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A EXPERIMENTAL SETUP

Pretraining datasets. In our experiments, we train our CLIP models on three datasets of increas-
ing size, namely CC3M (Sharma et al., 2018), CC12M (Changpinyo et al., 2021), and LAION-
400M (Schuhmann et al., 2022). Each of these dataset contains image-caption pairs of datapoints
which are using to train CLIP model via contrastive learning.

Models. We consider three different models in our experiments: ResNet-50, ViT-B-32, and ViT-
B-16. We first pretrain a version of these models from scratch on the above datasets (except for
LAION-400M), matching the results of publicly available models on OpenCLIP1. For LAION-
400M, we use the checkpoint available on OpenCLIP.

Validation datasets. To evaluate the performance of our models, we use several datasets, includ-
ing ImageNet variations such as ImageNet-V2, ImageNet-A, ImageNet-R, ImageNet-S, and Object-
Net (Recht et al., 2019; Hendrycks et al., 2019; Barbu et al., 2019; Wang et al., 2019; Hendrycks
et al., 2020), as well as suite of transfer learning datasets used in (Kornblith et al., 2019; Salman
et al., 2020). We utilize the CLIP benchmarks2 repository to evaluate all of our models.

Hyperparameters. When training our CLIP models on CC3M (Sharma et al., 2018) and CC12M
(Changpinyo et al., 2021), we use hyperparameters similar to the ones employed in (Ilharco et al.,
2021). Specifically, we use train our models for a total of 75 epochs using a global batch size of
2,560 (256 samples per GPU), a learning rate of 10−3, and a weight decay of 0.5.

1OpenCLIP repository can be found here https://github.com/mlfoundations/open_clip.
2CLIP benchmarks can be found here https://github.com/LAION-AI/CLIP_benchmark.
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B ADDITIONAL RESULTS

B.1 HOW MANY EXTRA EPOCHS?
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Figure 1: Applying the additional training procedure for few extra epochs is enough to im-
prove performance. The zero-shot accuracy of several CLIP models (y-axis) increases as we apply
the additional training procedure for more epochs (x-axis). Note that the performance improvement
saturates after applying the procedure for only three additional epochs.

B.2 WHEN TO APPLY OUR STRATEGY?
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Figure 2: Applying our strategy early during training already improves performance. The
blue curve corresponds to the accuracy of the original CLIP model. Each non-blue curve represents
the zero-shot accuracy of the CLIP model after applying our strategy with different starting points.
For example, the orange curve corresponds to applying our strategy on the CLIP model after it has
been trained for 10 epochs (out of 75 epochs in total). Note that applying our strategy earlier during
training leads to a performance improvement beyond the final accuracy reached by the model trained
for 75 epochs.
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CYCLIC LR SCHEDULER

This is a supplementary figure to Figure ?? which shows how cyclic learning rate schedule, instead
of a cosine one, can lead to better zero-shot performance for CLIP models trained from scratch.
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Figure 3: Applying a cyclic learning rate schedule improves performance. Each curve repre-
sents the zero-shot accuracy of a ResNet-50 CLIP model as a function of the number of training
epochs. The orange curve corresponds to the standard training strategy using a cosine LR scheduler,
while the blue curve corresponds to training the CLIP model with a cyclic LR Scheduler. Note that
applying a cyclic LR improves performance.

B.3 ADDITIONAL ZERO-SHOT RESULTS ON DOWNSTREAM TASKS

Here we show the performance improvements of our models on a suite of transfer learning tasks,
and a range of tasks from the CLIP benchmarks repository3.

Model Caltech101 Cars CIFAR10 CIFAR100 DTD FGVC Aircraft
ResNet-50 76.4 (+6.03%) 26.2 (+13.3%) 49.4 (+18.5%) 27.5 (+13.0%) 22.1 (+1.86%) 2.67 (+1.05%)
ViT-B-32 77.3 (+3.39%) 19.2 (+7.26%) 81.3 (+9.69%) 43.0 (+2.15%) 21.4 (-0.80%) 2.31 (+0.15%)
ViT-B-16 79.1 (+3.69%) 26.8 (+9.03%) 80.0 (+2.06%) 48.2 (+4.09%) 23.1 (-0.60%) 2.52 (+0.00%)

Table 4: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the ab-
solute change in zero-shot accuracy on the corresponding downstream classification task.

Model Flowers Pets STL10 SUN397 SVHN
ResNet-50 34.6 (+11.1%) 62.0 (+13.0%) 89.6 (+3.20%) 47.5 (+2.93%) 13.6 (+6.93%)
ViT-B-32 34.0 (+10.6%) 57.8 (+2.80%) 92.0 (+2.47%) 47.3 (+2.47%) 22.6 (+5.42%)
ViT-B-16 37.8 (+14.1%) 64.7 (+12.2%) 93.9 (-0.20%) 48.6 (-0.60%) 19.7 (+2.45%)

Table 5: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the ab-
solute change in zero-shot accuracy on the corresponding downstream classification task.

3CLIP benchmarks can be found here https://github.com/LAION-AI/CLIP_benchmark
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