
Under review as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL

Anonymous authors
Paper under double-blind review

1 DETAILS FOR ROBOT AND SCENARIO

We showcase the practical implementation of our proposed approach within the dynamic interplay of
the ‘Fetch’ robot and the ‘Gazebo9’ simulation environment. The ‘Fetch’ robot is a mobile manip-
ulator designed for research and development purposes in robotics and automation. It’s known for
its versatility and capability to perform tasks in various environments. The ‘Fetch’ robot is mainly
equipped with a mobile base and a robotic arm. The mobile base is made of two hub motors and
four casters, while the arm is a seven-degree-of-freedom arm with a gripper. ‘Gazebo9’ is a widely-
used open-source simulation tool designed for robotics and automation applications. It provides a
platform for creating, simulating, and testing robotic systems and environments. ‘Gazebo9’ enables
researchers, developers, and engineers to validate their algorithms and control strategies in a virtual
environment before deploying them on real robots.

The key features can be obtained by subscribing to the corresponding ROS topics, which is provided
by ‘Gazebo9’. In this case, we achieve the state features associated with the robot features and the
environment features with the topic joint states and /gazebo/model states. The topic joint states
provides 13 joints of the robot features including the arm and the mobile base, as shown in the
following:

l wheel joint, r wheel joint,

torso lift joint, bellows joint,

shoulder pan joint, shoulder lift joint,

upperarm roll joint, elbow flex joint,

forearm roll joint, wrist flex joint,

wrist roll joint, l gripper finger joint,

r gripper finger joint.

Each joint incorporates 3 properties including position, velocity and effort. There are 3 × 13 = 39
joint features from ‘Fetch’ body. The topic /gazebo/model states provides 13 features associated
with the position and the orientation of the robot as well as the property of the cube, listed as
following:

fetch pose position x, fetch pose position y,

fetch pose position z, fetch pose orientation x,

fetch pose orientation y, fetch pose orientation z,

fetch pose orientation w, fetch twist linear x,

fetch twist linear y, fetch twist linear z,

fetch twist angular x, fetch twist angular y,

fetch twist angular z.

There are 13 + 13 = 26 joint features from the ‘Gazebo9’. Thus, a state vector is composed of total
65 features. We recorde the trajectories by sampling the state vectors at a 100Hz frequency.

1.1 DATASET

This phase aims to construct a dataset consisting of trajectories generated through random robot
executions. This dataset is utilized for training the Action Model and the pre-training of the Detect
Model. The robot is authorized to execute fundamental robotic actions, including movement of
the mobile platform, rotation, and manipulation of joint angles in the robot arm. The robot was
positioned within the environment to autonomously carry out diverse actions and engage with the

1



Under review as a conference paper at ICLR 2024

surroundings in a random manner. It is assumed that a supervisor provides action labels to the
trajectories, thereby yielding a collection of labeled trajectories. To enhance diversity, we apply
two heuristics while executing actions. Initially, we introduce random alterations to the spatial
configurations of objects within the environment. For instance, during the execution of an action
involving cube retrieval from a table, we introduce random variations to the table’s position and
orientation, as well as those of the cube. Subsequently, we generate diverse combinations for action
execution. For instance, in the context of movement actions, the robot preforms different movement
combinations.

2 IMPLEMENTATION DETAILS

2.1 TRAINING OF THE Action Model

Utilizing the dataset developed through random robot executions, we proceed to train the Action
Model. This model comprises an LSTM layer, alongside two fully-connected blocks, each subse-
quently accompanied by a batch normalization layer and a ReLU activation function. To ensure
regularization, a dropout layer is incorporated. The ultimate layer employs the softmax function,
outputting the probabilities of prediction for each action label. Through learning from the tuple of
action trajectory and label, the network discerns distinctive characteristics within various actions’
trajectories, thus configuring itself as a multi-classifier primed to identify specific action types within
a provided trajectory fragment.

The sequence learning window width is set to 200. Therefore, input for the Action Model comprises
trajectory fragments, each with dimensions of 200× 65. The initial layer comprises a bidirectional
stacked LSTM with 128 hidden states. It is followed by two fully-connected network blocks, with
hidden sizes 256× 128 and 128× 64 respectively. The output layer consists of a 64× 4 dense layer
followed by a dropout layer with a rate of p = 0.5. During Action Model training, a batch size of
256 is utilized, and the learning rate is configured to 3e-4.

2.2 TRAINING OF THE Detect Model

The Detect Model is trained via a meta-learning approach. The architecture of the Detect Model is
depicted in Figure 1. Primarily, the Detect Model comprises a Transformer encoder, succeeded by a
linear layer. The Detect Model encoder features key, query, and value sizes of 64, alongside a hidden
size of 64. Additionally, it employs 8 heads and a dropout rate of 0.5. Subsequently, a linear layer
follows, generating two logits for action failure detection.

The training process of the Detect Model is depicted in Figure 1. Trajectories, each associated with
a robot action label, are segmented into three distinct phases: the start stage, middle stage, and end
stage. Subsequently, segments from each trajectory under every action label are aggregated into a
novel dataset. Randomly selecting two groups from the pool of trajectory fragments, we establish a
binary training task, by labeling one group as 1 and the other as 0. A comparable data processing
approach is employed during the fine-tuning phase, involving the segmentation of trajectories per-
taining to specific actions labeled as successful and unsuccessful. These segmented trajectories are
combined to form a compact dataset, utilized for fine-tuning that facilitates the Detect Model based
failure detection for a specific action.

We employ the reptile meta-learning approach (Nichol et al., 2018). During pre-training, the process
spans a total of 50,000 iterations, accompanied by a corresponding learning rate of 1e-3. Within
each iteration, an inner iteration is performed twice, with a learning rate of 1e-2. Fine-tuning entails
updating the pre-trained network through a mere 10 gradient update steps. Training for both the
Action Model and the Detect Model transpires on a machine equipped with an AMD Ryzen 9 3950X
processor and an RTX3090 GPU, complemented by 128 GB of RAM.

3 IMPLEMENTATION OF THE EXECUTION SYSTEM FOR FAILURE DETECTION

Our work involves extending the ROSPlan framework (Cashmore et al., 2015) to automate plan exe-
cution within the ROS environment, as illustrated in Figure 2. A plan comprising sequenced actions
serves as input to the execution component. The Plan Dispatching module ensures the execution of

2



Under review as a conference paper at ICLR 2024

Figure 1: The training of the Detect Model in a meta-learning manner. The main architecture of the
Detect Model is Transformer Encoder (lower right part).

Figure 2: Our extended architecture based on ROSPlan for plan execution.

the plan. Every action within the plan is transformed into ROS messages, which supports execution
in ROS environments. The interfaces, Action Interface and Sensing Interface, facilitate executing
actions and determining the effect of action execution respectively.

The Action Interface assumes the role of executing specific robot actions, realized through the cor-
responding action controller. In our method, the action controller is learned by Dynamic Movement
Primitives. Upon action execution completion, the Sensing Interface takes on the task of assessing
the action’s outcomes. In our method, the action failure detection is achieved by using the De-
tect Model to determine whether the execution of the action was successful or not. The relevant
configurations are specified in the LaunchFile.

3.1 CODE AND VIDEO

The code and video of our method can be found here.

3

https://github.com/paperreplicationpkg/papercode


Under review as a conference paper at ICLR 2024

4 CASE STUDY

We offer a specific example to show how our approach acquires executable a failure-aware plan
through a limited number of demonstrations.

4.1 SEGMENTATION INTO ACTION SEQUENCE

Upon recording the demonstration trajectories, we employ the pre-trained Action Model for seg-
mentation. The segmentation results for the set of five demonstrations are depicted in Figure 3.
Assuming that the user’s demonstrating is relatively consistent and ideal, the sequences of the five
demonstration trajectories closely resemble the task scenario.

Figure 3: Action segmentation results for the 5 demonstrations. The action sequences are learned
for the pick-and-place task.

After applying our sequence learning on the user demonstration trajectories, we obtain sequenced
action segmentations that comprise the state observations and their corresponding action labels.
Πtask can be formulated as follows:

⟨move1, pick1, transport1, place1⟩

4.2 LEARNING ACTION CONTROLLERS AND FAILURE DETECTORS

We utilize Dynamic Movement Primitives (DMPs) to learn controllers for each action within Πtask.
The DMPs are trained for each action using the five demonstration trajectories obtained from the
segmentation outcomes. This procedure allows us to derive a dedicated controller for every action
within Πtask. Subsequently, the controllers for each action are structured and integrated into a ROS
program executable by the ‘Fetch’ robot. At the same time, we train the Detect Model by utilizing the
data from the five demonstration trajectories. Building upon the foundation of the pre-trained Detect
Model, the model is fine-tuned to accommodate the distinct actions. Concerning the observations
associated with each action, we label the end phase of the trajectory as 1, while assigning a label of
0 to the remaining observations. Employing this modest dataset, we conduct training for the Detect
Model through a few gradient descent iterations. After training, we can formulate an executable
action sequence from Πtask with the corresponding action controllers and the execution of each
action is guaranteed by the fine-tuned Detect Model.

4.3 PLAN EXECUTION

We validate the generated plan by introducing a new request with the same task goal as demonstrated
in a slightly altered environmental context. In this new scenario, we instruct the robot to pick up a
cube from TableA, which is positioned differently from the demonstrated setup. The robot is then
directed to transport the cube and place it onto TableB, located in a distinct position within the room.

4



Under review as a conference paper at ICLR 2024

We execute the plan multiple times to fulfill this new task request. Within these attempts, certain
task executions are successfully accomplished, while others are prematurely terminated. The former
outcomes indicate that failure detector for each action yields a positive evaluation, thus allowing for
the subsequent actions to be executed. Conversely, the latter outcomes imply a negative evaluation of
a failure detector for a particular action. For instance, in a given attempt, the robot might encounter
problems in grasping the object due to the inherent randomness in kinematic calculations of the
robotic arm. Despite a successful run of the pick1 action, our deep model based detector correctly
finds the anomaly by receiving a negative result from Detectorpick1 . Consequently, the execution
engine is alerted to with failure and discontinues the progression of the entire task. However, we
acknowledge the possibility of some actions being misjudged in terms of their execution effects.
For example, actions that are correctly performed might be deemed abnormal. To comprehensively
evaluate the effectiveness of our approach, larger-scale experiments are conducted in the subsequent
section.

5 BASELINE APPROACH IMPLEMENTATION DETAILS

Current research predominantly revolves around learning task plans from demonstrations, often
overlooking action failure detection. Thus, we extend the existing method proposed by Konidaris
et al. (2018) for comparative purposes in action failure detection. This paper tackles the challenge of
formulating abstract representations to facilitate planning in high-dimensional, continuous environ-
ments. A framework is introduced that combines high-level actions and symbolic representations
to enable efficient planning in complex robotic tasks. The paper constructs a symbolic model for
planning domains based on abstract subgoal options, which are high-level actions. The symbolic
model construction involves identifying factors that change together, constructing a vocabulary to
represent the changes, and defining operators based on the effects of the options. We implement
their approach and successfully derive a task plan. The acquired plan is compatible with our exe-
cution implementation. State features correlated with the plan’s action definitions, are captured by
the algorithm introduced in this paper. We employ a straightforward deep model to learn the failure
detector from demonstration trajectories. Since the features are derived from a specific algorithm,
this method can be categorized as rule-based. Our approach mainly employs meta-learning for train-
ing, called a model-based methodology. Through experiments, it can be found that compared to the
rule-based approach, our model-based approach can achieve good results. We refrain from delving
into probabilistic planning. This is due to our primary focus on action failure detection, which is on
the outcomes resulting from action execution, as opposed to the planning process itself.

6 LIMITATIONS

Implementing the approach in a real-world setting introduces additional challenges. In a simulated
environment, we can readily access all environmental information through the ‘Gazebo9’ interface.
Unlike the simulated environment, acquiring and recording real-world environmental states requires
dependable environmental perception. Fortunately, current capabilities allow real-time tracking of
the robot and recording of environmental information via diverse sensors. Additionally, the approach
relies on dependable human-robot interaction techniques for conducting demonstrations.

REFERENCES

Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder, Arnau Carrera,
Narcis Palomeras, Natalia Hurtos, and Marc Carreras. Rosplan: Planning in the robot operating
system. In Proceedings of the international conference on automated planning and scheduling,
volume 25, pp. 333–341, 2015.

George Dimitri Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to symbols:
Learning symbolic representations for abstract high-level planning. J. Artif. Intell. Res., 61:215–
289, 2018. doi: 10.1613/jair.5575. URL https://doi.org/10.1613/jair.5575.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

5

https://doi.org/10.1613/jair.5575

	Details for Robot and Scenario
	Dataset

	Implementation Details
	Training of the Action Model
	Training of the Detect Model

	Implementation of the Execution System for Failure Detection
	Code and Video

	Case Study
	Segmentation into Action Sequence
	Learning Action Controllers and Failure Detectors
	Plan Execution

	Baseline Approach Implementation Details
	Limitations

