Appendix

In this appendix, Section A summarizes the architecture details of HSV A. Section B provides the key hyperparameter analyses and setting in our experiments.

A Network Topology

Our proposed HSV A consists of two partially-aligned variational autoencoders, which include three encoders (i.e., E_x, E_a, and E_z), and two decoders (i.e., D_x and D_a). As described in the paper that E_x, E_a, E_z, D_x, and D_a are MLP architectures, we present the architecture details of them as shown in Table 3.

| Visual encoder (E_x) | Input: x, size=2048;
hidden layer: Fully connected, neurons=4096; LeakyReLU;
Output: Fully connected, neurons=2048; |
|------------------------|---|
| Semantic encoder (E_a) | Input: x, size=$|Att|$;
hidden layer: Fully connected, neurons=4096; LeakyReLU;
Output: Fully connected, neurons=2048; |
| Classifiers (CLS^1/CLS^2) | Input: $E^x(x)$ or $E^a(a)$, size=2048;
hidden layer: Fully connected, neurons=512; BachNorm, LeakyReLU;
Output: Fully connected, neurons=$|Seen|$; |
| Common encoder (E_z) | Input: $E^x(x)$ or $E^a(a)$, size=2048;
hidden layer: Fully connected, neurons=2048; LeakyReLU;
hidden layer: Fully connected, neurons=64*2; LeakyReLU;
encoding layer: $\mu^x=64$ and $\delta^x=64$, or $\mu^a=64$ and $\delta^a=64$;
Output: Reparametrization, z^x or z^a, neurons=64; |
| Visual decoder (D_x) | Input: z^x, size=64;
hidden layer: Fully connected, neurons=4096; LeakyReLU;
Output: Fully connected, neurons=2048; |
| Semantic decoder (D_a) | Input: z^a, size=64;
hidden layer: Fully connected, neurons=4096; LeakyReLU;
Output: Fully connected, neurons=$|Att|$; |

Table 3: Network topology of HSV A. $|Att|$ is the dimensionality of semantic vectors per class, e.g., $|Att|=312$ in CUB. $|Seen|$ denotes the numbers of seen classes, e.g., $|Seen|=150$ in CUB.

B Hyperparameter Analysis

Features of Per Unseen Class in CZSL Setting (N_u). We evaluate the effect of the number of latent features per unseen class in CZSL. Since we only need to synthesize unseen features of unseen classes for training a classifier, We try a wide range of N_u (i.e., $N_u = \{200, 400, 800, 1200, 1600, 2000\}$) for evaluation on CUB, SUN and AWA1 datasets as shown in Figure 4. Overall, the performance of HSV A is insensitive to the number of latent features per unseen class in CZSL. Targeting on better results, we set N_u as 400, 200 and 800 for CUB, SUN and AWA1, respectively.
Features of Per Seen and Unseen Class in GZSL Setting (N_s and N_u). We analyze the effect of the number of latent features per class in GZSL. We try a wide range of N_s and N_u (i.e., $N_s = \{100, 200, 400\}$ and $N_u = \{100, 200, 400, 800, 1200\}$) for evaluation on CUB and AWA1 datasets, resulting in a total of 15 pairs of (N_s, N_u), as shown in Figure 7. Since the visual features possess more discriminative information, we should set N_u larger than N_s. Compared to HSV A using $N_s/N_u = 1/1$, HSV A improves classification accuracy using $N_s/N_u = 1/2$, achieving top-1 accuracy on unseen classes (Harmonic mean) improvement at least 17.5%(9.5%) and 36.3%(30.5%) on fine-grained dataset (e.g., CUB) and coarse-grained dataset (AWA1), respectively. Note that HSV A achieves better results on seen classes when N_s/N_u is set to larger than 1/2. To trade-off top-1 accuracy on seen and unseen, we set (N_s, N_u) = (200, 400) to conduct all experiments.

Here we show how to set the dimensionality of the latent features in structure- and distribution-aligned common space, denoted as Dim_S and Dim_D, respectively. As shown in Figure 5 and Figure 6, HSV A perform steadily on the coarse-grained dataset (e.g., AWA1) while it is sensitive to Dim_S and Dim_D on fine-grained datasets (e.g., CUB). On the fine-grained datasets, HSV A increases its accuracy on seen classes and decreases its accuracy on unseen classes when Dim_S and Dim_D are increased. We note that HSV A achieves significant results when $Dim_S = 2048$ and $Dim_D = 64$, thus we set Dim_S and Dim_D to 2048 and 64 respectively on CUB and AWA1.
Figure 7: Evaluating the effect of the number of synthesized latent features per seen/unseen class on (a) CUB and (b) AWA1 in GZSL setting.