31
32

33
34

The Appendix for “Generalizing to Unseen Domains
for Regression”

Anonymous Author(s)
Affiliation
Address

email

A Introduction of Baselines

The simple introductions of baselines are described as follows:

ERM [1]. The Empirical Risk Minimization method is the most simple baseline that minimizes the
regression loss on source domains and reports regression loss on unseen target domains.

IRM [2]. Invariant Risk Minimization estimates invariant correlations across multiple training
domains. For implementation, it can apply the gradient correlations from two batches as a penalty.

MMD [3]. The core of MMD is to align the distribution among different domains by the Maxi-
mum Mean Discrepancy measure. [3] incorporate MMD into an adversarial auto-encoder to learn
generalized feature representations.

MTL [4]. Marginal Transfer Learning views DG as a kind of supervised learning problem by
augmenting the original feature space with the marginal distribution of feature vectors.

MLDG [5]. Meta-Learning for Domain Generalization (MLDG) is a pioneering work that applies
MAML to domain generalization. MLDG optimizes meta-train and meta-test simultaneously in the
outer loop. Original MAML only optimizes meta-test objective in the outer loop. The reason to
optimize the meta-train objective is that we want the learned model to be capable of directly predicting
the target domain. Note that there are other meta-learning methods for DG, such as MetaNorm
[6] and MASEF [7]. But this baseline did not release codes, e.g., MetaNorm, or are specialized for
classification tasks, e.g., MASFE.

DANN [8]. Domain-Adversarial Neural Networks is originally proposed to address domain adaptation
problems. Besides the introduced domain adversarial framework that aligns the domain distribution,
DANN also proposes an elegant implementation with a gradient reversal layer.

SD [9]. Spectral Decoupling controls the learning dynamic of models and tries to reduce the learning
speed for unrelated features for out-of-distribution generalization. In the training process, the model
has two options to reduce the loss toward an example, i.e., to get more confident in a learned feature
or to learn a new feature. SD tends to increase feature diversity by encouraging learning new features.

RSD [10]. Representation Subspace Distance (RSD) tries to deal with general cross-domain regres-
sion via subspace alignment, which reduces domain gap by minimizing RSD via the principal angles
of representation matrices.

SelfReg [ 1 1]. SelfReg proposes a domain perturbation layer to make data augmentation methods like
Mixup [12] more useful in self-supervised contrastive regularization.

Transfer [13]. The method successfully finds more transferable features via representation learning
using adversarial training.

MODE [14]. MODE is a distribution robust optimization method that performs moderate distribu-
tional exploration via style transfer. For fast implementation, we adopt its Fourier mixing version.

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.
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DDG [!5]. Disentanglement-constrained Domain Generalization (DDG) tries to disentangle the
domain-agnostic semantic features and the domain-specific variation features to achieve out of
distribution prediction. The data generation and augmentation technics are also utilized to disentangle
the semantic and variation features.

CAD [16]. CAD also uses self-supervised learning like SelfReg but learns discriminative representa-
tions and aligns representation’s marginal support among different domains.

CORAL [17]. CORAL aligns the second-order statistics of the source and target distributions with a
linear transformation. In our experiments, we use the deep learning version that the distributions are
derived from the learned latent features.

CausIRL [18]. CausIRL tries to capture the invariant representations by minimizing the distance of
intervened distributions. We use MMD as the distance function in our experiments.

B Hyper-parameter Setting

To help the readers reproduce the reported results, we provide more hyper-parameters in Tab. 1. The
outer loop learning rate, the inner loop learning rate and the inner loop iteration steps are used by
our MAMR model, and the left hyper-parameters are shared by all methods. Note that the settings
are only suitable for age estimation datasets. To find the proper hyper-parameters for each algorithm
under limited computation resources, 5 times random hyper-parameter searches are conducted. Then
we repeat 3 times with different seeds on each group of hyper-parameters.

Following the data configuration in the DomainBed' benchmark, we randomly split each domain into
90% and 10% subsets. The former is used in model training and the latter for model selection. We
use two popular model selection methods in DG, i.e., test-domain validation and training domain
validation. The former is also named the oracle method that the model is selected based on the 10%
data of the test domain. The latter uses the 10% data of the training domain to select the best model.

Table 1: The hyper-parameter settings of our MAMR model and baselines.

Hyper-Parameters Setting Values
Inner loop learning rate 3 0.05
Outer loop learning rate « 0.1xp
Inner loop iteration steps 1
Batch size of each support or query task 64
Holdout fraction for each domain 0.1
Trial seeds: 3057, 3058, 3059
Optimizer: SGD
Optimizer weight decay: 5e — 4
Data augmentation RandomResizedCrop, RandomHorizontalFlip
Data normalization (mean) mean=[0.485, 0.456, 0.406]
Data normalization (std) std=[0.229, 0.224, 0.225]

"https://github.com/facebookresearch/DomainBed
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C Causal Mechanism in Toy Experiments

We provide the used causal mechanism in toy experiments. Fig. | demonstrate the mechanism to
generate Y given two inputs X; and Xs. In this example, the dominant variable X; controls 5
generation factors, the auxiliary variable X5 controls 3 generation factors. All the generation factors
form a sum and the sum is normalized to the interval [0, 1] for Y.

Figure 1: The example of the generation mechanism for toy experiments. Note that > denotes the
sum of all the coming elements, and the responding value Y is normalized to [0,1] after ) .
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D More Results on Rental Dataset

We provide the regression performances of our MAMR and baselines on Rental dataset *. This
dataset is released by an online competition in 2019 to predict housing rental in Shang Hai, China.
The data categories include rental housing, regions, second-hand housing, supporting facilities, new
houses, land, population, customers, real rent, etc. We split 15 regions into 4 groups as 4 different
domains (i.e., Regionl, Region2, Region3 and Region4). Every domain have different rentals due
to their populations and economic conditions. The rental prices vary from 100RMB/month to
450000RMB/month. We normalize all the attributes (including target values) to [0, 1] and calculate
the MSE loss at test stage. Fig. 2 provides the statistics of the four domains. Different from age
estimation dataset, the responding values in Rental are closer to a continuous distribution. Hence
some methods like DDG is not suitable for this dataset (on age estimation dataset, each age can be
seen as a class for DDG). If you need the origin datasets, please contact us by e-mail.
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Figure 2: The histograms of four domains with kernel function density estimation. The responding
values meet long-tail distribution, so we only visualize the responding values whose normalized
values are less than 0.05.

Different from the settings on age estimation dataset, we use a 5-layer MLPs as the encoder for all
methods. Moreover, we use Adam optimizer and MAE training loss on all methods. The dataset and
codes can be found in our supplementary materials.

The regression results can be seen from Tab. 2. Our method also gets strong performance in average
evaluation. Besides that, we find CausIRL also shows strong performance via its causal mechanism.
However, CausIRL is normal on age estimation datasets. The above comparisons show the good
scalability of MAMR on cross-domain regression tasks.

E More Details on Age Estimation Datasets

Perfect age estimation is based on the assumption that all age data are available, while many real-
world datasets are not perfect and have partial ages due to privacy concerns. Hence age estimation
has been introduced in cross-domain works [19, 20].

CACD?’. Cross-Age Celebrity Dataset (CACD) contains 163,446 images from 2,000 celebrities
collected from the Internet. The age of celebrities ranges from 16-62 and can be classified into 5
disjoint age intervals (domains), i.e., [15 — 20), [20 — 30), [30 —40), [40 — 50), [50 — 60]. The images
of each celebrity are sampled by different devices across multiple years. Therefore each domain
has different facial characteristics. To consider the overlapped intervals, we further create CACD-O
dataset, where each interval has 3 ages of neighbors, e.g., [15 — 20) includes 8 different ages from
15 to 22 and [20 — 30) has 15 ages from 18 to 32. Tab. 3 and Tab. 4 provide the performances on
datasets CACD and CACD-O.

AFAD*. The Asian Face Age Dataset (AFAD) originally is an age estimation dataset containing
more than 160K face images and aging labels. We split the dataset into 5 age intervals (domains),
ie., [15 — 20),[20 — 25),[25 — 30),[30 — 35), [35 — 40]. Like CACD, each age interval has its
own face characteristics and can be viewed as 5 related domains for regression. Tab. 5 provides the
performances on this dataset.

*https://ai.futurelab.tv/contest_detail/3#contest_des
3http://besiriuschen. github.io/CARC/
*https://afad-dataset.github.io/
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Table 2: Regression results on Rental dataset with training-domain validation. Each region column
denotes the target domain with the others as source domains. Many original MSE results are less
than 1e — 3. For elegant demonstration, we have multiplied 1e 4 3 for each mean result as well as its
standard variance. Note that in the main paper, we multiplied le + 2 for each mean result to keep the

same magnitude as other datasets.

Algorithm Regionl Region2 Region3 Region4 Avg

ERM 0.5335810.0603  0.58015.10.0002 0.3783410.0000 0.4195510.0000 0.47791
IRM 0.60709+0.0000  0.58003+0.0001 0.3783510.0000 0.419529.0000 0.49625
MLDG 0.46439-+0.0046 0.57993+0.0001 0.37835+0.0000 0.420029.0002 0.46067
CORAL 1.000234+0.4004  0.6352110.0451 0.3783410.0000 0.4195519.0001 0.60833
MMD 0.4692619.0010 0.58035+0.0002 0.3783410.0000 0.419529.0000 0.46187
DANN 0.52026 100312 0.5801140.0001 0.3783310.0000 0.41965100000  0.47459
MTL 0-49153i0.0266 0.58023+0.0003 0.37834i0,0000 0~41971i0.0001 0.46745
SD 0.59537+0.0151 0.58003+0.0001 0.37835+0.0000 0.41954 19 0000 0.49332
SelfReg 0-712011042118 0-58015i0.0001 0.37836i0_0000 0.41969i0_0000 0.52255
CAD 0.82516 103045  0.5801440.0001 0.3783310.0000 0.41961100002  0.55081
Transfer 0-50443i0.0283 0.58002i0_0001 0.37834i0_0000 0.41946i0,0000 0.47056
RSD 0.5301310.0238 0.5802219.0002 0.3783410.0000 0.4194610.0000 0.47704
CausIRL 0.45862i0.0026 0.58044i0_0001 0.37834i0_0000 0~41951i0.0000 0.45923
MODE 0.48086+0.0000 0.58001+0.0001 0.37835+0.0000 0.419859.0000 0.46477
MAMR 0.4568910.0037 0.58002100001 0.3783410.0000 042012100001 0.45884

Table 3: Regression results on CACD dataset with training-domain validation. Each regression
interval (domain) in all tables denotes the target interval with the others as source intervals. The
minimum Mean Squared Errors are bolded. Note that we set the standard variances to O if they are

less than 0.01.

Algorithm [15-20) [20-30) [30-40) [40-50) [50-60] Avg

ERM 0.0434+0.00 0.0159+0.00 0.0024+9.00 0.0127+0.00 0.0547+0.00 0.0258
IRM 0.0903+0.04 0.0119+0.00 0.0016+0.00 0.0174+0.00 0.0626-+0.00 0.0368
MLDG 0.0454+0.00 0.0140+0.00 0.0028+0.00 0.0137+0.00 0.0540+0.00 0.0260
MMD 0.0486+0.00 0.0178+0.00 0.0010+0.00 0.015240.00 0.0603+0.00 0.0286
CORAL 0.0446+9.00 0.0135+0.00 0.0030+0.00 0.0130+0.00 0.0535+0.00 0.0255
DANN 0.0474+0.00 0.0151+0.00 0.0013+0.00 0.01420.00 0.0566-+0.00 0.0269
SD 0.0382+0.00 0.0109+0.00 0.0026+0.00 0.0131+0.00 0.059310.00 0.0248
MTL 0.0330+0.00 0.06414+0.00 0.1199+0.00 0.2022+0.00 0.3040+0.00 0.1447
SelfReg 0.0433i0400 0.0133i0400 0.0023i0,00 0.0130i0,00 0.0542io_00 0.0252
Transfer 0.033040.00 0.06414+0.00 0.1199+0.00 0.2022+0.00 0.3040+0.00 0.1446
RSD 0.046410.00 0.0190+0.00 0.004510.00 0.0217+0.00 0.06504+0.01 0.0313
CAD 0.0330+0.00 0.06414+0.00 0.1199+0.00 0.2022+0.00 0.3040+0.00 0.1447
CauslIRL 0.0464i0400 0.0167i0400 0.0012i0,00 0.0147i0,00 0.0604i0A00 0.0278
DDG 0.0490-0.00 0.0176+0.00 0.0016+0.00 0.0153+0.00 0.0598+0.00 0.0287
MODE 0.0481+0.00 0.0176+0.00 0.0010+0.00 0.0146+0.00 0.0602+0.00 0.0283
MAMR 0.0331+0.01 0.0143+0.00 0.0021+10.00 0.0078.p.00 0.0371:p01 0.0189

For age estimation datasets, we normalize the labels from O to 1 and leave out one domain at the
training stage then make predictions on this domain at the test stage. To ensure a similar capacity
among different age intervals, we make compensation for the small capacity interval by slightly
relaxing the interval.
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Table 4: Regression results on CACD-O dataset with training-domain validation.

Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.0370+0.00 0.0146+0.00 0.0032+0.00 0.0126+0.00 0.0506+0.00 0.0236
IRM 0.0382+0.00 0.0140+0.00 0.0029+0.00 0.0166+0.00 0.0562+0.00 0.0256
MLDG 0.0371+0.00 0.0141+0.00 0.0035+0.00 0.0130+0.00 0.0496+0.00 0.0235
MMD 0.04229.00 0.0168+0.00 0.0021+0.00 0.0144+9.00 0.0561+0.00 0.0263
CORAL 0.0357+0.00 0.014510.00 0.0031+0.00 0.0120+0.00 0.050310.00 0.0231
DANN 0.0399+0.00 0.0185+0.00 0.0022+0.00 0.0141+0.00 0.0546+0.00 0.0259
MTL 0.0393+0.00 0.0673+0.00 0.1207+0.00 0.2026+0.00 0.298110.00 0.1456
SD 0.0307+0.00 0.0105+0.00 0.0028+0.00 0.0135+0.00 0.0558+0.00 0.0227
SelfReg 0.0369i000 0.0130i0400 0.0033i0,00 0.0122i()‘00 0.0507i0A00 0.0232
Transfer 0.0393+0.00 0.0673+0.00 0.0823+0.03 0.2026+0.00 0.298110.00 0.1379
RSD 0.0423+0.00 0.0181+0.00 0.0024+0.00 0.014510.00 0.054910.00 0.0264
CAD 0.0393+0.00 0.22944+0.13 0.1207+0.00 0.2373+0.03 0.2981+0.00 0.1849
CauslIRL 0~O415i000 0.0172i0400 O.OOZOiOAoo 0.0142i000 0.0536i0A00 0.0257
DDG 0.0424+¢.00 0.0179-+0.00 0.0025+0.00 0.0151+0.00 0.0563+0.00 0.0268
MODE 0.0416-+0.00 0.0176+0.00 0.0021+0.00 0.014710.00 0.055710.00 0.0263
MAMR 0.0449j:0.01 0.0205j:0,01 0.0026:{:0,00 0.0069i0,00 0.0375i0,01 0.0225

Table 5: Regression results on AFAD dataset with training-domain validation.

Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.0483+0.00 0.0151+0.00 0.0032+0.00 0.0139+40.00 0.0540-000 0.0269
IRM 0.0467+0.00 0.014310.00 0.0049+0.00 0.016540.00 0.0599+0.00 0.0285
MLDG 0.0474+0.00 0.0160+0.00 0.0031+10.00 0.0131+p00 0.0543+0.00 0.0268
MMD 0.0552+0.00 0.017040.00 0.000910.00 0.016040.00 0.061540.00 0.0301
CORAL 0.0481+0.00 0.0157+0.00 0.0031+0.00 0.0138+0.00 0.0555+0.00 0.0272
DANN 0.0537+0.00 0.016310.00 0.001140.00 0.015340.00 0.058710.00 0.0290
SD 0.03429.00 0.01240.00 0.0026+0.00 0.019410.00 0.0667+0.00 0.0270
MTL 0.3914+0.00 0.2936+0.00 0.1990+0.00 0.1168+0.00 0.0601+0.00 0.2122
SelfReg 0.0499+0.00 0.0167+0.00 0.0028+0.00 0.013240.00 0.05794+0.00 0.0281
Transfer 0.3914i0,00 0.2936i0‘00 0.1990i0,00 0.1168i0_00 0.0GOlivoo 0.2122
RSD 0.0506+0.00 0.0194+0.00 0.0042+0.00 0.0171+0.00 0.0576+0.00 0.0298
CAD 0.391510.00 0.2936+0.00 0.199040.00 0.1168+0.00 0.0601+0.00 0.2122
CausIRL 0.0505+0.00 0.0178+0.00 0.0010+0.00 0.0157+0.00 0.0632+0.00 0.0296
DDG 0.0556+0.00 0.0166+0.00 0.001240.00 0.016440.00 0.061040.00 0.0302
MODE 0.05460.00 0.0166+0.00 0.0008+0.00 0.0161+0.00 0.061410.01 0.0299

MAMR 0.028140.00 0.006810.00 0.001240.00 0.019040.00 0.06414+0.00 0.0238
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