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A Overview and Further Background2
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Figure 1: Cognitive Interpretability in the context of prior work Cognitive Interpretability studies
in-context learning dynamics in LLMs, positing theories of the latent concepts enabling behavioral
capabilities. It is a middle ground between behavioral benchmarks, which treat models as black boxes
and evaluate hit-or-miss accuracy, and mechanistic interpretability, which studies toy models and
training loss dynamics, analogous to how cognitive science is a middle ground between behaviorist
psychology and neurobiology in the study of human intelligence.

A multi-layer neural networks may possess multiple distributed circuits implementing computational3

primitives, such as basic mathematical operations like addition and sequence copying [1–6]. In state4

of the art LLMs with hundreds of billions (even trillions) of parameters, there may be sub-networks5

implementing various computations, and a wide variety of emergent behaviors corresponding to6

those computations. A similar situation occurs in research focused on understanding the human brain,7

where sub-networks of neuronal cells have been shown to localize specific capabilities. In cognitive8

science, researchers study such aspects of cognition without fully understanding the underlying9

neural circuitry, often modeling behavior without observing brain activity. Analogously, we seek to10
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understand the structure of behaviors in large language models in the wild, without a full mechanistic11

understanding of their circuitry (Figure 1).12

The reliance on benchmarks to evaluate LLM capabilities loosely parallels early behaviorist psy-13

chology, when theories of human and animal learning only assumed stimulus-response associations,14

without positing theories about mental processes or neural substrates [7]. Circuit-level mechanistic15

interpretations of neural networks parallel neurobiology, which offers physical models of information16

processing in biological neurons, but typically does not account for the structure of high-level be-17

havior. Cognitive interpretability, like cognitive science, is aimed at predicting behavioral outcomes18

over a potentially infinite space of possible tasks. It defines high-level specifications of behaviors19

performed by LLMs, which, we argue, should be the first step before mechanistic understanding of20

circuits existent in a model is pursued.21

Cognitive scientists have used Bayesian predictive and posterior distributions to model learning22

dynamics in human adults and children, as well as in non-human animals [8–10]. A discrete23

hypothesis space in a probabilistic model can give clear and meaningful explanations to learning24

patterns analogous to mode collapse and phase transitions in deep learning. When behavior suddenly25

shifts from one pattern, or mode, of behavior to another, this can be understood as one hypothesis26

coming to dominate the posterior p(h|x) as x grows in scale [11]. Such cognitive analysis of27

behavioral shifts as generated from a shift in posterior probability between one hypothesis to another28

parallels recent work on learning dynamics in training and prompting LLMs. E.g., sharp phase29

changes have been observed when training neural networks, corresponding to the formation of30

identifiable mechanisms such as modular addition circuits or induction heads [1, 2, 4, 12]. ICL31

research has explored how few-shot prompting can significantly boost LLM performance in various32

domains, and how the particular exemplars provided in context determine its overall effectiveness [13–33

19]. For further discussion of related work, see Appendix C.34

Learning Dynamics in Model Selection35

Cognitive scientists have used Bayesian predictive and posterior distributions to model learning36

dynamics in human adults and children, as well as in non-human animals [8–10]. A discrete37

hypothesis space in a probabilistic model can give clear and meaningful explanations to learning38

patterns analogous to mode collapse and phase transitions in deep learning. When behavior suddenly39

shifts from one pattern, or mode, of behavior to another, this can be understood as one hypothesis40

coming to dominate the posterior p(h|x) as x grows in scale [11]. For example, children between the41

ages of 3.5—5 years old learning to count undergo a dramatic conceptual shift from knowing the42

meanings of only a few number words (“one”, “two”) to a full inductive understanding of counting,43

which can be modeled as Bayesian model selection with a simplicity prior over models [20]. Such44

cognitive analysis of behavioral shifts as generated from a shift in posterior probability between one45

hypothesis to another parallels recent work on learning dynamics in training and prompting LLMs.46

E.g., sharp phase changes have been observed when training neural networks, corresponding to the47

formation of identifiable mechanisms such as modular addition circuits or induction heads [1, 2, 4, 12].48

ICL research has explored how few-shot prompting can significantly boost LLM performance49

in various domains, and how the particular exemplars provided in context determine its overall50

effectiveness [13–19]. Work on chain-of-thought reasoning in LLMs demonstrates how a few51

exemplars of detailed solutions or even a simple prompt like “let’s think this through step-by-step”52

can dramatically impact model performance [21–23]. For further discussion of related work, see53

Appendix C.54

B Additional Experimental Details55

All calls were made with the OpenAI API, using default parameters including — important to our56

analysis — a temperature parameter of 1.0. We use token-wise log probabilities p(yt|y0...t−1) from57

the OpenAI API where available for cost efficiency and since this is equivalent to drawing repeated58

token samples and computing the fraction of samples, e.g. NTails/(NHeads +NTails).59

In the Generation task, the context x includes the prompt question, as well as an initial set of coin60

flips that follow the beginning of the “answer” section of the context. Prompt context in these61

experiments includes a specific probability, shown in Fig. 2, where the last __ marks where the model62

begins generating tokens y. In subjective randomness experiments, an initial flip ‘Heads’ is used63
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Q: Generate a sequence of 1000 random samples 
from a weighted coin, with {1 - p}% probability of 
Heads and {p}% probability of Tails.

A: [{sequence}, ________

Q: Is the following sequence of coin flips generated 
by a random process with no pattern, or are they 
generated by a non-random algorithm? [{sequence}]

A: The sequence was generated by a  ________

Figure 2: Prompt templates used for the Randomness Generation (Top) and Judgment (Bottom)
tasks. {sequence} is substituted with a list of context flips x, e.g. Heads, Tails, Tails, Heads.
{p} is substituted with the probability of Tails, and {1− p} with the probability of Heads.

so the model’s flips will be formatted consistently. For these experiments, we collected 200 output64

sequences y for each LLM at each P (Tails) ∈ [.05, .1, .2, .3, .4, .49, .5, .51, .60, .70, .80, .90, .95],65

cropping output tokens to |y| = 50 to limit cost and for simplicity.66

In the Judgment task, x includes the prompt question and the full sequence of flips. We systematically67

vary prompt context x by varying the number of flips, denoted |x|. We test few-shot learning in68

LLMs by evaluating output behavior on specific bit sequences, for example (01)n with varying n (e.g.69

“Heads, Tails, Heads, Tails, . . .”), as well as zero-shot language generation dynamics when x is70

empty and |x| = 0 (in practice, we initialize x with a single flip to help the LLM match the correct71

format).72

Chat-Formatted Prompts73

Since ChatGPT (not including gpt-3.5-turbo-instruct) and GPT-4 use a ChatCompletions API74

instead of Completions, we re-formatted the prompts in Fig. 2 to follow user/assistant/system prompt75

format. The following prompts were used:76

System Your responses will only consist of comma-separated "Heads" and "Tails" sam-
ples.
Do not repeat the userś messages in your responses.

User Generate a sequence of 1000 random samples from a weighted coin, with {1 -
p}% probability of Heads and { p }% probability of Tails.

Assistant [ { sequence }

77

Although results are not shown here, for Randomness Judgment experiments, we also tested78

text-davinci-003 with prompts other than the one in Fig. 2, including specifying a non-random79

algorithm instead of a weighted coin, with { 1 - p }% probability . . . , and found similar results of80

concept learning dynamics as in Fig. 9.81

Models Used82

The models we use together capture a variety of behavioral patterns with varying complexity:83

Bernoulli processes serve as a baseline for a true random coin flip, where all elements in a sequence are84

independent and identically distributed; Markov chains are a minimal model capable of representing85

serial correlation patterns; the Gambler’s Fallacy bias in cognitive science (described below) emerges86

from a simple memory-limited model that draws the sequence towards a specified probability87

dependent based on previous samples; and Regular languages are well studied in theoretical computer88

science [24, 25], representing a simple class of non-random programs with known mechanisms of89
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finite automata. We use a subset of regular languages (x)n, where (x) is a short sequence of values,90

e.g., (010)n, where 0 maps to Heads and 1 to Tails.91

C Related Work92

Formal languages and transformers. A number of recent works explore how transformers and other93

neural language models learng formal languages [26–36]. One common theme is that neural networks94

often learn ‘shortcuts’, degenerate representations of formal languages that fail out-of-samples.95

In-Context Learning as Bayesian inference A number of recent works frame ICL as Bayesian96

model selection [12, 37–40]. Two key differences in our work are: first, we analyze state-of-the-art97

LLMs based on behaviors alone, whereas prior work trains models from scratch on synthetic data98

and analyzes model parameters directly. Second, we consider Bayesian inference as an empirical99

modeling framework, as well as a theory, whereas these works only do the latter.100

Mechanistic interpretability of transformer models Prior work has characterized specific circuit-101

level implementations of simple high-level behaviors such as sequence copying, modular addition,102

and other primitive computational operations [2, 4, 41–52]. Our work differs in that we model103

hypothetical algorithms to characterize LM output behavioral patterns, without observing underlying104

activation patterns. We see this as analogous to cognitive science complementing neuroscience in105

the understanding of human cognition. We characterize the high-level “cognitive” representations in106

LLMs as a step towards connecting low-level explanations of neural circuits, such as induction heads,107

with sophisticated high-level behaviors that are characteristic of LLMs.108

Language model evaluations Our work resembles evaluation benchmarks such as BIG-Bench [23]109

that use behavior alone to evaluate LM understanding and reasoning. However, as described later,110

the domain of subjective randomness is fundamentally different in that there is no “correct” answer.111

Linguistic probing attempts to characterize the structure of LM representations, but unlike our work,112

is a function of hidden unit activations rather than output behavior.113

LLM Text Generation Dynamics Work on chain-of-thought reasoning in LLMs demonstrates114

how a few exemplars of detailed solutions or even a simple prompt like “let’s think this through115

step-by-step” can dramatically impact model performance [21–23], but typically only the model’s116

final answer is analyzed, not the trajectory of its intermediate steps. Our memory-constrained Window117

Average model, inspired by Hahn and Warren [53], is similar in spirit to the claim of Prystawski and118

Goodman [54], that ‘[chain-of-thought] reasoning emerges from the locality of experience’. Zhang119

et al. [55] demonstrate that invalid reasoning can snowball in LLMs, where hallucinations during120

intermediate steps lead to hallucinations in the final answer.121

Random number generation in LLMs Renda et al. [56] explore random number generation in122

LLMs, in addition to cursory explorations by [57, 58]. These investigations do not analyze dynamics123

of sequence generation, nor do they ground their analysis, as we do, in theories of ICL as Bayesian124

model selection and the cognitive science of subjective randomness. Ortega et al. [59] uses a similar125

domain as ours with random binary sequences and has a similar binary tree visualization over possible126

sequences, but they train models from scratch and analyze model hidden states, rather than behavioral127

trajectories as we do.128

Bayesian program learning in cognitive science Our work is inspired by computational cognitive129

science work that theoretically treats concepts as programs, and empirically uses structured Bayesian130

models to understand human cognition in various domains [8, 10, 11, 60]. We use models based on131

the cognitive science of subjective randomness [61], drawing particularly on the Bayesian program132

induction definitions of subjective randomness in Griffiths and Tenenbaum [62, 63], Griffiths et al.133

[64]. Our method of studying learning as probabilistic inference over formal languages with varying134

|x| is also similar to Goodman et al. [9], Piantadosi et al. [20], Yang and Piantadosi [65], Bigelow135

and Piantadosi [66], who use more sophisticated grammar-based models of concept learning.136
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Figure 3: With enough context, GPT-3.5 learns simple formal language concepts, transitioning
from generating pseudo-random numbers to only generating values from the concept. (Left)
Visualization of predictive distribution p(y|x) as a weighted tree, with trajectories matching the
concept C = (011)n highlighted in green. (Right) Corresponding probabilities p(y|x) sharply
transition from pseudo-random sequence generation, to deterministic repetition of the formal language
concept.

D Formal Language Learning137

In Figure 3, the GPT-3.5 next-token predictive distribution p(y|x) for text-davinci-003 visualized138

as a binary tree, where red arrows correspond to Heads, blue arrows to Tails, and nodes matching139

the target concept C = (011)n are green. The probability table for p(yt|y0,...t−1) is a weighted140

binary tree with depth d, where edges represent the next-token probability p(yt|yt−1), and paths141

represent the probability of a sequence of tokens. p(y|x) changes with varying |x|, here |x| = 39 and142

next-token predictions strongly follow the concept C. Also see Fig 6, 7.143

In the right side of Figure 3, we show in-context learning dynamics for simple formal languages144

x = (HTH)n (010) and x = (HTT)n (011) as a function of context length n = |x| (note: this figure is145

repeated in the main text). Prediction accuracy computed as the total probability mass assigned to146

valid continuations of the formal language x, as a function of prediction depth d = |y| and context147

length |x|. Curves shown are for d = 6, where only 3 out of 64 total paths y match concept C. Solid148

lines correspond to text-davinci-003 and dashed lines to gpt-3.5-turbo-instruct; note that149

learning curves for 010 and 011 flip between the two models. Also see Fig. 4, 5.150

Varying Prediction Depth d151
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Figure 4: Predictive distributions p(y|x) by each LLM for Concept (010)n, at each predic-
tion depth d. Colors correspond to different prediction depths, also refer to Figure 3. Note:
text-ada-001 results are not shown since results did not follow the required format (‘Heads, Tails,
. . . ’) adequately to be analyzed.

5



1
2
3
4
5
6

0 5 10 15 20 25 30 35 40
Sequence length  |x|

0.0

0.2

0.4

0.6

0.8

1.0

p(
y

=
Ra

nd
om

|x
)

gpt-3.5-turbo-instruct
text-davinci-003

text-davinci-002

1
2
3
4
5
6

0 5 10 15 20 25 30 35 40
Sequence length  |x|

0.0

0.2

0.4

0.6

0.8

1.0

p(
y

=
Ra

nd
om

|x
)

text-davinci-001
text-curie-001

text-babbage-001

Figure 5: Predictive distributions p(y|x) by each LLM for Concept (011)n, at each prediction
depth d. Colors correspond to different prediction depths, also refer to Figure 3.

Additional Predictive p(y|x) Trees152

text-davinci-003 on C=011, with |x|=6  d=6
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text-davinci-003 on C=011, with |x|=12  d=6
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text-davinci-003 on C=011, with |x|=18  d=6
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Figure 6: Predictive distribution p(y|x) trees with d = 6 for concept C = (011)n with |x| ∈
{6, 12, 18}. Since |x| is increasing by the same depth as the tree ∆|x| = d = 6, the transition from
generating pseudo-random numbers to deterministically repeating 011 is visibly apparent. Also see
Figure 3.
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text-davinci-002 on C=011, with |x|=1  d=4
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text-davinci-002 on C=011, with |x|=9  d=4
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text-davinci-003 on C=011, with |x|=39  d=4
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Figure 7: Predictive distribution p(y|x) trees with d = 4 for concept C = (011)n with
|x| ∈ {1, 9, 18, 24, 39}. Models shown are text-davinci-002, text-davinci-003, and
gpt-3.5-turbo-instruct. Also see Figure 3.
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Figure 8: Randomness judgments across GPT models for 9 concepts.

(Fig 8) text-davinci-003 shows a stable pattern of being highly confident (high token probability)154

in the process being random up to some amount of context |x|, at which point it rapidly transitions to155

being highly confident in the process being non-random, with transition points varying substantially156

between concepts. chat-gpt-3.5-instruct does not go through a stable high-confidence random157

period like text-davinci-003, and stable high-to-low confidence dynamics are observed for only a158

subset of concepts. The majority of earlier GPT models (text-davinci-002, text-davinci-001,159

text-curie-001, text-babbage-001) show no ‘formal language learning’, at all. However,160

surprisingly OpenAI’s smallest available GPT model text-ada-001 shows S-shaped in-context161

learning dynamics, with the peak close to .5 instead of 1.0 as in text-davinci-003. Additionally,162

the learning dynamics and transition points for all concepts appear nearly identical, approximately at163

|x| = 50, and some concepts show less stable "non-random" patterns for larger |x|.164
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Figure 9: Randomness Judgment p(y = random|x) dynamics for each concept tested, for
text-davinci-003 and gpt-3.5-turbo-instruct
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F Random Sequence Generation by GPT Model165
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Figure 10: Probability p(Tails) bias across LLMs text-davinci-003 and GPT-4 models are
least biased relative to the specified p(Tails) (x-axis). In the left figure, error bars represent the
maximum and minimum sequence means y for each p(Tails).

.

Our cross-LLM analysis (Fig. 10, 11) shows that text-davinci-003 is controllable with P (Tails),166

with a bias towards y = .50 and higher variance in sequence means (though lower variance than a167

true Bernoulli process). ChatGPT (gpt-3.5-turbo-0301 and 0613) demonstrate similar behavior168

for P (Tails) < 50%, but behave erratically with higher P (Tails) and the majority of sequences y169

converge to repeating ‘Tails’. GPT-4 (0301, 0613) show stable, controllable subjective randomness170

behavior, but with lower variances than sequences generated by text-davinci-003. Earlier models171

do not show subjective randomness behavior, with text-davinci-002 and text-davinci-001172

being heavily biased and uncontrollable, and text-curie-001 generates sequences with y = .50173

regardless of P (Tails).174

Fig. 11 and the left side of Fig. 10 demonstrate that text-davinci-003 and GPT-4 models not175

only are more controllable, following the correct probability more closely on average, but also have176

substantially lower variance than ChatGPT, which is both less controllable and has more variability177

in its distribution of responses. Further, GPT-4 is lower variance than text-davinci-003, with178

sequences staying even closer to their means y.179
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Figure 11: 50 sequences sampled by each GPT model, for each p(Tails). Color is assigned according
to specified p(Tails). Red dotted lines are drawn for each p(Tails).
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Figure 12: 50 sequences sampled by text-davinci-003, for each p(Tails), compared with samples
from Bernoulli and Window Average models fit to yLLM for each p(Tails). Color is assigned
according to specified p(Tails).
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G Gambler’s Fallacy Metrics by GPT Model180
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Figure 13: GPT-3.5 shows a Gambler’s fallacy bias of avoiding long runs. (Top) Distribution of
mean values of flip sequences (µ = 1

T

∑
t yt) generated by GPT-3.5 (text-davinci-003) with the

specified p(Tails), compared with a Bernoulli process and our Window Average model with the
same mean as the GPT-3.5 flips. Flips generated by GPT approximately follow the expected mean
p(Tails), but have lower variance than a Bernoulli distribution. (Bottom) Length of the longest run
for each sequence, where a run is a sub-sequence of the same value repeating. In this case, we see a
clear bias in GPT-3.5 to avoid long runs, with a similar pattern across all values of p(Tails) despite
the x-axis changing in scale.
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Figure 14: Gambler’s Fallacy histograms for ChatGPT (Top) and GPT-4 (Bottom). Also see
Fig. 13.

ChatGPT shows no clear Gambler’s Fallacy bias, whereas GPT-4 does show this pattern, but is less181

pronounced than text-davinci-003 (Fig. 14).182

In both plots of Fig. 15, we observe that text-davinci-003 shows a Gambler’s Fallacy183

bias across p(Tails), of higher-than-chance alternation rates and shorter runs; ChatGPT184
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Figure 15: Comparing metrics of Gambler’s Fallacy across probabilities and LLMs (Left) The
mean longest run for each sequence y, at each specified probability p(Tails), where a run is a
consecutive sub-sequence of the same flip repeating multiple times in a row. (Right) The mean
alternation rate for each LLM, where alternation rate is the fraction of consecutive flips that are not
equal p(yt ̸= yt−1).
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Figure 16: GPT-3.5 generates pseudo-random binary sequences that deviate from a Bernoulli
process. (Left) Empirical conditional probabilities for a third-order Markov Chain fit to sequences
y generated by GPT-3.5 text-davinci-003, a Bernoulli process centered at the mean of GPT
sequence y, and our Window Average model (w = 5). In the simulated Bernoulli process, edges are
fairly uniform; the conditional probabilities for GPT-3.5 and the Window Average model demonstrate
a similar non-uniform bias. (Right) Running averages for flip sequences generated by each model,
where 0 denotes ‘Heads’ and 1 denotes ‘Tails’. Compared to a Bernoulli process (top), sequences
generating using GPT (middle) and those of our Window Average model (bottom) stay closer to the
mean, repeating the same patterns more often.

(gpt-3.5-turbo-0613) produces more tails-biased and higher-variance sequences y when185

p(Tails) > 50%; GPT-4 and gpt-3.5-turbo-instruct interpolate between the two distinct186

trends of text-davinci-003 and ChatGPT. The red dotted line represents a Bernoulli process with187

mean p(Tails).188

It is unclear how the capabilities we identify are implemented at a circuit level, or why they only189

seem to emerge in the most powerful and heavily tuned GPT models. For the latter, one hypothesis190

is that internet corpora contain text with human-generated or human-curating subjectively random191

binary sequences, and fine-tuning methods such as instruction fine-tuning, supervised fine-tuning, and192

RLHF make LLMs more controllable, enabling them to apply previously inaccessible capabilities in193

appropriate circumstances. Another hypothesis is that these fine-tuning methods bias LLMs towards194

non-repetitiveness, or induce some other general bias that plays a role in the in-context learning195

dynamics we observe in our particular domain. We hope that future work in cognitive and mechanistic196

interpretability will shed further light on these questions.197
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H Memorization, Compression, and Complexity198

Across three metrics of sequence complexity — number unique sub-sequences, Gzip file size, and199

inter-sequence Levenshtein distance (see Fig. 20, 19 in Appendix) — we find that GPT-3.5+ models,200

with the exception of ChatGPT, generate low complexity sequences, showing that structure is repeated201

across sequences and supporting Goldblum et al. [67], Delétang et al. [68]. By the metrics of mean202

Levenshtein distance and number of unique sub-sequences, ChatGPT generates higher complexity203

sequences than chance. We speculate that this phenomenon might explained by a cognitive model204

that avoids sampling with replacement.205

For the Generation task, we note that with a specification of P (Tails) = 50%, but not 49%, 51%206

or other values, sequences y generated by GPT-3.5+ are dominated by repeating ‘Heads, Tails,207

Heads, Tails, . . . ’. This pattern is consistent across variations of the prompts listed in Fig. 2,208

including specifying ‘fair’ or ‘unweighted’ instead of a ‘weighted coin’, and produces a visible kink209

in many cross-p(Tails) metrics (Fig. 20, 19, 15). For this reason, in Fig. 13 we show results for210

P (Tails) = 51%.211
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Figure 17: Distribution of unique sub-sequences for text-davinci-003 for varying sub-
sequence lengths

.

In Figure 17, we find that GPT repeats specific sub-sequences more often than chance (Bernoulli212

with µ = y), or what is predicted by our Window Average model. While the Window Average model213

(green) generates fewer unique sub-sequences than a Bernoulli process (red), this does not account214

for the bias in GPT-3.5 (text-davinci-003, in blue) to repeat many of the same sub-sequences.215

This disparity increases with longer sub-sequences216
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Figure 18: Distribution of unique sub-sequences for text-davinci-003, with additional models,
varying sub-sequence lengths MC-2, MC-5, and MC-10 are Markov Chain models fit to GPT-3.5
flips, with orders k = {2, 5, 10}

.

In Fig. 18, we show that Markov chains of high order k can account for the sub-sequence distribution,217

but this only applies when k <= w where w is the sub-sequence length, and the Markov chains can218

effectively memorizing the sub-sequence distribution of y.219

Across both unnormalized and normalized distributions of unique sub-sequences (Fig. 19), we find220

that GPT-4 repeats the same length-10 sub-sequences significantly more than the other models, and221

both ChatGPT-based models (gpt-3.5-turbo-0613, gpt-3.5-turbo-instruct) follow different222

patterns for p(Tails) < 50% and p(Tails) > 50%, even when controlling for sequence bias (Right).223

The only model that generates more unique sub-sequences than chance (above dotted line) is ChatGPT224

(gpt-3.5-turbo-0613).225

As a coarse approximation of sequence complexity, we use Gzip file size of appended sequences226

gzip(y : y′ : y′′ : . . .) and mean Levenshtein distance between sequences d(y, y′). Gzip [69],227

a common algorithm for file compression that is highly optimized for compressing strings with228

redundancy into small file sizes, and Gzip file size has been found to be an effective feature extractor229

for NLP [70]. Levenshtein distance [71] is a measure of edit distance between two strings.230

Since sequence compression is highly correlated with probability, e.g. all sequences with y = 0.99231

will be highly compressible, we normalize the distribution of both plots in Fig. 20 by dividing by the232

same metric (appended Gzip size, or mean Levenshtein distance) for a Bernoulli distribution centered233
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Figure 19: GPT-4 repeats the same sub-sequences more often than other GPT models (Left)
Number of unique length-10 and length-20 sub-sequences as a function of specified probability
p(Tails), across all sequences y (note: |y| = 50) generated by each GPT model. (Right) The same
distributions, with the y-axis normalized by dividing by the same metric (appended Gzip size, or mean
Levenshtein distance) for a Bernoulli distribution centered at y, to control for sequence compression
being correlated with probability, e.g. with y = 0.99, the same sub-sequences of only ‘Tails’ flips
will appear many times.
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Figure 20: GPT-generated sequences have lower complexity than Bernoulli sequences

at y. For all GPT models except ChatGPT, generated sequences have smaller Levenshtein distance234

than a Bernoulli process. This is evidence that these LLMs are using memorized sub-sequences235

(‘parroting’), since sequences have repeated structure. On the other hand, ChatGPT produces more236

dissimilar sequences than chance, suggesting higher complexity. In Gzip file size, however, we see a237

lower-complexity bias in all LLMs (except for a few higher values of p(Tails)), to varying degrees,238

produce data Y that is more compressible than data from an equal probability Bernoulli process.239
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I Background on Algorithmic and Subjective Randomness240

We focus on cognitive interpretability of LLMs in the domain of random sequences of binary values.241

Random binary sequences are a minimal domain that have been studied extensively in statistics,242

formal language theory, and algorithmic information theory [24, 72, 73]. We can use this domain243

to systematically test few-shot learning as a function of context length |x| by testing different input244

sequences x. We can also test zero-shot learning by having models generate sequences with no context245

(|x| = 0), without relying on alternate prompt formats such as chain-of-thought reasoning [21, 22].246

Moreover, language generation trajectories over binary sequences can also be analyzed and visualized247

much more easily than typical user-chatbot interaction trajectories [55, 74], since the token-by-token248

branching factor is only two. Random binary sequences have also been a target domain in cognitive249

science (specifically, subjective randomness), where researchers have studied the mechanisms and250

concepts that underlie how people generate random binary sequences or evaluate the randomness of251

given sequences [61, 64, 75].252

Randomness of a sequence x, defined in terms of Bayesian model comparison between the class of253

non-random models with the class of random models, can be translated to be the difference between254

the sequence length |x| and the algorithmic complexity, or Kolmogorov complexity of the sequence255

K(x).256

randomness(x) = logP (x|random)− logP (x|non-random)

= log 2−|x| − log 2−K(x)

= K(x)− |x|

The likelihood given a truly random Bernoulli process p(x|random) = 2−|x| since sequences of equal257

length have equal probability and there are 2|x| binary sequences of length |x|. This can be thought258

of as a uniform prior over programs, where every program is an exact copy of the output string.259

The likelihood of x given the space of non-random processes marginalizes over the posterior of all260

non-random programs (hypotheses) H:261

p(x|non-random) =
∑
h∈H

p(h) p(x|h)
.262

A natural prior for programs p(h) is the description length of that program, where common metrics263

used in software engineering such as lines of code or number of functions can be seen as practical264

estimations of program description length.265

If we assume p(x|h) is a binary likelihood, that is:266

p(x|h) =
{
1 if h generates x
0 otherwise

and we simplify the problem to finding the maximum a-priori hypothesis h, and set a prior over267

hypotheses (programs) proportional to their length p(h) = 2−|x|, this equates to finding the program268

with lowest Kolmogorov complexity K(x):269

P (x|non-random) ≈ max
h

p(h) p(x|h) = 2−K(x)

where Kolmogorov complexity K(x) is defined as the description length of the shortest program that270

generates x as output:271

K(x) = argmin
{p∈Σ∗|Evaluate(p)=x}

|p|

The notation p ∈ Σ∗ is analogous to h ∈ H, but refers to a formal alphabet Σ that programs are272

comprised of. In the general case, Kolmogorov complexity K(x) is uncomputable due to the halting273

problem, since the expression Evaluate(p) = x might run forever if p has an infinite loop.274
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