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ABSTRACT

Post-Training low-bit Quantization (PTQ) is useful to accelerate DNNs due to its
high efficiency, the current SOTAs of which mostly adopt feature reconstruction
with self-distillation finetuning. However, when bitwidth goes to be extremely low,
we find the current reconstruction optimization space is not optimal. Considering
all possible parameters and the ignored fact that integer weight can be obtained
early before actual inference, we thoroughly explore different optimization space by
quant-step decoupling, where a wider PTQ optimization space, which consistently
makes a better optimum, is found out. Based on these, we propose an Adaptive
Quantization Transformation(AdaQTransform) for PTQ reconstruction, which
makes the quantized output feature better fit the FP32 counterpart with adaptive
per-channel transformation, thus achieves lower feature reconstruction error. In
addition, it incurs negligible extra finetuning cost and no extra inference cost.
Based on AdaQTransform, for the first time, we build a general quantization setting
paradigm subsuming current PTQs, QATs and other potential forms. Experiments
demonstrate AdaQTransform expands the optimization space for PTQ and helps
current PTQs find a better optimum over CNNs, ViTs, LLMs and image super-
resolution networks, e.g., it improves NWQ by 5.7% on ImageNet for W2A2-
MobileNet-v2. Codes are available at https://github.com/zjxyz/AdaQTransform.

1 INTRODUCTION

Low-bit model quantization (quant) generally consists of Quantization-Aware Training (QAT) and
Post-Training Quantization (PTQ). PTQ is almost the first choice for fast model quantization since it
does not require the full training pipeline like labeled training data. Traditional PTQ (Krishnamoorthi,
2018) searches quant parameters through Mean Squared Error(MSE). which suffers from severe
accuracy drop in 4 or 2 bits. With the help of gradient descent through self-distillation, current PTQs
gradually narrow the accuracy gap, such as AdaRound (Nagel et al., 2020) for weight quantization,
and BRECQ (Li et al., 2021) / NWQ (Wang et al., 2022a) for activation quantization. In quant
params optimization, we can see they evolve closer and closer towards QAT, except tiny unlabeled
calibration set and no need for original FP32 training pipeline. Their process is as shown in (a) and
(b) of Figure.1: (i) freezes Conv’s FP32 weight and bias; (ii) takes FP32 weight and FP32 activation
as ground truth since PTQ owns no labeled dataset; (iii) iteratively searches an optimal weight’s
quant-step sw through the quant-error between FP32 weight and quantized weight, then freezes sw
and (iv) PTQ reconstruction: optimize weight’s AdaRound up-or-down parameter α and activation’s
quant-step sx per layer/block/network through quant-error between FP32 and quant output activation.

For weight quantization AdaRound, it optimizes up-or-down parameter α with weight’s quant-step
frozen to ensure a fixed integer base thus it can make a stable up or down rounding learning. However,
differing from that integer activation has to be computed online during inference, integer weight is
obtained early before inference and is fixed during inference, as described in Formula 4. With this
ignored fact, still under a fixed integer weight base, there exists a wider optimization space for the
de-quantized FP32 weight, making it not limited to an ±1 quant-step optimization distance, thus a
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(a)  Case 1.1.1: AdaRound and BRECQ
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Figure 1: Different quantization settings with ’Case x.x.x’ as detailed on Sec3.2. W/X/sw/α/sx
denote weight/input/weight’s quant-step/weight’s adaround param/X’s quant-step. Blue/orange box
denote FP32/quantized values. The solid/dotted arrow line denote quantization forward/backward
process. Note (c), we decouple the single sw of (b) into quant-step sw and de-quant-step s′w.

lower reconstruction error might be met. That is, as shown in Formula 5, after computing the integer
weight using sw during fake quantization simulation (quant-process), the sw used to convert integer
weight into the FP32 counterpart (dequant-process) can be different. Or to say, the conventional
weight’s quant-step sw can be decoupled apart as quant-step sw and dequant-step s′w according to
their different functions. The adaround learning process is still stable since the adaround learning base,
integer weight, is still fixed. Although it is safe to decouple, can we obtain accuracy gain through
decoupling? Further, now that PTQ evolves close to QAT, what will we gain if we directly optimize
weight’s quant-step into PTQ reconstruction like QAT as (d) of Figure.1? Considering all above, we
thoroughly explore the setting of weight’s quant-step into six possible cases through decoupling over
various networks as Sec.3.2, where Case 1.1 is the current PTQ setting(AdaRound/BRECQ/NWQ),
Case 1.2 is the current QAT’s weight quant-step setting like LSQ (Esser et al., 2020) applied on PTQ
reconstruction. We experimentally find a new setting Case 2.2, where we decouple quant-step, freeze
integer weight and jointly optimize dequant-step as Formula 6, consistently performs the best.

At deeper optimization side, as Figure 2, Case 2.2 achieves a wider optimization space and makes
quant output better fit the FP32 counterpart. The decoupled de-quant step s′w of weight finally
achieves adaptive per-channel transformation on the output feature. Indeed, through visual and
theoretical analysis, Case 2.2 equals to an adaptive per-channels linear transformation directly on
output feature towards its FP32 counterpart. It is different from the common per-channel quant-step
or offset like LSQ or LSQ+ (Bhalgat et al., 2020) applied on PTQ. Because they does not change the
distribution of output feature, which only optimizes the current input while ignores current PTQ’s
output feature reconstruction. It is also different from SmoothQuant (Xiao et al., 2023), which
transforms quant difficulty from activation to weight while also does not change the distribution
of output. In addition, current PTQs freeze Conv’s bias away from PTQ reconstruction. We find
finetuning bias helpful, which provides further translating on quant output to narrow quant-error gap.

Considering above, we find the decoupling Case 2.2 and learnable bias b can be derived into a more
general form with introducing a scaling, ϵ, and a translating factor, η, into current quantization
settings, namely AdaQTranform, which is an easy integration to current PTQs. It incurs negligible
extra finetuning cost and no extra inference cost. As Sec.3.3.2, AdaQTransform also subsumes
normalization layer as its special form, but ours can be applied to networks/layers with or without
normalization, e.g., low-level-vision-task nets like image super-resolution EDSR (Lim et al., 2017).

More importantly, AdaQTransform helps to build a general unified paradigm subsuming quantization
settings of current PTQs, QATs, our new decoupling case and other cases. The detailed expansions
from the unified paradigm to specific quant-settings can be seen in Sec.3.3. Our contributions are:

• We explore different optimization space by quant-step decoupling for PTQ. Based on the explo-
ration, we propose AdaQTransform, which directly transforms the quant output closer to the FP32
counterpart(ground truth), making a wider optimization space and a narrower quant-error gap.
• Based on AdaQTransform, for the first time, we build a general unified paradigm subsuming

quantization parameter settings for current PTQs, QATs and other possible cases.
• We evaluate AdaQTransform across CNNs, ViTs, LLMs and image super-resolution network

EDSR, which proves AdaQTransform can be easily integrated to current PTQs, and consistently
helps them to find a better optimum and better PTQ performance without extra inference cost.
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2 RELATED WORK

Low bit model quantization is one of most effective technique in model compression (Zhang et al.,
2020; Zhu et al., 2021; Han et al., 2020). Here we simply revisit its two main parts: PTQ and QAT.

PTQ: As one of the best weight PTQ, AdaRound (Nagel et al., 2020) proposed an adaptive
rounding for weight rather than rounding-to-nearest operation. BRECQ (Li et al., 2021) found
block-wise reconstruction behaves better than layer-wise ones. QDROP (Wei et al., 2022b) explored
how activation quantization affected weight tuning, and proposed a random activation quantization
during weight adaround learning. NWQ (Wang et al., 2022a) proposed a network-wise PTQ with
inter-layer dependency. MRECG (Ma et al., 2023)/Bit-Shrink (Lin et al., 2023) tried to solve
oscillation/sharpness problem. PD-Quant (Liu et al., 2023a) proposed to consider global information
based on prediction difference metric. PTQ4ViT (Yuan et al., 2022), APQ-ViT (Ding et al., 2022),
and RepQ-ViT (Li et al., 2023) tried to solve the PTQ for Vision Transformer(ViT).

Differently, we find weight’s quant-step can be safely decoupled, and experimentally find the best
case for PTQ reconstruction among six possible cases. Based on this best case, we theoretically
propose an AdaQTransform to provide adaptive per-channel linear transformation on output feature.

QAT: Jacob et al. (2018b) proposed a fake quantizer simulation into QAT using gradient descent
with straight-through estimator (STE). PACT (Choi et al., 2018) proposed parameterized clipping
activation to learn the quantization range. LSQ (Esser et al., 2020) proposed to learn the quantization
step directly, whose process applied on PTQ is shown as (d) of Figure.1. LSQ+(Bhalgat et al., 2020)
further proposed a learnable offset. Nagel et al. (2022) tried to sovle oscillations in QAT. Wang et al.
(2022b) learned lookup tables as quantizers. Liu et al. (2023b) proposed a data-free QAT for LLMs.

However, from Tab.1 Case 1.2, we find it is not suitable to directly borrow QAT’s quant-step update
setting into PTQ. This is because PTQ owns only a tiny unlabeled calibration set and no original
FP32 training pipeline thus it need to freeze FP32 weight as ground truth, totally different from QAT.

3 METHOD

3.1 PRELIMINARIES AND CURRENT SOTA OF PTQ

As current PTQ SOTAs, we perform per-channel weight quantization and per-layer activation quan-
tization. A classic linear symmetric PTQ process is as Formula (1,2,3). sw/sx, wl/wu/xl/xu is the
quant-step, upper/lower bound of quantization levels of FP32 weight w and FP32 activation x. ⌊·⌉/⌊·⌋
indicates rounding/floor operation. ⌊ w

sw
⌉ / ŵ are called quantized(integer) / de-quantized weight.

h(α) is AdaRound (Nagel et al., 2020) parameter of weight. σ(·) is Sigmoid function. They first
initialize sw through minimizing the MSE between FP32 and quantized weight as Formula (1). Then
freezing sw and optimizing AdaRound h(α) activation quantization as (2) through output feature
reconstruction as (3). We can see FP32 weight w and FP32 bias b are freezed in current PTQs.
ŵ = clip(⌊w

sw
⌉;wl, wu) · sw, minsw ||ŵ −w||2F (1)

ŵ=clip(⌊w
sw
⌋+h(α);wl,wu)·sw;h(α)=clip(σ(α)∗1.2−0.1, 0, 1); x̂=clip(⌊ x

sx
⌉;xl,xu)·sx (2)

PTQ Reconstruction: ŷ = ŵ ∗ x̂+ b =
∑

((⌊ w

sw
⌋+ h(α)) · sw) ∗ (⌊

x

sx
⌉ · sx); min

α,sx
||ŷ − y||2F (3)

Fake and Real Quantization. In order to better optimize PTQ parameters through gradient descent,
the quantization function is simulated in FP32 format, denoted as the ’Fake Quant’ bracket of
Formula 4. During practical inference acceleration, the FP32 simulation is converted to be integer-
arithmetic-only (Jacob et al., 2018a) as the ’Real Quant’ bracket of Formula (4).

y =
∑

w ∗ x+b︸ ︷︷ ︸
FP32

≈
∑

ŵ ∗ x̂+b︸ ︷︷ ︸
Fake Quant,for finetuning

= s·
∑

wint ∗⌊
x

sx
⌉+b︸ ︷︷ ︸

Real Quant,for inference

= ŷ,

where s = sw · sx, wint = clip(⌊w
sw
⌋+ ⌊h(α)⌉;wl, wu) (4)

wint is integer weight, which can be obtained early before practical fixed-point inference as the
lower part of Formula (4).
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3.2 EMPIRICAL OBSERVATIONS: DECOUPLE QUANT-STEP OF WEIGHT

As the ’Real Quant’ of Formula 4, the wint and sw are determined before deployment, thus they
can be treated as independent parameters. Given this property, for fake quantization, as Formula 5,
we propose to decouple the quant-step of weight into quant-step sw, which quantize FP32 weight to
integer value, and dequant-step s′w, which de-quantize integer weight back. Different from weight,
quant-step of activation can not be decoupled since integer activation is different for different input.

ŵ = clip(⌊w
sw
⌋+ h(α);wl, wu)·sw ⇒ ŵ = clip(⌊ w

sw
⌋+ h(α);wl, wu) · s′w (5)

Under the condition where the quant-step of weight can be decoupled, for the first time, we fully ex-
plore different settings of weight’s quant-step into six cases, based on whether quant-step is decoupled,
and if decoupled, quant-step sw and de-quant step s′w are learnable or not after initialization.

• Case 1: the original single quant-step sw is not decoupled as convention.
⊙ Case 1.1: not participates joint PTQ reconstruction optimization, as (a,b) of Fig. 1.

♢ Case 1.1.1: Weight PTQ and activation PTQ are seperated, like AdaRound/BRECQ.
♢ Case 1.1.2: Consider Weight AdaRound into activation PTQ, like QDROP/NWQ.

⊙ Case 1.2: participates joint optimization during feature reconstruction, as (d) of Fig.1.
♢ current QAT methods, like LSQ. QAT’s updating setting is not the best for PTQ.

• Case 2: the original single quant-step sw is decoupled as two independent params sw and s′w.
⊙ Case 2.1: Only quant-step sw participates joint PTQ reconstruction optimization.
⊙ Case 2.2: Only dequant-step s′w participates PTQ reconstruction optimization, as(c) of Fig.1.

♦ frozen sw: a fixed base for adaround learning; learnable s′w: adaptive transformation.
⊙ Case 2.3: sw and s′w both participate in joint PTQ reconstruction optimization.

To evaluate their efficiency, we conduct experiments on MobileNet-v2, ResNet-18, and MnasNet2.0.

Table 1: Acc@1 on ImageNet among different quant-step settings across various nets.

Methods W/A MobileNet-v2 ResNet-18 MnasNet2.0
Case 1.1.1 (AdaRound, last PTQ SOTAs) 3/2 0.32 41.65 1.07
Case 1.1.2 (NWQ, current PTQ SOTAs) 3/2 38.92 60.82 52.17
Case 1.2 (LSQ, QAT’s SOTA on PTQ) 3/2 39.65 60.26 49.78

Case 2.1 3/2 38.77 59.90 48.40
Case 2.2 3/2 42.60 61.06 54.19
Case 2.3 3/2 41.42 60.86 49.33

We find out that Case 2.2, where we decouple the original quant-step sw as sw and s′w then make
only dequant-step s′w learnablely participates joint PTQ reconstruction, shown as (c) of Figure 1,
consistently provides the best performance, which even does a better job than Case 2.3. This is because
(i) there is only a tiny unlabeled calibration set in PTQ, a frozen FP32 weight during finetuning makes
the lowest quant-error. To further narrow quant-error gap, we need to apply AdaRound. and (ii) a
stable AdaRound learning requires a fixed integer base but Case 2.1 and 2.3 bring fluid integer base.

Table 2: Visualization of Decoupling Case 2.2 during PTQ Reconstruction.

0 5k 15k 20K 0 5k 15k 20K

sw1 0.544 0.544 0.544 0.544 sw2 0.943 0.943 0.943 0.943
s′w1 0.544 0.508 0.444 0.442 s′w2 0.943 0.902 0.796 0.795

Loss of Case 1.1.2 107 59.3 55.2 50.7 Loss of Case 2.2 107 54.4 51.1 46.5

We visualize the learning process of the dequant-step s′w in Case 2.2 on W3A2 ResNet-18 as Tab. 2.
At iteration 0, sw and s′w is decoupled from the the same value, then sw is frozen and s′w is learnable
during PTQ reconstruction with weight’s adaround param and activation quant-step. We can see Case
2.2’s dequant-step s′w is updated accordingly and provides lower loss than current PTQ Case 1.1.2.
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(a-1) PTQ[s output feature
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Figure 2: AdaQTransform: adaptive per-channel transformation on output feature.

3.3 FROM DECOUPLING TO ADAPTIVE QUANT TRANSFORMATION

Superficially, from empirical experiments in Sec.3.2, Case 2.2 consistently provides better accuracy
and lower reconstruction loss. At deeper side, as Fig.2, Case 2.2 provides a better fit for each output
channel to its FP32 ground truth. That is, Case 2.2 achieves adaptive per-channel scaling on the output
feature. In theory, PTQ reconstruction in Formula.3 for Case 2.2 can be denoted as Formula.6, where
wfloor = ⌊ w

sw
⌋ is frozen after initialization as Formula.1. Recall that We perform per-channel weight

quantization and per-tensor activation quantization. Thus s′w is a vector with out-channels elements
while sx is a scalar with one element. Therefore, the decoupled-out s′w theoretically provides direct
per-channel scaling on output feature to further minimize the quant-error gap.

ŷ = s′w ·
{
sx ·

∑
(wfloor + h(α)) ∗ ⌊ x

sx
⌉
}
+ b, objective: min

α,sx,s
′
w

||ŷ − y||2F (6)

A deeper look at Formula 6, there are two params, wfloor and b, left frozen. wfloor is frozen since
a stable up or down rounding learning requires a fixed base. Bias b is frozen due to inherited PTQ
tradition. However, as we know, current PTQ works step closer and closer towards QAT. We find
out it is enough to finetune bias b with self-distillation between FP32 and quant output, which helps
narrow the quantization error caused by quantized weight and quantized input, making their output fit
closer to its FP32 counterpart, as shown in Fig.2. Therefore, in addition to per-channel scaling, our
decoupling Case 2.2 can be further equipped with per-channel translating as

ŷ = s′w ·
{
sx ·

∑
(wfloor + h(α)) ∗ ⌊ x

sx
⌉
}
+ b′, objective: min

α,sx,s
′
w,b′
||ŷ − y||2F (7)

The PTQ reconstruction objective becomes the right of Formula 7. In order to be notation-consistent
with previous methods as Formula 3, we introduce a per-channel scaling and translating factor, η, ξ,
to denote Formula.7 as Formula.8, dubbed as Adaptive Quant Transformation (AdaQTransform).

ŷ = ξ ·
{∑

((⌊
w

sw
⌋+ h(α)) · sw) ∗ (⌊

x

sx
⌉ · sx)

}
+ b+ η, objective: min

α,sx,ξ,η
||ŷ − y||2F (8)

3.3.1 NO EXTRA INFERENCE COST IN ADAQTRANSFORM

Although AdaQTransform add extra parameters into PTQ finetuning process, they will be merged
into existing params thus cause no extra cost in actual inference. That is, when PTQ finetuning
reconstruction process is finished, the finetuning Formula (8) can be inferred as Formula (9), which is
as original inference Formula (4) like prior hardware-friendly PTQ works (Wang et al., 2022a).

ŷ = s̃ ·
{∑

(wint ∗ ⌊
x

sx
⌉)
}
+ b̃, where s̃ = ξ · sw · sx, b̃ = b+ η (9)
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3.3.2 DIFFENRENCE BETWEEN ADAQTRANSFORM AND NORMALIZATION

Our AdaQTransform is significantly different from normalization, such as Batch/Group/Layer Nor-
malizaion (BN/GN/LN), here we take BN as a example, in three points.

First, BN is used to stabilize FP32 model training while AdaQTransform is used to help quantized
model better fit FP32 counterpart during self distillation. BN normalizes data with statistical mean and
variance then accordingly scales and shifts them back. AdaQTransform directly learns a per-channel
linear transformation from quantized feature to FP32 counterpart.

Second, current PTQ publications all fold BN into its proceeding Conv layer before quantization.
Current QATs do not fold BN but they choose to update both statistical mean, variance and learnable
scale, shift. As far as we know, there is no study exploring how BN influence PTQ up to now. For
Conv-BN structures, if BN is not folded into its preceding Conv, and participates PTQ reconstruction,
it achieves finer-grained per-channel transformation by making BN’s per-channel scaling and trans-
lating parameter γ and β learnable as Formula (10) with frozen sw and frozen mean µ and var σ2.
Compare Formula (10) with Formula (8), it can be seen as a special form of our AdaQTransform.

ŷ=
γ√
σ2+ϵ

·
{∑

(wint ·sw)∗(⌊x
sx
⌉·sx)

}
+β− γµ√

σ2+ϵ
+b, objective: min

α,sx,γ,β
||ŷ − y||2F (10)

Thirdly, AdaQTransform is both applicable to networks/layers with normalization or without
normalization like image super-resolution networks, e.g., EDSR (Lim et al., 2017), layers such as
the latter Conv in Conv-BN-Conv, two Convs in Conv-(ReLU)-Conv, as demonstration in Sec.4

3.3.3 EASY INTEGRATION AND ENHANCEMENT TO CURRENT REDISTRIBUTION METHODS

The core process of current redistribution methods for quantization, like LSQ+ (Bhalgat et al., 2020)
with translating offset zx or RepQ-ViT (Li et al., 2023) with the scaling vector scale, is as follows.

LSQ+: ŷ = ŵ ∗ x̂+ b =
∑

(⌊
w

sw
⌉ · sw) ∗ (⌊x− zx

sx
⌉ · sx + zx) + b (11)

RepQ-ViT: ŷ = ŵ ∗ x̂+ b =
∑

(⌊
w · scale

sw
⌉ · sw) ∗ (⌊x/scale

sx
⌉ · sx) + b (12)

We see their redistribution on output will be recovered. Thus they do no change the distribution of
output feature. Differently, our AdaQTransform is directly performed on output feature and changes
the distribution of output features, which further narrows the quant-error gap between y and ŷ,and is
more suitable for PTQ’s output feature reconstruction. Thus, it is an easy integration and enhancement
to redistribution PTQs. Example for RepQ-ViT is as follows and experiments is as Tab.4

ŷ = ξ · ŵ ∗ x̂+ b+ η = ξ ·
∑

((⌊
w · scale

sw
⌉) · sw) ∗ (⌊x/scale

sx
⌉ · sx) + b+ η (13)

3.4 FROM ADAQTRANSFORM TO GENERAL QUANTIZATION PARADIGM

Formula 8 also builds a general quantization paradigm expressing quantization settings from current
PTQs to current QATs and to our PTQ-suitable AdaQTransform. We can induct each one as follows,

• From General Quant Paradigm to AdaRound/BRECQ:
h(α)=AdaRound, ξ = 1, η = 0, objective: min

sw

||ŵ −w||2F ,min
α
||ŷ − y||2F then min

sx

||ŷ − y||2F .

• From General Quant Paradigm to QDROP/NWQ:
h(α)=AdaRound, ξ = 1, η = 0, objective: min

sw

||ŵ −w||2F then min
α,sx

||ŷ − y||2F
• From General Quant Paradigm to LSQ on PTQ:
h(α) = Round( w

sw
− ⌊ w

sw
⌋), ξ = 1, η = 0, objective: min

sw,sx

||ŷ − y||2F .

• From General Quant Paradigm to Our AdaQTransform:
h(α)=AdaRound, ξ, η learnable, objective: min

sw

||ŵ −w||2F then min
α,sx,ξ,η

||ŷ − y||2F .

• From General Quant Paradigm to QAT’s LSQ:
h(α) = Round( w

sw
− ⌊ w

sw
⌋), ξ=1, η=0, objective: min

w,sx,sw,b
CrossEntropy( ˆLogitlast, label).
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Algorithm 1: AdaQTransform PTQ

Input: Pretrained FP32 Model {W l}Nl=1; calib set;
Params :Activation’s quant-step sx; W ’s quant

param: sw, α. AdaQTranform: ξ, η

1st: Iterative MSE Optimization for sw as (1).

2nd: PTQ Reconstruction.
for j = 1 to T iterations do

for i = 1 to N layers do
# Get output from FP32 and quantized
Ŵ i sw,α←−−−W i as Formula.2
x̂i sx←− xi as Formula.2
yi = W i ∗ xi + bi;
ŷi = ξ · Ŵ i ∗ x̂i + bi + η; # as Formula.8
∆i = ||yi − ŷi||2F

∆ =
∑

∆i, # Optimize sx, α, ξ, η as (8)
Output: Quantized model Figure 3: Visualization of AdaQTransform

4 EXPERIMENT

We evaluate AdaQTransform across various CNNs, ViTs, LLMs and image super-resolution networks
using Pytorch (Paszke et al., 2019). Experimental settings are kept the same as each baselines. By
convention, the first and last layer are quantized into 8 bits. AdaQTransform as Formula.8 is adopted.
Integer inference with acceleration is performed with TVM on practical hardware.

4.1 EXPERIMENTS ON IMAGENET AND MS COCO

Table 3: Acc@1 on ImageNet among current PTQ methods.

Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0
Full Prec. 32/32 72.49 71.08 73.71 76.68

AdaRound(Nagel et al., 2020) 4/4 64.33 69.36 - -
AdaQuant(Hubara et al., 2021) 4/4 47.16 69.60 - -

BRECQ(Li et al., 2021) 4/4 66.57 69.60 68.33 73.56
QDROP(Wei et al., 2022b) 4/4 68.84 69.62 71.18 73.71

PD-Quant (Liu et al., 2023a) 4/4 68.33 69.30 71.04 73.30
MRECG (Ma et al., 2023) 4/4 68.84 69.46 71.22 -
NWQ (Wang et al., 2022a) 4/4 69.14 69.85 71.92 74.60

AdaQTransformNWQ(ours) 4/4 70.01 69.88 71.97 74.80
BRECQ(Li et al., 2021) 3/3 23.41 65.87 55.16 49.78

QDROP(Wei et al., 2022b) 3/3 57.98 66.75 65.54 66.81
PD-Quant (Liu et al., 2023a) 3/3 57.64 66.12 65.09 64.88
MRECG (Ma et al., 2023) 3/3 58.40 66.30 66.08 -
NWQ (Wang et al., 2022a) 3/3 61.24 67.58 67.38 68.85

AdaQTransformNWQ(ours) 3/3 63.44 67.73 67.81 69.52
BRECQ(Li et al., 2021) 2/2 0.24 42.54 3.58 0.61

QDROP(Wei et al., 2022b) 2/2 13.05 54.72 41.47 28.77
PD-Quant (Liu et al., 2023a) 2/2 13.67 53.14 40.92 28.03
MRECG (Ma et al., 2023) 2/2 14.44 54.46 43.67 -
NWQ (Wang et al., 2022a) 2/2 26.42 59.14 48.49 41.17

AdaQTransformNWQ(ours) 2/2 32.19 60.12 51.20 44.54
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We first experiment on ImageNet classification task over various CNNs and vision transformers as
shown in Tab.(3,4). The calibration set consists of 1024 unlabeled images randomly selected from
the training set. We adopt Adam optimizer, the same learning rate as (Wei et al., 2022b; Ma et al.,
2023) and 20k iterations for network-wise PTQ reconstruction as (Wang et al., 2022a). The average
experimental results over 5 runs are summarized in Tab.3. In W4A4, our method provides about
0-1% Acc@1 improvement compared to the strong baseline including NWQ (Wang et al., 2022a),
MRECG (Ma et al., 2023). In W3A3, our method improve MobileNet-v2 by 2.2% and MnasNet2.0
by 0.67%. In W2A2, where BRECQ shows nearly 0% Acc@1 on Mobile-v2 and Mnas2.0, our
method still far outperforms NWQ by more than 3% on Mobile-v2, and Mnas2.0.

Table 4: Acc@1 on ImageNet for ViTs and DeiTs.

Methods W/A ViT-S ViT-B DeiT-S DeiT-B
FP32 32/32 81.39 84.54 79.80 81.80

RepQ-ViT (Li et al., 2023) 6/6 80.43 83.62 78.90 81.27
AdaQTranformRepQ-ViT 6/6 80.59 83.89 79.12 81.53

PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 34.08 64.39
APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 43.55 67.48
NWQ (Wang et al., 2022a) 4/4 57.79 56.87 65.76 76.06

AdaQTransformNWQ 4/4 58.12 57.24 66.34 76.20
RepQ-ViT (Li et al., 2023) 4/4 65.05 68.48 69.03 75.61
AdaQTranformRepQ-ViT 4/4 70.40 76.47 73.50 78.93

For vision transformers, we experiments on ViT (Dosovitskiy et al., 2021) and DeiT (Touvron et al.,
2021) as Tab.4. Our AdaQTransform outperforms NWQ by 0.5%, and outperforms PTQ4ViT (Yuan
et al., 2022) and APQ-ViT (Ding et al., 2022) by a large margin, about 10%-32% better. Then we
apply AdaQTranform into RepQ-ViT. We can see AdaQTransform helps RepQ-ViT improve about
4% in W4A4 and 0.3% in W6A6. Thus it demonstrates AdaQTranform helps narrow the quant-error
gap between the quantized and FP32 activation.

Table 5: mAP on MS COCO for object detection.

Methods W/A Faster RCNN RetinaNet
ResNet-50 ResNet-18 ResNet-50 MobileNet-v2

FP32 32/32 40.26 34.91 37.39 33.31

BRECQ (Li et al., 2021) 4/4 37.19 33.41 34.67 29.81
QDROP (Wei et al., 2022b) 4/4 38.53 33.57 35.81 31.47
NWQ (Wang et al., 2022a) 4/4 38.54 33.63 35.98 31.81

AdaQTransformNWQ(ours) 4/4 38.62 33.87 35.96 31.93
QDROP (Wei et al., 2022b) 3/3 33.49 31.21 32.13 27.55
NWQ (Wang et al., 2022a) 3/3 35.25 31.88 32.45 28.43

AdaQTransformNWQ(ours) 3/3 35.72 32.25 32.48 28.86
QDROP (Wei et al., 2022b) 2/2 21.05 21.95 20.27 12.01
NWQ (Wang et al., 2022a) 2/2 25.01 23.92 22.95 16.21

AdaQTransformNWQ(ours) 2/2 27.79 26.10 24.13 18.10

For object detection, we experiments on one-stage RetinaNet (Lin et al., 2017) and two-stage Faster
RCNN (Ren et al., 2015), where Res-18, Res-50 and Mobile-v2 are selected as backbones respectively.
As (Wei et al., 2022b; Li et al., 2021), we quantize the input and output layers of the network to 8
bits, do not quantize the head of the detection model, and quantize the neck (FPN). Results are shown
in Tab.5. In W3A3 setting, AdaQTransform improves the mAP of Res-50-based Faster RCNN by
0.5% and Mobile-v2-based RetinaNet by 0.4%. In harder W2A2 setting, AdaQTransform achieves
about 1% mAP improvement over the current best method across all four experimental networks,
which obtains a 2.78% improvement on Res-50-based Faster RCNN.
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4.2 EXPERIMENTS ON IMAGE SUPER-RESOLUTION. (NETWORKS WITHOUT NORMALIZATION)

As shown on Sec. 3.3.2, layer normalization can be seen as a special form of our AdaQTransform. To
show the effectiveness of AdaQTransform on networks without layer normalization, we experiment
on image super-resolution networks, i.e., EDSR of scale 4 (Lim et al., 2017). We borrow base
code from AdaBM (Hong & Lee, 2024) and follow all the same settings except that we apply our
AdaQTransform to AdaBM. The calibration dataset, 100 LR images, is randomly sampled from the
DIV2K (Timofte et al., 2017) training dataset. The quantization range for activation is initialized
using MinMax and quantization step for weight is initialized by OMSE. Then we freeze the network
weights and finetune the quantization parameters for 10 epochs using Adam optimizer. For evaluation
metrics, we measure reconstruction accuracy using the peak signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) on Set5/Set14/Urban100/BSD100 (Huang et al., 2015). To compare
the computational complexity of the quantized network, we report the feature average bit-width
(FAB) that is averaged throughout the images of the test dataset.

As shown in Tab. 6, where AdaQTrans† denotes we apply our AdaQTransform to AdaBM (Hong
& Lee, 2024), we can see our AdaQTransform consistently helps AdaBM improve the PSNR and
SSIM on 4 experimental test sets and 4/3/2-bit quantization settings. Tab. 6 demonstrates our
AdaQTransform differs from layer normalization and gains from a wider optimization space: it helps
the quant output feature better fit the FP32 counterpart and achieves lower PTQ quantization error.

Table 6: PTQ for EDSR of scale 4.

Model W/A Set5 Set14 BSD100 Urban100

FAB PSNR/SSIM FAB PSNR/SSIM FAB PSNR/SSIM FAB PSNR/SSIM

EDSR (×4) 32/32 32 32.10 / 0.893 32 28.57 / 0.781 32 27.56 / 0.736 32 26.02/ 0.784

AdaBM-paper 4/4MP 3.8 31.02 / 0.860 3.7 27.87 / 0.751 3.5 26.91 / 0.700 3.7 25.11 / 0.736
AdaQTrans† 4/4MP 3.7 31.17 / 0.870 3.5 27.99 / 0.761 3.5 27.04 / 0.713 3.7 25.03 /0.742

AdaBM 4/4 4 29.42 / 0.821 4 26.81 / 0.724 4 26.44 / 0.687 4 23.87 / 0.685
AdaQTrans† 4/4 4 31.41 / 0.845 4 27.55 / 0.742 4 26.81 / 0.698 4 24.64 / 0.718

AdaBM 3/3 3 28.93 / 0.804 3 26.49 / 0.711 3 26.24 / 0.679 3 23.53 / 0.667
AdaQTrans† 3/3 3 29.01 / 0.810 3 26.55 / 0.716 3 26.27 / 0.683 3 23.56 / 0.672

AdaBM 2/2 2 28.76 / 0.791 2 26.38 / 0.702 2 26.17 / 0.673 2 23.45 / 0.657
AdaQTrans† 2/2 2 28.84 / 0.802 2 26.44 / 0.712 2 26.23 / 0.681 2 23.46 / 0.666

As shown in Fig.4, our AdaQTransform helps AdaBM produces visually better reconstructed images
with more details, e.g., AdaBM is relatively slur on the arch curve while AdaQTransform is clearer.

GT(img014) AdaBM AdaQTransform

22.15dB / 4bit21.96dB / 4bit

Figure 4: Qualitative results on Urban100 with 4-bit EDSR-based models.
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Table 7:AdaQTransform on LLMs LAMBADA.

Method W/A Opt-1.3B Opt-6.7B

FP32 32/32 72.0% 79.8%

Naive 8/8 69.1% 41.9%
SmoothQuant 8/8 70.8% 80.0%

AdaQTransform† 8/8 71.2% 80.1%
SmoothQuant 6/6 66.2% 75.4%

OS+ 6/6 66.4% 75.5%
AdaQTransform† 6/6 67.5% 75.6%

Table 8: Exploration for BN and AdaQTransform

Methods W/AMobile-v2Res-18Reg-600

NWQ(BN-Floded) 3/3 61.24 67.58 67.38
BN-Not-Folded 3/3 63.26 67.67 67.65

Decoupling 3/3 63.17 67.64 67.42
AdaQTransform 3/3 63.44 67.73 67.81

NWQ(BN-Floded) 2/2 26.42 59.14 48.49
BN-Not-Folded 2/2 32.09 60.09 51.18

Decoupling 2/2 31.43 59.91 50.32
AdaQTransform 2/2 32.19 60.12 51.20

4.3 EXPERIMENTS ON LARGE LANGUAGE MODELS (LLM)

As Tab.7, we compare AdaQTransform with SmoothQuant (Xiao et al., 2023) and OS+ (Wei et al.,
2023) on LLM models Opt-1.3B/6.7B, by simple evaluation metric "Last Token Prediction Accuracy"
on LAMBADA dataset’s validation set. AdaQTransform† denotes AdaQTransform applied on
SmoothQuant. We can see AdaQTransform brings SmoothQuant 1.3% gain on W6A6 Opt-1.3B.

4.4 ABLATION STUDY ON IMAGENET

4.4.1) AdaQTransform V.s. BN: For networks with normalization(BN/GN/LN), as we know, there
have not been an academic PTQ work exploring BN’s folding or not. Thus we explore it as Tab.8
based on NWQ which adopts BN-Folded setting by default. For BN-Not-Folded, we jointly optimize
BN’s learnable params γ and β. It provides almost the same accuracy whether to update BN’s
statistical params µ, σ or not. We see BN-Not-Folded provides better performance than BN-Folded
(NWQ). AdaQTransform provides tiny better accuracy than BN-Not-Folded, since AdaQTransform
can be applied on layers with BN (equals to BN-Not-Folded) and other layers without BN. Therefore,
as Sec.3.3.2, AdaQTransform subsumes BN-Not-Folded, and covers a wider application range.

4.4.2) Visualization for AdaQTransform: As Fig.3.4, AdaQTransform achieves adaptive per-
channel transformation with adaptive ξ, η for output channels, and converges to a lower loss.

4.5 TRAINING AND INFERENCE COST COMPARISON

For training, we only integrate AdaQTransform into each PTQ baselines and keep other things
unchanged. The training time and memory is almost the same as the baseline. For inference, We
perform pure 4/8-bit integer inference with TVM on hardware with code from HAWQ (Yao et al.,
2021). The first and last layer are in 8 bits. The middle layer convolution is 4bits. The average
inference time per batch over 30 measurement, each with 50 inferences, is as follows. We can see
AdaQTranform improves accuracy without extra inference cost, and almost without training cost.

Table 9: W4A4 MobileNet-v2 training and inference cost

Net Acc@1 Train-Time Infer-Time (Batch=8) Params Params*Bit FLOPs*Bit

NWQ 69.14% 46.5 min 1.28 ms 3.51 M 20.79 M 6.36 G

AdaQTransformNWQ 70.01% 46.9 min 1.28 ms 3.51 M 20.79 M 6.36 G

5 CONCLUSION

In this paper, we propose a novel PTQ approach, AdaQTransform, based on full exploration on
weight’s quantization step through decoupling. It can be easily integrated into current PTQ methods,
expands their optimization space and helps the quantized output better fit the FP32 output, thus
achieves lower PTQ feature reconstruction error. It incurs negligible extra finetuning cost and no
extra inference cost. For the first time, AdaQTransform builds a general paradigm in quantization
parameter update settings from current PTQs to QATs. Experiments on CNNs, ViTs, LLMs, and
image super-resolution EDSR demonstrate AdaQTransform sets up a new PTQ SOTA.
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A ADDITIONAL TRAINING OVERHEAD FOR ADAQTRANSFORM

Our AdaQTransform can be easily integrated into existing PTQ methods. It takes the same training
iteration(20K), the same optimizer(Adam), and learning rate as their baseline. As Table 10, the
training time and memory cost for extra introduced ξ and η can be ignored compared to their baseline.

Table 10: W4A4 Training Time and Memory for AdaQTransform

Method ResNet-18
Train-Time

ResNet-18
Train-Mem

MobileNet-v2
Train-Time

MobileNet-v2
Train-Mem

BRECQ (Li et al., 2021) 18.4 min 2665 M 43.9 min 5794 M
AdaQTransformBRECQ 18.7 min 2667 M 44.8 min 5797 M

NWQ (Wang et al., 2022a) 46.5 min 3267 M 66.6 min 7529 M
AdaQTransformNWQ 46.9 min 3272 M 67.3 min 7537 M

PD-Quant (Liu et al., 2023a) 97.9 min 3589 M 184.0 min 6759 M
AdaQTransformPD_Quant 98.5 min 3592 M 186.6 min 6764 M

B QUANT-PARAM SETTING VS TRAINING PIPELINE FOR PTQ AND QAT

Quantization consists of two parts: training pipeline and quantization parameter update setting(quant-
param setting). Their main differences over PTQ and QAT are as follows,

• Training Pipeline:
⊙ Dataset:

♢ PTQ: tiny unlabeled calibration set, e.g., 1024 unlabeled images randomly selected from
ImageNet training set.

♢ QAT: full labeled training set, e.g., 1280000 labeled images
⊙ Training method:

♢ PTQ: self-distillation to FP32 models, usually called finetuning. FP32 weight is usually
frozen, or minor adjusted.

♢ QAT: training with loss to labeled ground truth, FP32 weight is learnable with no limit.
⊙ Training time:

♢ PTQ: usually in minutes level.
♢ QAT: usually in days level.

• Quant-param setting:
⊙ PTQ: AdaRound (Nagel et al., 2020), BRECQ (Li et al., 2021), QDROP (Wei et al., 2022a),

NWQ (Wang et al., 2022a), AdaBM (Hong & Lee, 2024)
⊙ QAT: LSQ (Esser et al., 2020), LSQ+ (Bhalgat et al., 2020), CABM (Tian et al., 2023)

Here we experiment AdaQTransform’s quant-param setting on QAT’s training pipeline, and classic
QAT’s quant-param setting, LSQ, on PTQ’s training pipeline as Table 11 for W2A2 MobileNet-v2
on ImageNet. We can see different quant-param setting suits different training pipeline.

Table 11: W2A2 MobileNet-v2: Quant-Param Setting vs Training Pipeline For PTQ and QAT

Acc@1/Training-Time PTQ training pipeline QAT training pipeline
LSQ’s quant-param setting 27.65% / 66 min 47.96% / 98 hours

AdaQTransform’s quant-param setting 32.19% / 67 min 47.72% / 98 hours
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C ADAQTRANSFORM ON WEIGHT-ONLY PTQ

We conduct weight-only quantization experiments on CNNs, ViTs as Table 12.

Table 12: AdaQTransform on Weight-Only PTQ over ViTs

Methods W/A ViT-S ViT-B DeiT-S DeiT-B
FP32 32/32 81.39% 84.54% 79.80% 81.80%

RepQ-ViT (Li et al., 2023) 4/32 75.31% 78.34% 75.10% 78.48%

AdaQTransformRepQ-ViT 4/32 79.39% 82.57% 78.12% 81.10%
RepQ-ViT (Li et al., 2023) 6/32 81.01% 84.33% 79.50% 81.67%

AdaQTransformRepQ-ViT 6/32 81.16% 84.39% 79.78% 81.78%

D ADAQTRANSFORM GRANULARITY

Except for per-channel AdaQTransfom, we also explored other granularity, e.g., per-layer, per-pixel
and per-network. Given output feature shape Cout ×H ×W ,

• Per-channel ξ, η, what our AdaQTransform adopts, are two vectors, each with Cout inde-
pendent values for output feature of each Conv/FC layer.
• Per-layer ξ, η are two scalar, with only 2*1 independent value, for the whole output feature

of each Conv/FC layer.
• Per-pixel ξ, η set each scalar for each pixel, with a matrix with Cout ×H ×W independent

values for each Conv/FC layer.
• Per-network is only one ξ, η for the whole network, here we put them on the final FC layer,

as two vectors with shape Cout

Experiments on W2A2 MobileNet-v2 is as Table 13, where per-channel is the best among all settings
which incur no extra inference cost.

Table 13: AdaQTransform Granularity, Per-channel/layer/pixel/network, on MobileNet-v2

Method W/A Acc@1 for MobileNet-v2 No extra cost in inference
NWQ-baseline 2/2 26.42

per-channel (ours) 2/2 32.19
per-layer 2/2 26.92

per-pixel 2/2 32.36

per-network 2/2 26.44
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