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ABSTRACT

Recently proposed neural resolution-invariant models, despite their effectiveness
and efficiency, usually require equispaced spatial points of data for solving partial
differential equations. However, sampling in spatial domain is sometimes inevitably
non-equispaced in real-world systems, limiting their applicability. In this paper, we
propose a Non-equispaced Fourier PDE Solver (NFS) with adaptive interpolation
on resampled equispaced points and a variant of Fourier Neural Operators as its
components. Experimental results on complex PDEs demonstrate its advantages
in accuracy and efficiency. Compared with the spatially-equispaced benchmark
methods, it achieves superior performance with 42.85% improvements on MAE,
and is able to handle non-equispaced data with a tiny loss of accuracy. Besides,
NFS as a model with mesh invariant inference ability, can successfully model
turbulent flows in non-equispaced scenarios, with a minor deviation of the error on
unseen spatial points.

1 INTRODUCTION

Solving the partial differential equations (PDEs) holds the key to revealing the underlying mechanisms
and forecasting the future evolution of the systems. Recently, data-driven neural PDE solvers
revolutionize this field by providing fast and accurate solutions for PDEs. Unlike approaches designed
to model one specific instance of PDE (E & Yu, [2017}Bar & Sochen| [2019; [Smith et al., |2020; Pan &
Duraisamy} 2020; |Raissi et al., |2020), neural operators (Guo et al., 2016} |Sirignano & Spiliopoulos,
2018 Bhatnagar et al., 2019; KHOO et al., 2020; |Li et al., |2020bid; Bhattacharya et al., 2021}
Brandstetter et al.| 2022} |Lin et al.,[2022) directly learn the mapping between infinite-dimensional
spaces of functions. They remedy the mesh-dependent nature of the finite-dimensional operators by
producing a single set of network parameters that may be used with different discretizations.

However, a problem still exist — discretization-invariant modeling for non-equispaced data. On one
hand, classical vision models and graph spatio-temporal models are not discretization-invariant, while
the infinite neural operator like FNO (L1 et al., |2020c)) is. On the other hand, despite computational
efficiency, vision models including FNO are equispace-necessary, and limited to handling images
as 2-d regular grids. Therefore, two properties should be available in neural PDE solvers: (/)
discretization-invariance and (2) equispace-unnecessity, and recently proposed methods can be
classified into four types according to the two properties, as shown in Fig. [I]

As discussed, although the equispace-necessary methods enjoy fast parallel computation and low
prediction error, they lack the ability to handle the spatially non-equispaced data. For these reasons,
we aim to design a mesh-invariant model (defined in Fig.[I)) called Non-equispaced Fourier neural
Solver (NFS) with comparably low cost of computation and high accuracy, by lending the powerful
expressivity of FNO and vision models to efficiently solve the complex PDE systems.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM STATEMENT

Let D € R? be the bounded and open spatial domain where 7,-point discretization of the domain D
written as X = {x; = (xl(-l), e ,xl(»d)) : 1 < i < ng} are sampled. The observation of input function
a € A(D;R%) and output u € U(D; R%) on the n; points are denoted by {a(x;), u(x;)}1=,, where
A(D;R%) and U (D; R%) are separable Banach spaces of function taking values in R% and R%
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Figure 1: Four types of methods with or without the two concluded limitations.

respectively. Suppose x ~ p is i.i.d. sampled from the probability measure p supported on D. An
infinite-dimensional neural operator Gy : A(D;R%) — ¢/ (D;R9%) parameterized by § € ©, aims
to build an approximation so that Gyg(a) ~ w. To establish a mesh-invariant operator, X can be
non-equispaced, and the learned Gy should be transferred to an arbitary discretization X’ € D, where
@ € X’ can be not necessarily contained in X . Because we focus on spatially non-equispaced points,
when the PDE system is time-dependent, we assume that timestamps {¢;} are uniformly sampled.

2.2 METHOD PRELIMINARIES

Kernel integral operator method (Li et al.| 2020a) is a family of infinite-dimensional operators,
in which (Gp(a))(z) = Q ov™ o--- o v! o P(a)(x) is formulated as an iterative architecture. A
higher-dimensional representation function is first obtained by v = P(a) € U(D;R%), where P is
a shallow fully-connected network. It is updated by

v (x) == o(Wo'(z) + Kg(a)v'(x)), Ve € D (1)

where ICy : A — L(U) is a kernel integral operator mapping, mapping a to bounded linear operators,
with parameters ¢. W is a linear transform and o is a non-linear activation function. After the final
iteration, @ projects v (x) back to U (D; R%x).

Fourier Neural Operator (FNO) (Li et al.| 2020d) as a member in kernel integral operator methodsLi
et al.|(2020a), updates the representation by applying the convolution theorem as:

Ko(ayo(x) = F~H(F(kg) - F())(x) = F 1 (Ry - F(v))(), @

The discrete Fourier transform of f : D — R% is denoted by F(f)(k) € C%, with F~1 as its
inverse. Ry as the Fourier transform of a periodic kernel function x4, is directly learned as the
parameters in the updating process. Because the sampled spatial points are equispaced in FNO, it
can efficiently conduct fast Fourier transform (FFT) and its inverse (IFFT) to get the Fourier series.

Vision Mixers (Dosovitskiy et al., [ 2020; |Tolstikhin et al., 2021} |Rao et al., [2021; |Guibas et al.,2021)
are a line of models with a stack of (token mixing) - (channel mixing) - (token mixing) as their
network structure for vision tasks. The defined tokens are equivalent to equispaced spatial points in
the former definition In specific, VIT uses a non-Mercer kernel function (Wright & Gonzalez, [2021)
K¢ to adaptively learn the pattern of message-passing through the iterative updating process

v () = (ChannelMix o TokenMix(v'(x)));
TokenMix (v Z Ke(x,x;, v(x),v(x;)) - v(z;);  ChannelMix(v(z)) = Wo(x), G)

where W is a linear transform called channel mixing layer because it transforms the input on the
channel of an image whose dimension is equivalent to function dimension d ;. We omit the residual
connection in Eq. (1) for simplicity. Note that the FNO can be regarded as a member of the family
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adaptively learned rather than predefined, and the interpolated equispaced signals are processed
through a stack of FNO layers with the same structure of Vision Mixers.

of Vision Mixers (See Appendix [A). However, the powerful fitting ability and efficiency of Vision
Mixers are limited to being applied to non-equispaced spatial points.

Graph spatio-temporal models (Seo et al., 2016;|L1 et al., 2018 |Bai et al., | 2020; [Lin et al., |2021) as
a solution to model non-equispaced spatial points, model interaction patterns among spatial points
in a graph message-passing way, whose mechanism is similar to the token mixing in Vision Mixers.
However, they suffer from high computational complexity and unsatisfactory accuracy.

3 PROPOSED METHOD

3.1 NON-EQUISPACED FOURIER TRANSFORM

Non-equispaced FFTs usually rely on a mixture of interpolation and the judicious use of FFT, where
the calculations of interpolation are no more than O(n, logn,) operations (Kalamkar et al.,[2012;
Cheema et al.|2017). For example, Gaussian-based interpolation (Kestur et al.,[2010) is commonly
used. Denote F as equispaced FFT in particular, and # as the interpolation operator, and the proposed
non-equispaced FFT is written as

(FOUUNE) = [ Terhb> 328> S e — ). @
j=1 i=1

H(f)(x;) = > i, f(@i)h(x; — x;) interpolates values on resampled points via convolution with
the periodic heat kernel h-( —y) = ;4 e~(@=¥*/47 with 7 as a constant.

3.2 NON-EQUISPACED FOURIER NEURAL PDE SOLVER

Non-equispaced interpolation. To harness the effectiveness of FNO, we use non-equispaced
Fourier token mixing instead of the equispaced one. It generalizes the equispaced FFT in Eq. as

F(v) = (F o Hyla))(v). Q)

We denote H,, : A — L(U) as the interpolation operator mapping, which maps parametric function
to a bounded interpolation operator. 7, (a) gets the interpolated values on m, resampled equispaced
points via the convolution with kernel h,, as

1 &
(o (@)0)(@)) = = > v(@)hy(@; =221, a()) ©®
S i=1
where x; lies on resampled equispaced grids. Another HIC interpolates back on the n; non-equispaced
ones in the same way via the convolution with kernel h¢. To reduce the operations to no more than
O(nslogng), the summation is restricted in the neighborhood of @; and x;, such that |V (x;)| ~
N (z;)| < clogng with ¢ as a predefined constant determining the neighborhood size of spatial
points. We formulate the kernel with a shallow feed-forward neural network. Thanks to the universal
approximation of neural networks, the following theorem assures that the interpolation operator can
approximate the representation function v arbitrarily well. (For detailed proof, see Appendix.[B})
Empirical observations on the convergence of interpolation operators are given in Appendix C.
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Theorem 3.1 (Approximation Theorem of the Adaptive Interpolation). Assume the setting of Theorem
[B.2)in Appendix. Bl is satisfied. p is the probability measure supported on D. For v € U, suppose
Uu = Lp(D;Rd”), forany 1 < p < oo. Then, given € > 0, there exist a neural network h,, :

R? x R x R — R, such that || — vy < € where O(x) = [, hy(x —y, @, a(y))v(y)du(y).

3.3 EXPERIMENTS

Benchmarks and protocols. For finite-dimensional operators, we choose Vision Mixers includ-
ing VIT (Dosovitskiy et al., [2020), GFN (Rao et al., [2021)) and MLPMIXER (Tolstikhin et al.|
2021)) as equispaced problem solvers, with DEEPONET-V and DEEPONET-U as two variants for
DeepONet(Lu et al., [2021) and graph spatio-temporal models including DCRNN (L1 et al.| | 2018)),
AGCRN (Bai et al.;[2020) and GCGRU (Seo et al.||2016)) as non-equispaced problem solvers. For
infinite-dimensional operators, the state-of-the-art FNO (L1 et al.,|2020d)) for equispaced problems
and MPPDE (Brandstetter et al.,2022)) for non-equispaced problems are chosen. A brief introduction
to these models is shown in Appendix.[B.1] The widely-used metrics - Mean Absolute Error (MAE)
is deployed to measure the performance. The reported mean and standard deviation of metrics are
obtained through 5 independent trials.

Data. We choose 4 equations in experiments: Korteweg de Vries (KdV) and Burgers’ equation
for 1-d problem and Darcy Flow and Navier-Stokes (NS) equation for a viscous, incompressible
fluid in vorticity form on the unit torus for 2-d PDEs. The total number of instances is 1200, with
percentages of 0.7, 0.1 and 0.2 for training, validating and testing, respectively. When evaluating
their performance in equispaced scenarios of different resolutions, we can downsample the resolution
for training to low-resolution data, e.g. 64 x 64 in NS equation. To evaluate their performance in
non-equispaced scenarios of different meshes, we randomly choose n spatial points for training.
Details are given in Appendix.

Table 1: MAE(x10~3) comparison with vision mixer benchmarks.

Burgers’ (n, = 10) Darcy Flow NS (n; = 1) NS (n; = 10)
r 512 512 1024 64 128 256 64 64 128 64 64 128
ny 10 40 20 1 1 1 10 40 20 10 40 20
VIT 0.5042 24269 1.5327 0.5073 09865 1.1078 9.3797 22.8565 15.7398 3.9609 12.3433  9.3010
MLPMIXER 0.1973 04210 03303 04970 0.8909 0.9125 7.5246 15.8632 14.9360 3.1530  7.9291 7.7410
GFN 0.2383  0.4187 03500 04739 0.8659 0.9618 3.5524 10.2250  6.3976  1.7396 54464  3.1261
FNO 0.0978 0.1815 0.1430 0.4289 0.7086 0.9075 3.3425  8.9857 4.4627 24076  7.6979  3.7001

DEEPONET-U 04471  1.9624  0.6541 0.3753  0.9488 0.9692  7.4912 16.0440 14.3476 3.4436 10.2950 7.1394
DEEPONET-V 04782  2.1707 1.6131 0.5119 09614 1.3216 8.6986 18.5561 16.0587  3.9745 12.3314 9.3471
NFS 0.0958 0.1708 0.1474 0.1497 0.2254 0.4216 1.7425 4.7882 2.6988 0.8636 3.1122 1.8406

Performance comparison. In this part, for time-dependent PDEs, our target is to map the observed
physical quantities from initial condition u(X,T) € R™*™, where T = {t; : t; < T}1<i<n,, t0
quantities at some later time u(X, T’) € R"*", where T' = {t; : T < t; < T"}1<i<n;- We set
the input timestamp number n; as 1 (initial state to future dynamics) and 10 (sequence to sequence),
and prediction horizon n} as 10, 20 and 40 as short-, mid- and long-term settings. For Darcy Flows,
which are independent of time, we directly build an operator to map a to u. In equispaced scenarios,
the resolution is denoted by % = n,, where d is the spatial dimension. In non-equispaced scenarios,
the spatial points number is denoted by n,. The comparison of methods are shown in Table. [T}
Table.[B3|and Fig. [B2] and detailed results are given in Appendix. It can be concluded that
(1) All of the evaluated Vision Mixers are able to model the dynamical systems effectively, in spite
of FNO as the only discretization-invariant model; (2) In equispaced scenarios, the proposed NFS
obtains the lowest error in most 1-d PDE settings, and in solving 2-d PDEs, its superiority over other
Vision Mixers are significant, with 42.85% improvements on MAE according to the trials of NS
(r = 64,n; = 10, n}, = 40). (3) In non-equispaced scenarios, the evaluated graph spatio-temporal
models’ performance is unsatisfactory, especially in NS equations. In comparison, NFS achieves
comparable high accuracy to the equispaced scenarios, for instance, according to columns of NS
(r = 64,n; = 10,n} = 40) with (ns = 4096, n; = 10, n; = 40).

Mesh-invariance evaluation and Architecture Analysis. For the evaluation of mesh-invariance and
further analysis on model architecture with more visualization of results, see Appendix. B in detail.
We can conclude that (/) The errors on unseen meshes are larger than the errors on seen meshes, but
acceptable, since they are even lower than other models’ prediction error on seen meshes. (2) Larger
n’, leads to higher prediction error because a large number of unseen points are likely to disturb the
learned token mixing patterns.
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