212

Batch Size (2x)
11

12

13

14

15

16

17

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.24
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

Figure 2: Comparing and accounting for train-
ing dynamics. Throughout, we adopt Con-
stant+EWA since it performs the best for large
batch sizes and avoids setting a fixed training du-
ration beforehand for reaching a target loss.

Benchmarking learning rate schedulers. In
practice, LMs are usually trained using fixed
token budgets (Hoffmann et al., 2022b), which
can determine the total number of iterations the
training would undergo. This training process
can be easily decomposed into learning rate
warmup and decay phases so that a lower learn-
ing rate is kept at the end of training to enable
better optimization. However, our goal is to
find the optimal performing run under various
hyper-parameters and optimization conditions.
This implies a non-trivial decision regarding
selecting the maximum training duration (De-
fazio et al., 2024; Hägele et al., 2024). As train-
ing beyond fixed durations is particularly favor-
able in many large-scale pre-training scenarios,
we benchmark recently proposed methods like
schedule-free optimizer (Defazio et al., 2024),
cosine, warmup-stable-decay schedule (WSD)
(Hu et al., 2024) (or trapezoidal (Zhai et al.,
2022)) and our proposed constant+EWA strat-
egy which maintains a running average of model weights ξt+1 = τ · ξt + (1 − τ) · θt to improve
optimization, where θt is the actual model parameter at step t and we use ξ for evaluation. To ensure
the baselines are close to optimal, we first get the optimal step counts from our constant+EWA runs,
we evaluate WSD scheduling by testing [0.1, 0.2, 0.3] multiples of those step counts. In parallel,
for the cosine scheduler, we explore [0.9, 1.0, 1.1] times the same step counts. We show that our
constant+EWA strategy can match the efficiency of cosine scheduling and WSD, especially for large
batch sizes (Figure 2). The connections are explained in detail in (Morwani et al., 2025).

Prior research has shown the generalization (Izmailov et al., 2018) and optimization (Karras et al.,
2024) benefits of EWA, our findings further reveal that EWA can trade memory for optimization
efficiency in LM pre-training, especially in large-batch regimes. This is useful in scenarios where a
target loss must be achieved, but practitioners are uncertain of the exact maximum data size to set
up the learning rate schedule for training.

Takeaway on learning rate scheduling: EWA consistently improves model training efficiency
compared to using a constant learning rate without it. EWA proves to be an effective approach com-
pared to other baselines with decaying schemes, offering competitive performance while eliminating
the need to predefine training durations.

2.3 ABLATION ON MODEL CONTEXT LENGTH

We adopt 512 as the context length of LMs for all of our experiments but it is unclear how it would
impact the efficiency of training and whether the scaling of CBS would vary when we enlarge the
context length. So we sweep over several larger windows 210, 211, 212 (Section 2.4) Overall all
models in four different context lengths have very similar relative optimization efficiency across
various batch sizes and thus justifies our use of 512 for all the experiments.

Takeaway on model context length: Different context lengths (29 ∼ 212) have similar scaling w.r.t.
batch size.

4

Published as a conference paper at ICLR 2025

2.4 ABLATION ON MODEL WIDTH AND DEPTH

Model sizes can typically be scaled up in two main ways: by increasing the width, which involves
enlarging the hidden size of the multilayer perceptron (MLP), or by increasing the depth, which
entails adding more layers to the network. As the main result in Figure 1 only involves a single way
for scaling up models (Table 2), e.g. 604M model has 2× width than the 151M one. To explore
alternative scaling strategies, we investigate how the model behavior changes when we scale the
604M model by increasing the depth by 4× instead (detailed configurations in Table 5).

29 210 211 212 213
Batch Size (2x)

2 4

2 3

2 2

2 1

20

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2) Width (Target Loss)

4096 (3.24)
8192 (2.92)
10240 (2.82)

29 210 211 212 213
Batch Size (2x)

Depth (Target Loss)
12 (3.24)
24 (3.07)
48 (2.94)

29 210 211 212 213
Batch Size (2x)

Model Size (Target Loss)
151M (3.24)
604M-width (2.92)
604M-depth (2.94)

Figure 3: Scaling up width and depth shares similar efficiency gain for compute-optimal training.

222221220219218217216

Batch Size (#Tokens)

4

3

2

1

0
lo

g 2
(#

St
ep

s/
#S

te
ps

 a
t B

S
216

) Target Validation Loss 3.24
Context Length

512
1024
2048
4096

Figure 4: Ablation results on context
length using 151M models.

Firstly, as shown in Figure 3 (left, middle), under Chin-
chilla scaling—where data and model size grow propor-
tionally— increasing model depth or width has a similar
impact on CBS. Notably, according to previous results,
the rise in CBS in compute-optimal scaling should be at-
tributed to the increased data size. Then through con-
trolled comparison (Figure 3, right), we see that using
two different ways to scale 151M models to 604M ones
is equivalent in efficiency since both curves overlap. Our
findings may offer practical insights for scaling models
under a fixed token budget that is allocated in proportion
to model size. This is particularly relevant because scal-
ing model width is often favored over increasing depth, as
wider models tend to be more amenable to parallelization
without incurring additional latency overhead (Shoeybi
et al., 2019; Touvron et al., 2023; Erdil, 2024; McLeish
et al., 2025).

Takeaway on scaling transformer width and depth in compute-optimal regimes: Increasing
width and depth has similar effects in critical batch size for compute-optimal pre-training.

3 CRITICAL BATCH SIZE SCALING LAW

3.1 FORMAL DEFINITION OF CRITICAL BATCH SIZE

Recall that CBS is the transition point where increasing the batch size by a factor of k, leads to a
reduction in the required number of training steps by a factor that is less than k. We now define
CBS as the batch size that leads to a 20% overhead compared to linear scaling. First of all, define
R(N,D,B) as the best loss achievable for a model of size N using a single pass on D tokens with
a batch size B. This would be obtained by optimally tuning all other parameters of the optimizer,
while keeping N,D,B fixed. Below is the formal definition of CBS:
Definition 1. Define Ropt(N,D) = minB
R(N,D,B), Bopt(N,D) = argminB R(N,D,B), as the minimal loss achieved optimizing over
batch size and the optimal batch size respectively. We define fN,D(B) to be the number of steps
required to reach Ropt(N,D) as a function of batch size B. Clearly fN,D(Bopt) = D/Bopt. To

5

Published as a conference paper at ICLR 2025

define the Critical Batch Size, B∗(N,D), we can define a linear scaling curve f∗
N,D(B) = D/B.

f∗ matches f at Bopt and then scales down linearly as batch size goes up. B∗(N,D) is defined as
the maximum batch size B′ > Bopt(N,D) such that fN,D(B′) ≤ 1.2f∗

N,D(B′).

2
9

2
10

2
11

2
12

2
13

Batch Size

2
10

2
11

2
12

2
13

2
14

#S
te

ps
 to

 R
ea

ch
 T

ar
ge

t L
os

s

Bopt B *

fN, D(B) (Actual)

f *
N, D(B) = D/B (Linear)

1.2f *
N, D(B) (20% Overhead)

Bopt (Optimal Batch Size)

B * (Critical Batch Size)

Figure 5: Illustration of critical batch size,
where B∗ = 211.87 and context length is 512
by default.

As illustrated in Figure 5, B∗(N,D) is the batch size
at which the number of steps is 20% higher than
what is predicted by the linear extrapolation from
the optimal batch size. Note here that 20% can be
replaced by any other suitable measure of increase
from linear scaling.

3.2 SCALING LAWS w.r.t. MODEL
SIZE FOR CHINCHILLA-OPTIMAL PRE-TRAINING

As observed in all the results above, doubling the
batch size for larger models allows them to more ef-
ficiently reduce the relative number of steps needed
to reach the target loss. We ask whether those in-
creased efficiencies can be predicted via a scaling
law.

We begin our first step by fitting a power law of batch
size (B) to the absolute number of steps (Y) to reach
the target loss log(Y) = log(a+ b

Bα) and then derive
the critical batch size. Then we derive the CBS via
B∗ = b

5a +1.2Bopt, which is implied by a transition
point where the total amount of data under this batch size would incur 20% overhead compared to
linear scaling: Dtotal = (a+b/Bα

opt)∗1.2Bopt = (a+b/Bα)∗B , where α = 1, Bopt is set to be 256
chosen to lie within the linear scaling regime as suggested in Appendix C. We report the parameters
fitted to the power law relationship between the number of steps Y and batch size B in Appendix
Table 6. We adopt the fixed α = 1 solution, as both strategies yield nearly identical forecasting
results.

Secondly, we fit a power law log(B∗) = log(c+ d
Nβ) with respect to the model size N (in million).

The constant term c is set to be 0 by default (as B∗ should be 0 at N = 0), which leads to B∗ =
93.20 ∗ N0.47. We visualize the curve fitted in Figure 1 (left) and report more forecasts in Table 7
in the Appendix.

Overall, we observe an increase in CBS when scaling up in compute-optimal training: In Figure 1
(left), we have target losses selected according to chinchilla steps and we fit the power law of critical
batch size with respect to model sizes N (in million) as B∗ = 93.20 ∗ N0.47. Our results suggest
that a critical batch size around 29 to 211 would be helpful to efficiently optimize models below 1B
on Chinchilla-optimal amount of tokens to study other empirical problems. However, it is common
for the number of tokens trained to scale proportionally with the model’s parameter count. So it
is unclear whether the growth of CBS is because of the increase in (1) model size or (2) the data
size/training duration, a question we explore in the next subsection.

3.3 DECOUPLING CBS SCALING LAWS w.r.t. DATA SIZE AND MODEL SIZE

Controlled comparison with the same data size. Firstly, we use the Chinchilla token size 3.072B
of 151M models tChin to record the target validation loss for each model size and train all the 302M,
604M, 1.2B models with a smaller duration again to reach these target losses. To optimize for
performance when training on fewer tokens, we also tune the warmup steps accordingly. Figure 1
(top right) shows that all the curves behave similarly and we observe almost no increase in CBS
when enlarging the model size. Moreover, we fit a scaling law with respect to model size thereafter
Figure 1 (bottom right): keeping the data size fixed leads to a scaling law B∗ = 621.341 ∗ N0.087

weakly dependent on model size.

Controlled comparison with the same model size. Moreover, focusing on the 302M models, we
conduct additional experiments by selecting target losses at 0.28×, 0.5×, 2×, and 4× the Chinchilla
step for batch size 256 runs. This setup results in two under-training and two over-training config-
urations. To achieve optimal performance in the over-training scenarios, we increase the warm-up

6

Published as a conference paper at ICLR 2025

ratio accordingly, while for the under-training cases, we reduce the warm-up ratio proportionally.
Results in Figure 1 (middle) show that as we enlarge the number of tokens being trained on, we see
an increase of CBS, similar to what we have observed for training large models on chinchilla target
loss. This can also be seen in the forecasted CBS curves shown in Figure 1 (middle) which shows
that as we enlarge the number of tokens being trained on, we see an increase of CBS, similar to what
we have observed in the Chinchilla setting where model and data size are scaled up proportionally.

We also plot the results for scaling both N and D (Figure 1, left) and only scaling D (Figure 1,
right) together in Figure 6. In the side-by-side comparison, we observe the following trends: (i) In
the Chinchilla setting (indicated by the first column in the legend), models of various sizes (85M,
151M, 604M, 1.2B) trained on different token amounts exhibit an increase in critical batch size
as scale grows. (ii) Additionally, each pair of curves with the same color overlaps significantly,
indicating that models of different sizes trained on the same token quantity tend to have similar
critical batch sizes. (iii) Finally, when model size is held constant and only the data size (second
column in the legend) varies, we also observe an increase in critical batch size with scale. Therefore,
we can qualitatively understand that the increase of CBS is likely to be agnostic to model sizes but
due to the increase in training duration.

29 210 211 212 213

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

51
2)

Model Size (Target Loss)
85M (3.42)
151M (3.24)
604M (2.92)
1.2B (2.74)

302M (3.27)
302M (3.16)
302M (3.00)
302M (2.94)

Figure 6: Controlled comparison by training 302M models on varying amounts of tokens and then
comparing with other model sizes trained in similar amounts of tokens. Models with the same color
or positioned in the same row of the legend represent this comparison. For a fixed token count of
3.072B, we measure the target loss at that step for each model size.

Takeaway on scaling laws for critical batch sizes: Based on the scaling laws and controlled com-
parisons, we conclude that the increase in CBS in Chinchilla-optimal training is more strongly at-
tributed to extended data size or training durations rather than the increase of model size.

4 THEORY ON SCALING OF CRITICAL BATCH SIZE

Our experimental results show that CBS increases with larger data sizes but remains (nearly) invari-
ant when scaling up the model size. We now formally investigate this observation using theoretical
analysis for both scenarios.

4.1 FIXED DATA SIZE AND SCALING UP MODEL SIZE

Various previous works have established infinite width limits of neural networks (Yang & Hu, 2021;
Bordelon & Pehlevan, 2022). For initializations and architectures that obey these limits, we can
theoretically claim, that for a fixed training duration and batch size, the performance of the neural
networks asymptotes with increasing width. The formal statement is provided below:

Theorem 2. For SGD with a given batch size B (or for gradient descent, i.e., B → ∞), training
iterations t, an error tolerance ϵ > 0, fixed learning rate schedule and data ordering, for any
network and initialization satisfying Master Theorem (Theorem G.4) in Yang & Hu (2021), there

7

Published as a conference paper at ICLR 2025

exists a width w such that for any two networks M1,M2 having widths w1, w2 > w, |R(M1, t) −
R(M2, t)| ≤ ϵ, where R(M, t) denotes the loss of network M at time t.

Proof of Theorem 2. The proof follows from the fact that the trajectory of the network approaches a
limit as width tends to ∞, and thus, by definition of limits, there exists a width w, such that for any
two networks with a width greater than w, their loss at time t differs by at most ϵ.

Note that the assumption of a fixed learning rate schedule with increasing width might seem strong,
but recent works (Yang et al., 2022) have shown, that one of these initializations, termed as Maxi-
mal Update Parameterization (µP), exhibits hyperparameter transfer with width. This initialization
scheme has also recently gained popularity because of this property and has been used by many
open-source implementations (Dey et al., 2023a;b; Liu et al., 2023; Hu et al., 2024). Moreover,
works (Yang et al., 2022; Vyas et al., 2023) have empirically demonstrated that with µP, networks
start exhibiting consistent loss curves at practical widths.

Moreover, as the above theorem holds for a fixed batch size B as well as B → ∞, we expect that
there exists a finite width w such that the above theorem holds for all batch sizes B. Thus, for
fixed training tokens, we would expect that the critical batch size won’t scale with model width
beyond a point. Although we have mostly talked about scaling model width, note that some recent
results have also established such limits for infinite depth ResNets and transformers (Yang et al.,
2024; Bordelon et al., 2024b;c), and thus the arguments above also hold for these networks.

4.2 FIXED MODEL SIZE AND SCALING UP DATA SIZE

We now turn to studying the impact of data size in mini-batch SGD for a well-specified Gaussian
linear regression problem. Let (x, y) be a pair of covariates and responses from a population distri-
bution. Let the population risk and the population distribution be

R(w) := E(x⊤w − y)2, x ∼ N (0,H), y|x ∼ N (x⊤w∗, σ2),

where w is the trainable parameter, the expectation is over the population distribution, and
(H,w∗, σ2) specify the population distribution. Given D independent samples (xi, yi)

D
i=1 from

the population distribution, we consider an estimate given by mini-batch SGD,

w0 = 0, wt+1 = wt − γ
1

B

(t+1)B−1∑
j=tB

(x⊤
j wt − yj)xj , t = 0, . . . , n− 1,

where γ > 0 is a constant learning rate, B is the batch size, n := D/B is the number of steps,
w0 = 0 is the initialization (without loss of generality), and the output is the average of the iterates,
w̄ := 1

n

∑n−1
t=0 wt. Then the following theorem provides a tight bound on the excess risk achieved

by the average of the mini-batch SGD iterates.

We write f(D) ≲ g(D) if there is a positive constant c such that f(D) ≤ cg(D) for every D ≥ 1.
We write f(D) ≂ g(D) if f(D) ≲ g(D) ≲ f(D). The proofs are all deferred to Appendix G.
Theorem 3. Let (λi)i>0 be the eigenvalues of H in nonincreasing order. Assume that ∥w0 −
w∗∥2H ≲ σ2. Then for every γ ≲ min{B/tr(H), 1/∥H∥2}, we have

ER(w̄)− σ2 ≂
(

B

Dγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+ σ2 k
∗ + (Dγ/B)2

∑
i>k∗ λ2

i

D
,

where k∗ := max{k : λk ≥ B/(Dγ)} and the expectation is over the randomness of w̄.

The proof of Theorem 3 is motivated by Zou et al. (2023). We focus on well-specified Gaussian
data distribution for simplicity, but this can be relaxed to misspecified cases under fourth-moment
conditions following the results in Zou et al. (2023). Theorem 3 suggests that for a fixed data size
D, the excess risk depends on the batch size B and the learning rate γ only through their ratio γ/B.
Moreover, a large γ/B tends to decrease the bias error (the terms depending on w∗) but increase
the variance error (the terms depending on σ2), and vice versa. This observation is exploited in the
following corollary, where we compute the CBS that minimizes the sequential running time without
sacrificing the rate of the attained excess risk.

8

Published as a conference paper at ICLR 2025

Corollary 2. Under the settings of Theorem 3, additionally assume σ2 ≂ 1 and the following
capacity and source conditions:

for a, b > 1 : λi ≂ i−a, Eλi⟨vi,w
∗
i ⟩2 ≂ i−b, Eλi⟨vi,w

∗
i ⟩⟨vj ,w

∗
j ⟩ = 0 for i ̸= j,

where (λi,vi)i>0 are the eigenvalues and the corresponding eigenvectors of H, and the expectation
is over a prior of w∗. Then we have

1. When b ≤ a, the optimal hyper-parameters (that minimize the expected excess risk up to constant
factors) are γ∗ ≂ 1 and B∗ = 1.

2. When b > a, the optimal hyper-parameters are γ∗ and B∗ such that

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ D
a

min{b,2a+1}−1.

Therefore, the CBS is B∗ ≂ D1−a/min{b,2a+1}, which (along with γ∗ ≂ 1) allows mini-batch
SGD output w̄ to attain the optimal rate of the expected excess risk (as data size D grows) with
the smallest number of steps n.

The capacity and source conditions are from the nonparametric linear regression literature (Capon-
netto & De Vito, 2007) and are recently used to study scaling laws theory (Bordelon et al., 2024a;
Lin et al., 2024; Paquette et al., 2024). According to Corollary 2, when b ≤ a, the bias error tends
to dominate the variance error, in this case, the CBS is B∗ = 1 to allow a maximum number of
optimization steps. When b > a, the variance error tends to dominate the bias error, and the opti-
mal choices of batch size and learning rate balance these two errors. While one can use B∗ = 1
and a small γ∗ to achieve the best excess risk rate, this leads to a suboptimal sequential runtime
(n = D/B). In this case, the CBS is B∗ ≂ D1−a/min{b,2a+1}, which achieves the optimal excess
risk rate while minimizing the sequential runtime.

Takeaway on the theory of batch size scaling when scaling up data and model size:

• As we scale up model size while keeping the data size fixed, µP suggests that critical batch size
does not scale with model width beyond a point.

• Fixing the model size, the critical batch size increases with the training duration. In the context of
high-dimensional linear regression, where the variance error dominates the bias error, it is possible
to choose a large batch size (as a function of the data size) for mini-batch SGD, allowing for
reduced sequential runtime without compromising the rate at which excess risk is minimized.

5 RELATED WORK

Scaling laws. Scaling laws describe the parametric relationships among key factors involved in
training neural networks: model size N , dataset size D, training cost C, and final training loss R.
These laws enable the prediction of training loss R based on available resources, making it possible
to optimize resource allocation for efficient model training. For example, Hestness et al. (2017)
found R ∝ D−α, with α ∈ [0.07, 0.35]. Of the factors they varied, only tasks can change the expo-
nent α. Changing the architecture optimizers, regularizers, and loss functions, would only change
the proportionality factor, not the exponent; Henighan et al. (2020) studied statistical relations be-
tween N,D,C,R, over a wide range of values and found similar scaling laws, over the range of
N ∈

[
103, 109

]
, C ∈

[
1012, 1021

]
, and over multiple modalities (text, video, image, text to image,

etc.). (Kaplan et al., 2020) states that N should be scaled faster than D. However, Chinchilla scaling
(Hoffmann et al., 2022a) found that models are under-trained, and then suggests that when given an
increased budget (in FLOPs), to achieve compute-optimal, model size N and data size D should
scale in approximately equal proportions. Recent efforts (Pearce & Song, 2024; Besiroglu et al.,
2024; Porian et al., 2024) have been made in reproducing the scaling laws from (Hoffmann et al.,
2022a) and the (Kaplan et al., 2020). Different from our focus on measuring the efficiency notion
of CBS, most of them focus on deriving optimal hyper-parameters (Bi et al., 2024; Porian et al.,
2024) including learning rate and batch size from small-scale training given a fixed compute budget
FLOPs ≈ 6ND without decoupling the effects of model size and data size.

9

Published as a conference paper at ICLR 2025

Optimization and critical batch size. Previous studies have shown that increasing batch sizes can
be offset by a proportional adjustment to the learning rate in small-scale regimes (McCandlish et al.,
2018; Zhang et al., 2019; Kaplan et al., 2020; Li et al., 2021). McCandlish et al. (2018) introduce
the gradient noise scale, a measure that captures the variation in gradients across different training
examples, which helps predict the critical batch size (CBS). Their findings also suggest that small-
batch training is more compute-efficient, while large-batch training requires fewer optimizer steps.
Momentum-based methods extend scaling to larger batch sizes but converge to the performance of
standard SGD at smaller batch sizes (Shallue et al., 2019). Additionally, Zhang et al. (2019) analyze
the impact of curvature on CBS using a noisy quadratic model, demonstrating that preconditioning
techniques can increase the CBS. Golmant et al. (2018) show that the size of the dataset plays a
smaller role in determining training efficiency compared to factors like model architecture and data
complexity. In contrast, Hilton et al. (2022) examine how performance can be maintained at smaller
batch sizes. Meanwhile, Smith et al. (2017); Smith & Le (2017) empirically investigated how the op-
timal learning rate changes based on momentum and training set size. Theoretical work has further
sought to characterize CBS by analyzing SGD behavior in least-squares linear regression, especially
in over-parameterized settings (Jain et al., 2018; Ma et al., 2018). Filatov et al. (2024) concurrently
find that optimal batch size and CBS scale with data size. However, they do not explore how CBS
scales with model size for models beyond 354M parameters, nor do they provide theoretical justifi-
cations or address the challenge of selecting optimal runs across a broad range of hyperparameters.
Our work advances the optimization literature by formalizing CBS and quantifying its growth w.r.t.
data size and emphasizing the importance of common hyper-parameter choices. It also provides
strategies for studying large-scale pre-training beyond fixed training durations.

6 CONCLUDING REMARKS

In conclusion, this study provides an extensive examination of the scaling laws for critical batch size
in large-scale autoregressive language model pre-training. By systematically analyzing the relation-
ship between model size, data size, and CBS, we found that while CBS increases with data size, it
remains relatively invariant to model size. This finding suggests training on more data may enable
greater data parallelism in pre-training. We further emphasize the role of key hyperparameters and
exponential weight averaging, which can match the performance of cosine scheduling without re-
quiring fixed training durations. These insights offer practical strategies for scaling models while
maintaining efficiency, which is critical in resource-constrained scenarios.

ACKNOWLEDGEMENTS

We thank Dhruv Madeka. We thank Qirong Ho for discussions on distributed training; Jeremy
Berstein for discussions on optimization; Dirk Groeneveld and Luca Soldaini for discussions on
OLMo implementations. HZ is supported by an Eric and Susan Dunn Graduate Fellowship. SK and
DM acknowledge the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for
the Study of Natural and Artificial Intelligence; SK acknowledges the support from the Office of
Naval Research under award N00014-22-1-2377, and the National Science Foundation Grant under
award #IIS 2229881. NV and DM are supported by a Simons Investigator Fellowship, NSF grant
DMS-2134157, DARPA grant W911NF2010021, and DOE grant DE-SC0022199.

REFERENCES

Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv preprint arXiv:2404.10102, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution in
wide neural networks. 2022.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. In Forty-first International Conference on Machine Learning, 2024a.

10

Published as a conference paper at ICLR 2025

Blake Bordelon, Hamza Tahir Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head trans-
former dynamics, 2024b.

Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. 2024c.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7:331–368, 2007.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022.

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X.
Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo,
Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren,
Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng
Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong
Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu,
Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang,
Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm:
Scaling open-source language models with longtermism, 2024.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Nolan Dey, Gurpreet Gosal, Zhiming, Chen, Hemant Khachane, William Marshall, Ribhu Pathria,
Marvin Tom, and Joel Hestness. Cerebras-gpt: Open compute-optimal language models trained
on the cerebras wafer-scale cluster, 2023a.

Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant Khachane,
Shaheer Muhammad, Zhiming, Chen, Robert Myers, Jacob Robert Steeves, Natalia Vassilieva,
Marvin Tom, and Joel Hestness. Btlm-3b-8k: 7b parameter performance in a 3b parameter model,
2023b.

Ege Erdil. Data movement bottlenecks to large-scale model training: Scal-
ing past 1e28 flop, 2024. URL https://epochai.org/blog/
data-movement-bottlenecks-scaling-past-1e28-flop. Accessed: 2024-
11-03.

Oleg Filatov, Jan Ebert, Jiangtao Wang, and Stefan Kesselheim. Time transfer: On optimal learning
rate and batch size in the infinite data limit. arXiv preprint arXiv:2410.05838, 2024.

11

https://epochai.org/blog/data-movement-bottlenecks-scaling-past-1e28-flop
https://epochai.org/blog/data-movement-bottlenecks-scaling-past-1e28-flop

Published as a conference paper at ICLR 2025

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour, 2018.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jacob Hilton, Karl Cobbe, and John Schulman. Batch size-invariance for policy optimization. Ad-
vances in Neural Information Processing Systems, 35:17086–17098, 2022.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022a.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35:30016–30030, 2022b.

Shengding Hu, Yuge Tu, Xu Han, Ganqu Cui, Chaoqun He, Weilin Zhao, Xiang Long, Zhi Zheng,
Yewei Fang, Yuxiang Huang, Xinrong Zhang, Zhen Leng Thai, Chongyi Wang, Yuan Yao,
Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng, da-
hai li, Zhiyuan Liu, and Maosong Sun. MiniCPM: Unveiling the potential of small language
models with scalable training strategies. 2024.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations, 2024.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Paralleliz-
ing stochastic gradient descent for least squares regression: mini-batching, averaging, and model
misspecification. Journal of machine learning research, 18(223):1–42, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyz-
ing and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

12

http://distill.pub/2017/momentum

Published as a conference paper at ICLR 2025

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks. arXiv preprint arXiv:2305.17212, 2023.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling sgd with stochastic
differential equations (sdes). Advances in Neural Information Processing Systems, 34:12712–
12725, 2021.

Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear
regression: Compute, parameters, and data. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
Xing. Llm360: Towards fully transparent open-source llms, 2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2022.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effec-
tiveness of sgd in modern over-parametrized learning. In International Conference on Machine
Learning, pp. 3325–3334. PMLR, 2018.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Sean McLeish, John Kirchenbauer, David Yu Miller, Siddharth Singh, Abhinav Bhatele, Micah
Goldblum, Ashwinee Panda, and Tom Goldstein. Gemstones: A model suite for multi-faceted
scaling laws. arXiv preprint arXiv:2502.06857, 2025.

Depen Morwani, Nikhil Vyas, Hanlin Zhang, and Sham Kakade. Connections between schedule-
free optimizers, ademamix, and accelerated sgd variants. arXiv preprint arXiv:2502.02431, 2025.

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Noua-
mane Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language
models. arXiv preprint arXiv:2305.16264, 2023.

Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+ 3 phases of compute-
optimal neural scaling laws. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Tim Pearce and Jinyeop Song. Reconciling kaplan and chinchilla scaling laws. arXiv preprint
arXiv:2406.12907, 2024.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146,
2024.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAI Blog Post, 2018. URL https://openai.com/
index/language-unsupervised/.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

13

https://openai.com/index/language-unsupervised/
https://openai.com/index/language-unsupervised/

Published as a conference paper at ICLR 2025

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. arXiv preprint arXiv:1710.06451, 2017.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning rate,
increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using deep-
speed and megatron to train megatron-turing nlg 530b, a large-scale generative language model.
arXiv preprint arXiv:2201.11990, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cen-
giz Pehlevan. Feature-learning networks are consistent across widths at realistic scales. 2023.

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D. Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-dickstein,
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies for large-scale
transformer training instabilities, 2023.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite depth neural networks. 2024.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M. Susskind. Stabilizing transformer training by preventing atten-
tion entropy collapse. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 40770–40803.
PMLR, 23–29 Jul 2023.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Neural Information Processing Systems, 2022.

14

Published as a conference paper at ICLR 2025

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Benign over-
fitting of constant-stepsize sgd for linear regression. Journal of Machine Learning Research, 24
(326):1–58, 2023.

15

Published as a conference paper at ICLR 2025

Appendix

Table of Contents
A Training Dynamics 17

B Additional Ablation Studies on Studying Adam Optimizer 19

C Results Including Small Batch Sizes 20

D Additional Details on Experiments 21

E Additional Details on Scaling Laws 23

F Reproducibility 24

G Complete Proofs in Section 4.2 24

16

Published as a conference paper at ICLR 2025

A TRAINING DYNAMICS

A simple strategy for setting warmup steps. To further prove that the critical batch size
actually exists and the saturation of large batch sizes is not an artifact of not training well
with proper hyper-paragrams, we take into account the warmup fraction in training as well:

211 212 213

Batch Size (2x)
11.2

11.4

11.6

11.8

12.0

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.24
Warmup Steps

0.15
0.25
0.35

Figure 7: Ablation of warmup steps
used in the linear LR warmup stage for
large batch sizes.

We sweep over warmup step ratios (how many fraction
of training steps do we need to linearly scale the learn-
ing rate from zero) over 0.25 and 0.1 and find that 0.25
works best for 85M models. Therefore, we fix this num-
ber of warmup steps to be 0.25 of the tChin for future ex-
periments. For 151M models, we sweep over the frac-
tion of warmup steps in {0.15, 0.25, 0.35}. We show in
Figure 7 that using a warmup ratio of 0.25 can be a rea-
sonable design choice as it enjoys consistently better per-
formance than 0.15 yet only slightly underperforms 0.35.
After we find that setting the warmup steps according to
this heuristic, we use the ratio proportionally for all the
other model sizes. This strategy has also been shown to
be effective in (Porian et al., 2024).

Examining the last part of training. By closely exam-
ining the final stages of the training process (Figure 8),
it becomes apparent that applying Exponentially Weighted Averages (EWA) can help smooth out
noise, allowing the optimization to converge to the target loss more efficiently. For example, a very
high EWA decay rate would be needed even for a 1.2B model with a moderate batch size of 1024.
Moreover, we observe that the optimization process is notably influenced by the final phase of train-
ing. For instance, by step 10,000, most runs achieve a validation loss below 3.2 (Figure 8a), and
similarly, a loss below 2.8 is reached by step 30,000 (Figure 8b). However, to reach the target loss
of 2.736, the difference between the best and second-best runs grows substantially, with the best run
requiring over 5,000 fewer steps.

0 10000 20000 30000 40000 50000 60000
Training Steps

3

4

5

6

Va
lid

at
io

n
Lo

ss

2.736

Evaluation Trajectories (Batch Size 1024)
EWA

0.9999
0.9995

0.9992
0.998

40000 50000 60000
2.70

2.75

2.80

2.736

(a) EWA Ablation

0 10000 20000 30000 40000 50000 60000
Training Steps

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

2.736

Evaluation Trajectories (Batch Size 1024)
Adam 2

0.95
0.99

0.999
0.9999

40000 45000 50000 55000
2.70

2.75

2.80

2.736

(b) β2 Ablation

Figure 8: A large enough EWA decay rate τ and Adam β2 is important for long-duration
training. We plot the evaluation curves of 1.2B models, as in Chinchilla settings, we scale up data
size proportionally to model size. When increasing the number of training tokens, it is crucial to
carefully set appropriate values for both β2 and τ to effectively account for efficiency.

Scheduler comparison for other batch sizes. In Figure 9, we include more comparisons on differ-
ent schedulers that are reported in the main text (Figure 1). Overall, our Constant+EWA performs
competitively with cosine scheduling and outperforms WSD scheduling, especially for large batch
size regimes. Note that we sweep over the decay steps as 0.1, 0.2, 0.3× total training steps for WSD
scheduling. We tune cosine scheduling by conducting sweeps over various maximum optimization
steps to identify the optimal value, and then rerun the training using this step count. This approach
ensures that the model reaches the target loss near the end of training, optimizing the performance
of learning rate decay. For schedule-free optimizers, we tune the β1 0.9, 0.95, 0.98. Under small

17

Published as a conference paper at ICLR 2025

batch sizes, the schedule-free optimizer (Defazio et al., 2024) is a competitive baseline but it is
significantly worse for batch sizes larger than 1024.

0 20000 40000 60000 80000 100000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 64)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(a) Batch size 64

0 10000 20000 30000 40000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 128)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(b) Batch size 128

0 5000 10000 15000 20000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 256)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(c) Batch size 256

0 2000 4000 6000 8000 10000 12000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 512)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(d) Batch size 512

0 2000 4000 6000 8000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 1024)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(e) Batch size 1024

0 1000 2000 3000 4000 5000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 2048)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(f) Batch size 2048

0 1000 2000 3000 4000
Training Steps

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss

3.24

Evaluation Trajectories (Batch Size 4096)
Scheduler
WSD
Cosine
Schedule Free
Constant+EWA

(g) Batch size 4096

Figure 9: Scheduler comparison for different batch sizes. All are with model size 151M.

Longer training requires higher EWA decay rate τ . Throughout the paper, we adopt a learn-
ing rate of 0.00316 across most experiments, but it is unclear whether that would be sub-optimal,
especially since training with longer duration may require a lower learning rate as suggested in
(DeepSeek-AI et al., 2024). Therefore, we justify our design decision on tuning EWA decay
rate for simulating learning rate decay on different training durations by conducting the follow-
ing experiments on a series of 151M models with (a) batch size 256, 0.5× Chinchilla tokens; (b)
batch size 256, 20× Chinchilla tokens; (c) batch size 2048, 20× Chinchilla tokens, all with learn-
ing rate swept over {0.00316, 0.00158, 0.01264, 0.00632, 0.00075} and EWA decay rate τ over
{0.99, 0.9968, 0.999, 0.99968, 0.9999}. We set the number of warmup steps to be 0.25 of the total
steps for (a) and 0.05 for (b) and (c). The results in Figure 10 denote the validation loss at the end
of the training, which consistently show that within each group of experiments, a learning rate of
0.00316 we use throughout the paper is consistently the best. Moreover, when enlarging the training
data size from 0.5× Chinchilla tokens to 20×, the optimal EWA decay rate value τ would increase as
well. This is also justified in the results presented in Figure 8 and Table 4 which indicate that longer
training durations may benefit from a higher EWA decay rate to improve optimization performance.

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

0.
99

0.
99

68
0.

99
9

0.
99

96
8

0.
99

99
EW

A
De

ca
y

Ra
te

3.3984 3.3787 3.3780 3.3905 3.3998

3.3809 3.3605 3.3598 3.3726 3.3822

3.3757 3.3535 3.3521 3.3651 3.3749

3.4138 3.4036 3.4368 3.4184 3.4138

3.5058 3.6024 3.6383 3.6545 3.6274

(a) Batch Size 256, Data Size 0.5CChinN

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

3.0122 3.0333 3.0082 3.0164 3.0157

3.0050 3.0245 3.0015 3.0102 3.0094

2.9972 3.0156 2.9951 3.0032 3.0026

2.9903 3.0114 2.9890 2.9967 2.9962

2.9853 3.0088 2.9842 2.9906 2.9914

(b) Batch Size 256, Data Size 20CChinN

0.00075 0.00158 0.00316 0.00632 0.01264
Learning Rate

2.9934 2.9794 2.9765 2.9791 2.9911

2.9867 2.9729 2.9702 2.9729 2.9849

2.9812 2.9674 2.9648 2.9677 2.9796

2.9785 2.9645 2.9615 2.9648 2.9765

2.9961 2.9763 2.9674 2.9771 2.9910

(c) Batch Size 2048, Data Size 20CChinN

3.40

3.45

3.50

3.55

3.60

3.65

2.99

3.00

3.01

3.02

3.03

2.965

2.970

2.975

2.980

2.985

2.990

2.995

Figure 10: Impact of learning rate and EWA decay rate across various training durations. We report
the validation loss at the end of training for each hyper-parameter combination. N denotes the
model size. The best loss is marked by a symbol. Longer training durations, as seen in (b) and
(c), necessitate a higher EWA decay rate for a given learning rate.

18

Published as a conference paper at ICLR 2025

Effects of weight decay. Though weight decay (WD) does not provide generalization bene-
fits for pre-training, previous works have shown that it might improve convergence in language
model training (Hoffmann et al., 2022a; Kosson et al., 2023). We adopt the default decoupled
weight decay (Loshchilov, 2017) implementation in PyTorch and sweep over weight decay rate
{0.01, 0.0316, 0.1} for LR 0.01, {0.0316, 0.1, 0.316} for LR 0.00316. We show in Figure 11 that
for constant learning rate with EWA, while weight decay offers a slight performance improvement,
it has little effect on the critical batch size, which remains our primary focus. Consequently, we
disable weight decay throughout the paper.

B ADDITIONAL ABLATION STUDIES ON STUDYING ADAM OPTIMIZER

We employ Adam as the default optimizer for large-scale model training throughout the paper.

29 210 211 212

Batch Size (2x)
11

12

13

14

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.24

w/ WD
w/o WD

Figure 11: Comparison of effi-
ciency with and without weight
decay

In this section, we focus on two key hyper-parameters that sig-
nificantly affect optimization efficiency and examine their im-
pact in detail.

The effect of momentum β1 of Adam on CBS. We sweep over
several momentum β1 values in Adam for all learning rates and
batch sizes: [0, 0.8, 0.9, 0.95, 0.975]. Overall, Figure 12 shows
that language model pre-training may need a large momentum
value to be efficient and β1 = 0.95 is slightly better (<0.02 gain
on eval loss) than 0.9 for batch sizes. We observe that in small
batch size regimes like 26, the performance gap between opti-
mizing with and without momentum β1 is small while the gap
increases as we double the batch size (Shallue et al., 2019).
Moreover, we show that momentum 0.9 and 0.975 have simi-
lar effects on the number of steps needed to reach a target val-
idation loss and critical batch sizes. On the other hand, small
momentum, especially no momentum, would hurt the optimiza-
tion. This aligns well with the extensively studied acceleration
of momentum in SGD with momentum (Goh, 2017).

26 27 28 29 210 211 212 213

Batch Size (2x)

11

12

13

14

15

16

lo
g 2

(#
St

ep
s)

Target Validation Loss 3.3
Momentum 1

0
0.8
0.9
0.95
0.975

Figure 12: Ablation results on momentum. All data points are trained using 151M models and a
total number of optimization steps to reach a fixed target loss is reported.

The effect of the second moment decay rate β2 in Adam. As reported in Appendix Table 4,
we found that β2 in Adam, the exponential decay rate of the second momentum estimate of gra-
dients to smooth out the model update, also has significant effects on training for small batch
sizes. This might be because gradients in small-batch training are sparser. Specifically, we ab-
late β2 ∈ [0.95, 0.99, 0.999] for all model sizes and batch sizes in [64, 128, 256, 512]. We find that
the default value 0.95 in previous works that are set for millions of tokens batch size training might
be sub-optimal (Smith et al., 2022; Wortsman et al., 2023; Groeneveld et al., 2024). For large batch
sizes [1024, 2048, 4096, 8192], we experiment with a small β2 = 0.9 with the model size 151M,
finding that it is worse than the default 0.95 we choose. When training a larger model with a longer
duration (e.g. Chinchilla settings in Appendix Figure 8b), a high enough β2 is necessary.

19

Published as a conference paper at ICLR 2025

Takeaway on Adam optimizer:

• Momentum β1 is important in improving training efficiency: a value of 0.95 consistently performs
well across various model sizes and batch sizes. However, setting it too high (0.975) or too low
(0.8) leads to sub-optimal results.

• Smaller β2 = 0.95 is helpful for large-batch training over short durations, while a large β2 =

0.99, 0.999 or 0.9995 is helpful for long-duration training and substantially improves small batch
size training (<262k tokens).

C RESULTS INCLUDING SMALL BATCH SIZES

For completeness, we demonstrate linear scaling behavior in small-batch regimes across all model
sizes (Figure 13). This shows that all models exhibit linear scaling (with reasonable deviations) with
a batch size ranging from 26 to 210, where doubling the batch size roughly halves the number of
steps needed to reach a target validation loss, as determined by the optimal run with a batch size of
256 at the Chinchilla step.

26 27 28 29 210

Batch Size (2x)
4

3

2

1

0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

64
) Chinchilla Compute-optimal Target Validation Loss

Model Size (Target Loss)
85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

Figure 13: Linear scaling regimes: doubling the batch size can halve the optimization steps to
reach the target loss.

Moreover, we include all the results that contain the smallest several batch sizes (Figure 14). Note
that the denominator is the number of steps to reach target loss at batch size 64 instead of 256 now.
Now we can observe clear linear scaling of all the model sizes till around 210 for model sizes, while
the largest three model sizes maintain linear scaling till almost 211. There are minor differences
with the main plot in Figure 1 because of the difficulty of optimizing with very small batch sizes like
64 but it does not affect the conclusions and takeaways we would like to convey. Since our focus
is primarily on large batch sizes, we consistently use 29 as the starting batch size throughout the
main text. Furthermore, recall that we set Bopt = 28 when selecting the target loss. Figure 13 and
Figure 14 confirm that 28 falls within the linear scaling regime, which justifies our design choice.

20

Published as a conference paper at ICLR 2025

26 27 28 29 210 211 212 213 214

Batch Size (2x)
7
6
5
4
3
2
1
0

lo
g 2

(#
St

ep
s/

#S
te

ps
 a

t B
S

64
) Chinchilla Compute-optimal Target Validation Loss

Model Size (Target Loss)
85M (3.42)
151M (3.24)
302M (3.07)
604M (2.92)
1.2B (2.736)

Figure 14: Full results for different models in Chinchilla settings. We include both a largest batch
size 214 start the plot from several small batch sizes 26, 27, 28. Relative number of steps w.r.t. batch
size 26 is reported.

D ADDITIONAL DETAILS ON EXPERIMENTS

Optimizer setup. For optimizers, we try both SGD (Robbins & Monro, 1951) and Adam (Kingma,
2014) and find that SGD without momentum is significantly worse so we use Adam only for all
the experiments. We disable weight decay in Adam as we observe that it does not significantly
affect critical batch size (Figure 11). For generality, though the training set C4 might contain low-
quality or duplicated documents that can potentially lead to training instability (Muennighoff et al.,
2023; Wortsman et al., 2023), we observed that these issues did not affect our primary target of
interest—namely, the final optimization efficiency. As a result, we didn’t explicitly adopt additional
normalization like QK normalization (Dehghani et al., 2023; Zhai et al., 2023) or a z-loss (Chowd-
hery et al., 2022) to mitigate loss spikes.2 We set ϵ to be 1e-8 by default, and refer to momentum as
β1 in Adam by default throughout the paper.

Chinchilla steps for batch size 256 that determine the target losses. For each model size, we
aim to establish a target validation loss by training with a global batch size of 256 on a Chinchilla-
optimal amount of tokens. Given the context length of 512 used throughout, we can determine the
number of training steps required based on the following Table 1. We use a token-to-model size ratio
CChin of approximately 20.34 to study the halving effects of doubling the batch size and to observe
its impact on the critical batch size.

Table 1: Chinchilla steps for determining the target loss for each model size.

Model Size 85M 151M 302M 604M 1.2B
Chinchilla Step 13193 23438 46875 93750 187500

Evaluation data size and frequency. To ensure frequent model evaluation on a holdout C4
validation set, it is important to maintain a balance between reliability and efficiency. A larger
evaluation set size can provide more stable and reliable performance metrics, but it must also be
efficient to maintain practicality in each run. Using 151M models, we evaluated the variance across
different token counts: 2.17e-4 for 327,680 tokens, 4.53e-5 for 1,638,400 tokens, and 7.65e-6 for
3,276,800 tokens. Based on these results, we have set the default number of evaluation batches to

2We observe irregular loss spikes despite adopting gradient clipping, but most runs can still be optimized
well in the end.

21

Published as a conference paper at ICLR 2025

100. It is important to note that the total number of training steps varies across different batch sizes.
To address this, we implement a hybrid evaluation protocol: the model is evaluated at intervals of 2i
(where i ∈ Z), every 1,000 steps, and at 0.7n, 0.75n, 0.8n, . . ., up to n during the last 30% of the
total steps n. This approach ensures more frequent evaluations toward the end of training, allowing
for a more accurate assessment of the total training steps needed to achieve a target evaluation loss.

Hyper-parameter search details. Due to compute constraints, we cannot perform an exhaustive
search over all hyper-parameter configurations. Instead, as suggested by the ablation studies in the
main text, we gain insights into hyper-parameters by training smaller proxy models (151M param-
eters). We optimize the following hyper-parameters in sequence: learning rate, momentum (β1),
warmup steps, scheduler, and context length. Additionally, we tune β2 and τ for each model size
and batch size. Specifically, for large batch sizes (>1024), a smaller β2 and larger τ tend to be more
effective, while the opposite holds true for smaller batch sizes, aligning with findings in (Porian
et al., 2024; Zhang et al., 2022).

Below we show the hyper-parameter choices (Table 3) and optimal ones (Table 4) we report in our
main plot for studying CBS with respect to model sizes. Additionally, Table 5 presents various
model size configurations and scaling methods, with models in bold indicating those used in our
controlled experiments.

Table 2: Model architecture details.

Model Size nheads nlayers dmodel Hidden size of MLPs
85M 12 12 768 3072
151M 16 12 1024 4096
302M 16 24 1024 4096
604M 16 12 2048 8192
1.2B 32 24 2048 8192

Table 3: Sweeping experiments settings. Default values after the hyper-parameter search are in Bold
font. Bold font means the default hyper-parameters that can closely reproduce our results without
extensive tuning. Not bolding implies a full sweep for each model scale. The values in parentheses
were not used for every sweep: for the 151M models, we tested learning rates of 3.16e-4 and 1e-2,
but found that with EWA, these performed worse than 3.16e-3. The EWA decay rate of 0.99995 is
only used for long 1.2B runs.

Hyper-parameter Values
Model Size 85M, 151M, 302M, 604M, 1.2B
Batch size 26 ∼ 214

Learning rate (3.16e-4), 1e-3, 3.16e-3, (1e-2)
Learning rate scheduler constant+EWA, cosine, WSD, schedule free

Warmup fraction 0.15, 0.25, 0.35
Momentum β1 0, 0.8, 0.9, 0.95, 0.975

Adam β2 0.95, 0.99, 0.995, 0.999, 0.9995
EWA decay rate τ 0.95, 0.98, 0.99, 0.995, 0.998, 0.999, 0.9995, (0.99995)

Context Length 512, 1024, 2048, 4096
Grad clipping norm 1.0

22

Published as a conference paper at ICLR 2025

Table 4: Optimal hyper-parameters for different model sizes. The optimal means the number of
steps to reach a target validation loss. We refer β2 as the exponential decay rate for the second-
moment estimates in Adam, τ as the interpolation parameters in EWA (ξt+1 = τ · ξt +(1− τ) · θt).
All the optimal runs are trained with momentum β1 = 0.95 and learning rate 3.16e-3.

Batch Size β2 τ

85M
64 0.999 0.9995

128 0.999 0.9995
256 0.999 0.9995
512 0.999 0.998
1024 0.95 0.99
2048 0.95 0.99
4096 0.95 0.99
8192 0.95 0.98

16384 0.95 0.98

Batch Size β2 τ

151M
64 0.99 0.998

128 0.99 0.998
256 0.99 0.998
512 0.99 0.998
1024 0.95 0.95
2048 0.99 0.99
4096 0.99 0.99
8192 0.95 0.95

16384 0.99 0.99

Batch Size β2 τ

302M
64 0.999 0.9995
128 0.999 0.9995
256 0.995 0.9995
512 0.99 0.9995

1024 0.99 0.999
2048 0.95 0.998
4096 0.95 0.995
8192 0.95 0.99

16384 0.99 0.99

Batch Size β2 τ

604M
64 0.9995 0.9995

128 0.9995 0.9995
256 0.9995 0.9995
512 0.9995 0.9995
1024 0.999 0.999
2048 0.998 0.998
4096 0.995 0.995
8192 0.99 0.99

16384 0.99 0.995

Batch Size β2 τ

1.2B
64 0.999 0.9995

128 0.999 0.9995
256 0.995 0.9995
512 0.99 0.9995

1024 0.99 0.999
2048 0.95 0.998
4096 0.95 0.995
8192 0.95 0.99
16384 0.95 0.99

Table 5: Model architectures of the ablation study on the scaling of Depth and Width. Only models
highlighted in bold are used, as they are more comparable in terms of model size.

Model Size nheads nlayers dmodel MLPhidden
151M 16 12 1024 4096

302.09M 16 24 1024 4096
604.18M 16 48 1024 4096
1.208B 16 96 1024 4096

Model Size nheads nlayers dmodel MLPhidden
151M 16 12 1024 4096

339.81M 24 12 1536 6144
604.08M 32 12 2048 8192
943.84M 40 12 2560 10240

E ADDITIONAL DETAILS ON SCALING LAWS

We first present the fitted power law relationship between the number of optimization steps required
to reach the target loss and the batch size (Table 6). All the results are obtained by solving the
equation in Section 3.2 via scipy.optimize.fsolve using default hyper-parameters.

We report forecasting results for various model and token sizes, extending beyond the plots presented
in the main text (Table 7). For each row, increasing either model size or token size shows that the
forecasting results remain comparable.

Note that our definition of CBS and its scaling law have a similar interpretation with the one in
(McCandlish et al., 2018; Kaplan et al., 2020) as Emin

Smin
, Smin denotes the minimum possible number

23

Published as a conference paper at ICLR 2025

Table 6: Fitted scaling law parameters for Chinchilla settings when fixing α = 1: log(Y) = log(a+
b

Bα), where Y is the number of steps to reach Chinchilla target loss, B denotes the batch size, and
the critical batch size is solved as B∗ = (

b+5a×1.2×Bopt

5a)
1
α , Bopt = 256.

(a) Fixed α = 1 (default)

Model Size a b α log2(B
∗)

85M 1293.83 2834258.08 1 9.54
151M 1752.42 5677478.78 1 9.90
302M 2095.35 11383269.89 1 10.44
604M 2459.93 19449688.59 1 10.88
1.2B 3897.31 43381130.22 1 11.31

(b) Fitted α

Model Size a b α log2(B
∗)

85M 1348.31 3386537.23 1.03 9.34
151M 1943.53 8259867.95 1.07 9.51
302M 2281.48 13977184.09 1.04 10.20
604M 2733.81 23738850.26 1.04 10.62
1.2B 3388.53 36748556.71 0.97 11.62

Table 7: Additional forecasted CBS results for larger scale. Recall that we fit B∗ = 93.20×N0.47,
B∗ = 22.91×D0.47 where model size N is in millions and data size D is in billions.

Model Size Forecasted CBS log2(B
∗)

1.5B 2862.17 11.48
2B 3274.93 11.68

2.5B 3635.65 11.83
3B 3959.69 11.95

3.5B 4256.09 12.06
4B 4530.72 12.15

4.5B 4787.63 12.23
5B 5029.77 12.30

5.5B 5259.34 12.36
6B 5478.06 12.42

Token Size Forecasted CBS log2(B
∗)

30B 2833.31 11.47
40B 3240.99 11.66
50B 3597.20 11.81
60B 3917.12 11.94
70B 4209.70 12.04
80B 4480.76 12.13
90B 4734.29 12.21

100B 4973.22 12.28
110B 5199.73 12.34
120B 5415.52 12.40

of steps taken to reach target loss and Emin is the minimum possible number of training examples
processed to reach target loss. In particular, recall that critical batch size can be analytically derived
as B∗ = b

5a + 1.2Bopt. This relationship reflects the point where batch size scaling incurs a 20%
overhead when the batch size is doubled while (McCandlish et al., 2018). Here, the parameter b
plays a role analogous to Emin, while a corresponds to Smin, depending on the specific overhead
chosen to characterize the diminishing returns from increasing the batch size. We also note that
the diminishing return overhead can vary, leading to the following observations: 10% : B∗ =
20.67×D0.48, 20% : B∗ = 22.91×D0.47, 50% : B∗ = 30.50×D0.44.

F REPRODUCIBILITY

In our training environment, we verify that, across multiple model sizes (2.4M, 9.4M, 19M, 42M,
85M, 151M, 302M), we can (approximately) reproduce the final evaluation loss of Figure 1 in
(Wortsman et al., 2023). We use nodes equipped with 8 A100 GPUs, each with 80GiB of mem-
ory, for model training. We built our training framework using the Olmo training suite (Groeneveld
et al., 2024).

G COMPLETE PROOFS IN SECTION 4.2

Proof of Theorem 3. The work by Zou et al. (2023) studied SGD with batch size 1 for linear regres-
sion and established matching (up to a constant factor) upper and lower bounds on the excess risk.
Our theorem generalizes theirs by further considering the effect of batch size. Our analysis uses
their intermediate results through appropriate reductions. We first define a set of operations on PSD
matrices as follows:

I = I⊗ I, MB = E
[(

1

B

∑
i∈I

xix
⊤
i

)
⊗
(

1

B

∑
i∈I

xix
⊤
i

)]
, M̃ = H⊗H,

T B = H⊗ I+ I⊗H− γMB, T̃ = H⊗ I+ I⊗H− γH⊗H,

24

Published as a conference paper at ICLR 2025

where I is an index set of B independent data. Note that(
MB − M̃

)
◦A = Cov

(
1

B

∑
i∈I

xix
⊤
i A

1/2

)
=

1

B
Cov(xx⊤A1/2).

For Gaussian data x ∈ N (0,H), we have

Cov(xx⊤A1/2) = Ex∈N (0,H)

[
xx⊤Axx⊤]−HAH = 2tr(HA)H.

Together, we obtain (
MB − M̃

)
◦A =

2

B
tr(HA)H.

Now we compute the error propagation along the SGD steps. Let ηt = wt −w∗ be the error vector.
For convenience, let Gt = 1

B

∑
i∈It

xix
⊤
i be the empirical covariance of an independent batch.

Then we can define the bias and variance iterates as

ηbias
t =

(
I− γGt

)
ηbias
t−1 , t = 1, . . . , n− 1, ηbias

0 = w0 −w∗,

and

ηvariance
t =

(
I− γGt

)
ηvariance
t−1 + γ · 1

B

∑
i∈It

ξixi, t = 1, . . . , n− 1, ηvariance
0 = 0,

where ξi = yi − x⊤
i w

∗ ∼ N (0, σ2). We then compute the covariance matrices of these two error
iterates

BB
t := E[ηbias

t ⊗ ηbias
t], CB

t := E[ηvariance
t ⊗ ηvariance

t].

Using the operators, these covariance matrices take the following iterative updates:

BB
0 = η0 ⊗ η0, BB

t = EGt

[
(I− γGt)B

B
t−1(I− γGt)

]
=

(
I − γT B

)
◦BB

t−1,

CB
0 = 0, CB

t = EGt

[
(I− γGt)C

B
t−1(I− γGt)

]
+

γ2

B2
E
[(∑

i∈It

ξixi

)(∑
i∈It

ξixi

)⊤]

=
(
I − γT B

)
◦CB

t−1 +
γ2σ2

B
H,

where the last equation is because

E
[(∑

i∈It

ξixi

)(∑
i∈It

ξixi

)⊤]
= E

[∑
i∈It

ξ2i xix
⊤
i

]
= σ2BH.

Recall that w̄ = 1
n

∑n−1
t=0 wt. First, using Lemmas B.3 and C.1 in (Zou et al., 2023), we get the

following bias-variance decomposition (note that our setting is well-specified):

E[R(w̄)]−minR(·) = bias + variance,

where

bias :=
1

2
⟨H,E[η̄bias ⊗ η̄bias]⟩


≤ 1

n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,BB

t

〉
,

≥ 1

2n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,BB

t

〉
,

variance :=
1

2
⟨H,E[η̄variance ⊗ η̄variance]


≤ 1

n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,CB

t

〉
,

≥ 1

2n2

n−1∑
t=0

n−1∑
k=t

〈
(I− γH)k−tH,CB

t

〉
,

25

Published as a conference paper at ICLR 2025

where

η̄bias :=
1

n

n−1∑
t=0

η̄bias
t , η̄variance :=

1

n

n−1∑
t=0

η̄variance
t .

The remaining efforts are to characterize BB
t and CB

t for a batch size B. For the bias part, we have

BB
t =

(
I − γT B

)
◦BB

t−1

=
(
I − γT̃

)
◦BB

t−1 + γ2
(
MB − M̃

)
◦BB

t−1

=
(
I − γT̃

)
◦BB

t−1 +
2γ2

B
tr
(
HBB

t−1

)
H, t = 1, . . . , n− 1.

For the variance part, we have

CB
t = (I − γT B) ◦CB

t−1 +
γ2σ2

B
H

= (I − γT̃) ◦CB
t−1 + γ2

(
MB − M̃

)
◦Ct−1 +

γ2σ2

B
H

= (I − γT̃) ◦CB
t−1 +

2γ2

B
tr
(
HCB

t−1

)
H+

γ2σ2

B
H, t = 1, . . . , n− 1.

To obtain an upper bound on excess risk, we replace α in Assumption 2.2 of Zou et al. (2023) with
2/B, the number of steps with n := D/B, and the noise level σ2 with σ2/B, then apply the proof
of Theorem 2.1. Similarly, for a lower bound on excess risk, we replace β in Assumption 2.4 with
2/B, the number of steps with n := T/B, and the noise level σ2 with σ2/B, and apply the proof
of Theorem 2.2. By doing the above, we obtain the following matching up to constant factors upper
and lower bounds on the excess risk for mini-batch SGD:

ER(w̄)−minR(·) ≂
(

1

nγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
1/B

(
∥w0 −w∗∥2I0:k∗ + nγ∥w0 −w∗∥2Hk∗:∞

)
nγ

·
k∗ + (nγ)2

∑
i>k∗ λ2

i

n

+
σ2

B
·
k∗ + (nγ)2

∑
i>k∗ λ2

i

n
,

where k∗ = max{k : λk ≥ 1/(nγ)}, and a sufficient stepsize condition (see Lemma 4.1, Theorems
2.1 and 2.2 in Zou et al. (2023)) is

0 < γ ≲ min

{
1

αtr(H)
,

1

∥H∥2

}
≂ min

{
B

tr(H)
,

1

∥H∥2

}
.

The assumption ∥w0 −w∗∥2H ≲ σ2 implies

∥w0 −w∗∥2I0:k∗ + nγ∥w0 −w∗∥2Hk∗:∞

nγ
≤ ∥w0 −w∗∥2H ≲ σ2,

which further simplifies the excess risk bounds to

ER(w̄)−minR(·) ≂
(

1

nγ

)2

∥w0 −w∗∥2
H−1

0:k∗
+ ∥w0 −w∗∥2Hk∗:∞

+
σ2

B
·
k∗ + (nγ)2

∑
i>k∗ λ2

i

n
.

Finally, replacing n = D/B in the bounds completes our proof.

26

Published as a conference paper at ICLR 2025

Proof of Corollary 2. By λi ≂ i−a, we can solve for k∗ to obtain k∗ ≂ (Dγ/B)1/a. We then
calculate the expected excess risk by Theorem 3 using the capacity and source conditions:

ER(w̄)− σ2 ≂ E
((

B

Dγ

)2

∥w∗∥2
H−1

0:k∗
+ ∥w∗∥2Hk∗:∞

)
+

k∗ + (Dγ/B)2
∑

i>k∗ λ2
i

D

≂
(

B

Dγ

)2 ∑
i≤k∗

i−b+2a +
∑
i>k∗

i−b +
1

D

(
k∗ +

(
Dγ

B

)2 ∑
i>k∗

i−2a

)

≂
(

B

Dγ

)2

max
{
(k∗)1−b+2a, 1}+ (k∗)1−b +

1

D

(
k∗ +

(
Dγ

B

)2

(k∗)1−2a

)
≂ max

{(
Dγ

B

)(1−b)/a

,

(
Dγ

B

)−2}
+

1

D

(
Dγ

B

)1/a

.

We then discuss three cases.

1. When b ≤ a, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)(1−b)/a

+
1

D

(
Dγ

B

)1/a

≂
(
Dγ

B

)(1−b)/a

,

where the last equality is because γ/B ≲ 1 so the first term dominates the second term. So the
optimal hyper-parameters are γ∗ ≂ 1 and B∗ = 1.

2. When a < b < 2a+ 1, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)(1−b)/a

+
1

D

(
Dγ

B

)1/a

,

so the optimal hyper-parameters are

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ Da/b−1.

3. When b > 2a+ 1, we have

ER(w̄)− σ2 ≂
(
Dγ

B

)−2

+
1

D

(
Dγ

B

)1/a

,

so the optimal hyper-parameters are

0 < γ∗ ≲ 1, 1 ≤ B∗ ≤ D, γ∗/B∗ ≂ Da/(2a+1)−1.

Combining the second and third cases completes the proof.

27

	Introduction
	Empirical Takeaways
	Theoretical Implications

	Experimental Design and Empirical Findings
	Experimental Settings
	Training Beyond Fixed Durations for Reaching Target Validation Loss
	Ablation on Model Context Length
	Ablation on Model Width and Depth

	Critical Batch Size Scaling Law
	Formal Definition of Critical Batch Size
	Scaling Laws w.r.t. Model Size for Chinchilla-optimal Pre-training
	Decoupling CBS Scaling Laws w.r.t. Data Size and Model Size

	Theory on Scaling of Critical Batch Size
	Fixed Data Size and Scaling Up Model Size
	Fixed Model Size and Scaling up Data Size

	Related Work
	Concluding Remarks
	Appendix
	 toAppendix
	Training Dynamics
	Additional Ablation Studies on Studying Adam Optimizer
	Results Including Small Batch Sizes
	Additional Details on Experiments
	Additional Details on Scaling Laws
	Reproducibility
	Complete Proofs in Section 5.2

