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AUTOREGRESSIVE VIDEO GENERATION WITHOUT VEC-
TOR QUANTIZATION

APPENDIX

We strictly publish our code and pretrained models to improve interpretability and assure reproducibil-
ity. Here, more implementation details and ablation experiments are organized as follows:

• Architecture details of Scaling and Shift layer (Sec. A)

• Normalization configurations (Sec. B)

• Video extrapolation evaluations (Sec. C)

• Inference time analysis (Sec. D)

• Ablations on the impact of temporal autoregressive modeling (Sec. E)

• Comprehensive DPG-Bench evaluation results (Sec. F)

• More text-to-image visualizations (Sec. G)

• More text-to-video visualizations (Sec. H)

A ARCHITECTURE DETAILS OF SCALING AND SHIFT LAYER

The Scaling and Shift Layer is implemented as an adaptive normalization layer, adopting the design
initially proposed by FiLM (Perez et al. (2018)) and AdaIN (Huang & Belongie (2017)). While many
previous methods have primarily utilized adaptive normalization for controllable image generation,
such as in StyleGAN (Karras et al. (2019)), or for conditional modeling within Diffusion Transformers,
like DiT (Peebles & Xie (2023)), NOVA innovatively applies this technique to manage the cumulative
inference errors in autoregressive video generation. We employ a two-layer MLP to optimize low-rank
decomposition for motion changes, as shown in the Figure 1. Specifically, we refer AdaLayerNorm
and decompose the motion changes into mean and variance parameters, which are further used to
apply the affine transformation on BOV embeddings.
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Figure 1: Scaling and Shift layer. We refor-
mulate cross-frame motion changes by learn-
ing relative distribution variations within a
unified space based on BOV tokens, rather
than directly modeling the unreferenced dis-
tribution of the current frame.
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Figure 2: Three normalization architectures. We
summarize various configurations including the pre-
normalization layer (left), the post-normalization
layer after residual addition (middle), and the post-
normalization layer before residual addition (right).
Here Post-Norm before Res is our standard design.
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Figure 3: PSNR and LPIPS metrics over 50 autoregressive steps in video extrapolation. Due to
the 4× downsampling rate of VAE in temporal scale, each autoregressive step generates four frames.
The vertical red line marks the point where the extrapolation reaches 3× training length.
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Figure 4: Visualization of video extrapolation. Although the metrics indicate a decline, the
generated frames still closely resemble the original video in content and overall image quality.
Visualization suggests that the model can extrapolate up to 3× training length.

B NORMALIZATION CONFIGURATIONS

NOVA employs an improved normalization configuration that can effectively control the numerical
boundaries of the output embeddings of each Transformer block while also maintaining the identity
transformation of residual connections. We illustrate the three common normalization configurations
in Figure 2, and NOVA uses the post-normalization before residual addition by default.

C VIDEO EXTRAPOLATION EVALUATIONS

Video extrapolation represents a significant challenge, being an out-of-domain generalization issue.
To assess our model’s performance, we curated a test set comprising 200 videos. For each video, the
task involved generating subsequent frames from the initial frame and a textual prompt, effectively
converting an image and text into a video sequence. We utilized LPIPS (Zhang et al. (2018)) and
PSNR metrics to evaluate the video extrapolation capabilities of our model.

During the extrapolation process, it was observed that the generated frames started to deviate from the
ground truth after a few iterations. This is mainly due to the difficulty in accurately capturing video
dynamics, causing minor discrepancies to accumulate. As a result, per-frame PSNR values decrease,
while LPIPS scores increase over time (Figure 3). Nevertheless, the generated frames exhibit a high
degree of similarity to the original video in terms of both content and image quality in Figure 4. This
highlights the robustness of our temporal autoregressive approach in video extrapolation.

D INFERENCE TIME ANALYSIS

We report inference times on a single NVIDIA A100 GPU (40GB) with a batch size of 24 in Table 1.
In each video, the temporal layers require only 0.03 seconds, compared to 11.97 seconds for the
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spatial layers, highlighting the exceptional efficiency of the temporal layers. While NOVA is already
efficient in text-to-video generation, there is potential for further acceleration in the spatial layers.

Table 1: Inference time analysis for different layers.
Resolution Temporal Layers Time Spatial Layers Time Total Time

29×768×480 0.03s 11.97s 12s

E ABLATIONS ON THE IMPACT OF TEMPORAL AUTOREGRESSIVE MODELING

Under the same experimental settings, we evaluated VBench results both with and without using
TAM (Temporal Autoregressive Modeling) to highlight its significance. Our findings are summarized
as follows: (1) Efficient Motion Modeling: We observed that the total score was marginally lower
without TAM compared to NOVA (75.38 vs. 75.84), especially in the dynamic degree metric, which
showed a more pronounced decline (11.38 vs. 23.27). We hypothesize that while bidirectional
attention enhances model capacity, it requires more extensive data and longer training times to capture
subtle motion changes compared to causal models. (2) Efficient Video Inference: Thanks to the
kv-cache technology and frame-by-frame autoregressive processing, NOVA’s inference time is much
faster compared to methods without TAM, with a greater speed advantage for longer videos.

Table 2: Performance comparison on temporal autoregressive modeling.
Model Total Score Dynamic Degree Infer Time

NOVA 75.84 23.27 12s
NOVA (w/o TAM) 75.38 11.38 39s

F COMPREHENSIVE DPG-BENCH EVALUATION RESULTS

We provide detailed DPG-Bench scores in Table 3. While NOVA outperforms most models of
comparable size and matches the overall score of state-of-the-art models, we observe that increasing
the model scale results in marginal improvements and does not boost the text rendering performance.
This limitation may be attributed to our reliance on extensive web datasets, such as LAION and
DataComp. In future work, we plan to focus on improving the quality of text-to-image data.

Table 3: Comparison with state-of-the-art models on DPG-Bench.
Model Overall Global Entity Attribute Relation Other

Diffusion models
SD v1.5 (Rombach et al. (2022)) 63.18 74.63 74.23 75.39 73.49 67.81
PixArt-α (Chen et al. (2023)) 71.11 74.97 79.32 78.60 82.57 76.96
PixArt-σ (Chen et al. (2024)) 80.54 86.89 82.89 88.94 86.59 87.68
Lumina-Next (Zhuo et al. (2024)) 74.63 82.82 88.65 86.44 80.53 81.82
SDXL (Podell et al. (2023)) 74.65 83.27 82.43 80.91 86.76 80.41
Playground v2.5 (Li et al. (2024a)) 75.47 83.06 82.59 81.20 84.08 83.50
Hunyuan-DiT (Li et al. (2024b)) 78.87 84.59 80.59 88.01 74.36 86.41
DALL-E3 (Betker et al. (2023)) 83.50 90.97 89.61 88.39 90.58 89.83
SD3 (Esser et al. (2024)) 84.08 87.90 91.01 88.83 80.70 88.68
Playground v3 (Liu et al. (2024)) 87.04 91.94 85.71 90.90 90.00 92.72

Autoregressive models
Emu3-DPO (Wang et al. (2024)) 81.60 87.54 87.17 86.33 90.61 89.75

NOVA (0.3B) 80.60 85.41 86.97 85.16 92.05 71.20
NOVA (0.6B) 82.25 87.65 87.65 85.62 90.90 74.80
NOVA (1.4B) 83.01 86.32 88.69 86.35 91.94 74.80
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G MORE TEXT-TO-IMAGE VISUALIZATIONS

We present more text-to-image samples in the Figure 5. NOVA can generate images with a maximum
resolution of 1024×1024. Our model excels in the domain of text-to-image generation, producing a
vast array of high-quality images that accurately reflect the textual descriptions provided. This capa-
bility not only spans a wide range of subjects, from realistic landscapes and portraits to imaginative
and abstract concepts, but also maintains a high level of detail and aesthetic quality.
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Figure 5: More text-to-image visualizations. Text prompts are as follows: (1) “In the foreground is
the detailed, head-and-shoulders portrait of an elderly man with a long white beard...”, (2) “a digital
artwork of a fantasy warrior character. The character is male, depicted from the waist up, and appears
to have a stern or serious facial expression...”, (3) “a young girl wearing a tiara and frilly dress”, (4)
“A sunflower in sunglasses dances in the snow”, (5) “A beach with no people”, (6) “Two Ming vases
on the table, the larger one is more colorful than the other”, (7) “A dragon perched majestically on a
craggy, smoke-wreathed mountain”, (8) “a dragon breathing fire onto a knight”, (9) “a pixel art style
graphic with vibrant colors. It features a single rider on a horse, both depicted in mid-gallop to the
left side of the frame...”, (10) “A table full of food. There is a plate of chicken rice, a bowl of bak
chor mee, and a bowl of laksa”, (11) “A map of the United States made out sushi. It is on a table next
to a glass of red wine” and (12) “beautiful fireworks in the sky with red, white and blue”.
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H MORE TEXT-TO-VIDEO VISUALIZATIONS

We present more text-to-video samples generated by NOVA in the Figure 6. NOVA can generate
videos with a resolution of 33×768×480. Our model stands out in the field of text-to-video generation,
capable of producing a substantial number of high-quality videos that vividly bring textual descriptions
to life. From detailed storylines and character animations to realistic environmental settings and
action scenes, our model demonstrates exceptional proficiency in generating content.

（2）

Text prompt : A 3D model of a 1800s victorian house.

（1）

Text prompt : A dog drinking water.

（3）

Text prompt : A drone view of celebration with Christmas tree and fireworks, starry sky, background.

（4）

Text prompt : A space shuttle launching into orbit, with flames and smoke billowing out from the engines.

Text prompt : A 3D model of a 1800s victorian house.

（5）

Text prompt : Extreme close-up of chicken and green pepper kebabs grilling on a barbeque with flames. Shallow 
focus and light smoke. vivid colours..

（6）

Figure 6: More text-to-video visualizations. Best viewed with zoom for enhanced detail.
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