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A Introduction of Baselines1

The simple introductions of baselines are described as follows:2

ERM [1]. The Empirical Risk Minimization method is the most simple baseline that minimizes the3

regression loss on source domains and reports regression loss on unseen target domains.4

IRM [2]. Invariant Risk Minimization estimates invariant correlations across multiple training5

domains. For implementation, it can apply the gradient correlations from two batches as a penalty.6

MMD [3]. The core of MMD is to align the distribution among different domains by the Maxi-7

mum Mean Discrepancy measure. [3] incorporate MMD into an adversarial auto-encoder to learn8

generalized feature representations.9

MTL [4]. Marginal Transfer Learning views DG as a kind of supervised learning problem by10

augmenting the original feature space with the marginal distribution of feature vectors.11

MLDG [5]. Meta-Learning for Domain Generalization (MLDG) is a pioneering work that applies12

MAML to domain generalization. MLDG optimizes meta-train and meta-test simultaneously in the13

outer loop. Original MAML only optimizes meta-test objective in the outer loop. The reason to14

optimize the meta-train objective is that we want the learned model to be capable of directly predicting15

the target domain. Note that there are other meta-learning methods for DG, such as MetaNorm16

[6] and MASF [7]. But this baseline did not release codes, e.g., MetaNorm, or are specialized for17

classification tasks, e.g., MASF.18

DANN [8]. Domain-Adversarial Neural Networks is originally proposed to address domain adaptation19

problems. Besides the introduced domain adversarial framework that aligns the domain distribution,20

DANN also proposes an elegant implementation with a gradient reversal layer.21

SD [9]. Spectral Decoupling controls the learning dynamic of models and tries to reduce the learning22

speed for unrelated features for out-of-distribution generalization. In the training process, the model23

has two options to reduce the loss toward an example, i.e., to get more confident in a learned feature24

or to learn a new feature. SD tends to increase feature diversity by encouraging learning new features.25

RSD [10]. Representation Subspace Distance (RSD) tries to deal with general cross-domain regres-26

sion via subspace alignment, which reduces domain gap by minimizing RSD via the principal angles27

of representation matrices.28

SelfReg [11]. SelfReg proposes a domain perturbation layer to make data augmentation methods like29

Mixup [12] more useful in self-supervised contrastive regularization.30

Transfer [13]. The method successfully finds more transferable features via representation learning31

using adversarial training.32

MODE [14]. MODE is a distribution robust optimization method that performs moderate distribu-33

tional exploration via style transfer. For fast implementation, we adopt its Fourier mixing version.34
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DDG [15]. Disentanglement-constrained Domain Generalization (DDG) tries to disentangle the35

domain-agnostic semantic features and the domain-specific variation features to achieve out of36

distribution prediction. The data generation and augmentation technics are also utilized to disentangle37

the semantic and variation features.38

CAD [16]. CAD also uses self-supervised learning like SelfReg but learns discriminative representa-39

tions and aligns representation’s marginal support among different domains.40

CORAL [17]. CORAL aligns the second-order statistics of the source and target distributions with a41

linear transformation. In our experiments, we use the deep learning version that the distributions are42

derived from the learned latent features.43

CausIRL [18]. CausIRL tries to capture the invariant representations by minimizing the distance of44

intervened distributions. We use MMD as the distance function in our experiments.45

B Hyper-parameter Setting46

To help the readers reproduce the reported results, we provide more hyper-parameters in Tab. 1. The47

outer loop learning rate, the inner loop learning rate and the inner loop iteration steps are used by48

our MAMR model, and the left hyper-parameters are shared by all methods. Note that the settings49

are only suitable for age estimation datasets. To find the proper hyper-parameters for each algorithm50

under limited computation resources, 5 times random hyper-parameter searches are conducted. Then51

we repeat 3 times with different seeds on each group of hyper-parameters.52

Following the data configuration in the DomainBed1 benchmark, we randomly split each domain into53

90% and 10% subsets. The former is used in model training and the latter for model selection. We54

use two popular model selection methods in DG, i.e., test-domain validation and training domain55

validation. The former is also named the oracle method that the model is selected based on the 10%56

data of the test domain. The latter uses the 10% data of the training domain to select the best model.57

Table 1: The hyper-parameter settings of our MAMR model and baselines.
Hyper-Parameters Setting Values

Inner loop learning rate β 0.05
Outer loop learning rate α 0.1 ∗ β
Inner loop iteration steps 1

Batch size of each support or query task 64
Holdout fraction for each domain 0.1

Trial seeds: 3057, 3058, 3059
Optimizer: SGD

Optimizer weight decay: 5e− 4
Data augmentation RandomResizedCrop, RandomHorizontalFlip

Data normalization (mean) mean=[0.485, 0.456, 0.406]
Data normalization (std) std=[0.229, 0.224, 0.225]

1https://github.com/facebookresearch/DomainBed
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C Causal Mechanism in Toy Experiments58

We provide the used causal mechanism in toy experiments. Fig. 1 demonstrate the mechanism to59

generate Y given two inputs X1 and X2. In this example, the dominant variable X1 controls 560

generation factors, the auxiliary variable X2 controls 3 generation factors. All the generation factors61

form a sum and the sum is normalized to the interval [0, 1] for Y .62

Y

Figure 1: The example of the generation mechanism for toy experiments. Note that
∑

denotes the
sum of all the coming elements, and the responding value Y is normalized to [0,1] after

∑
.
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D More Results on Rental Dataset63

We provide the regression performances of our MAMR and baselines on Rental dataset 2. This64

dataset is released by an online competition in 2019 to predict housing rental in Shang Hai, China.65

The data categories include rental housing, regions, second-hand housing, supporting facilities, new66

houses, land, population, customers, real rent, etc. We split 15 regions into 4 groups as 4 different67

domains (i.e., Region1, Region2, Region3 and Region4). Every domain have different rentals due68

to their populations and economic conditions. The rental prices vary from 100RMB/month to69

450000RMB/month. We normalize all the attributes (including target values) to [0, 1] and calculate70

the MSE loss at test stage. Fig. 2 provides the statistics of the four domains. Different from age71

estimation dataset, the responding values in Rental are closer to a continuous distribution. Hence72

some methods like DDG is not suitable for this dataset (on age estimation dataset, each age can be73

seen as a class for DDG). If you need the origin datasets, please contact us by e-mail.74

(a) (b) (c) (d)

Figure 2: The histograms of four domains with kernel function density estimation. The responding
values meet long-tail distribution, so we only visualize the responding values whose normalized
values are less than 0.05.

Different from the settings on age estimation dataset, we use a 5-layer MLPs as the encoder for all75

methods. Moreover, we use Adam optimizer and MAE training loss on all methods. The dataset and76

codes can be found in our supplementary materials.77

The regression results can be seen from Tab. 2. Our method also gets strong performance in average78

evaluation. Besides that, we find CausIRL also shows strong performance via its causal mechanism.79

However, CausIRL is normal on age estimation datasets. The above comparisons show the good80

scalability of MAMR on cross-domain regression tasks.81

E More Details on Age Estimation Datasets82

Perfect age estimation is based on the assumption that all age data are available, while many real-83

world datasets are not perfect and have partial ages due to privacy concerns. Hence age estimation84

has been introduced in cross-domain works [19, 20].85

CACD3. Cross-Age Celebrity Dataset (CACD) contains 163,446 images from 2,000 celebrities86

collected from the Internet. The age of celebrities ranges from 16-62 and can be classified into 587

disjoint age intervals (domains), i.e., [15−20), [20−30), [30−40), [40−50), [50−60]. The images88

of each celebrity are sampled by different devices across multiple years. Therefore each domain89

has different facial characteristics. To consider the overlapped intervals, we further create CACD-O90

dataset, where each interval has 3 ages of neighbors, e.g., [15− 20) includes 8 different ages from91

15 to 22 and [20 − 30) has 15 ages from 18 to 32. Tab. 3 and Tab. 4 provide the performances on92

datasets CACD and CACD-O.93

AFAD4. The Asian Face Age Dataset (AFAD) originally is an age estimation dataset containing94

more than 160K face images and aging labels. We split the dataset into 5 age intervals (domains),95

i.e., [15 − 20), [20 − 25), [25 − 30), [30 − 35), [35 − 40]. Like CACD, each age interval has its96

own face characteristics and can be viewed as 5 related domains for regression. Tab. 5 provides the97

performances on this dataset.98

2https://ai.futurelab.tv/contest_detail/3#contest_des
3http://bcsiriuschen.github.io/CARC/
4https://afad-dataset.github.io/
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Table 2: Regression results on Rental dataset with training-domain validation. Each region column
denotes the target domain with the others as source domains. Many original MSE results are less
than 1e− 3. For elegant demonstration, we have multiplied 1e+ 3 for each mean result as well as its
standard variance. Note that in the main paper, we multiplied 1e+ 2 for each mean result to keep the
same magnitude as other datasets.

Algorithm Region1 Region2 Region3 Region4 Avg
ERM 0.53358±0.0603 0.58015±0.0002 0.37834±0.0000 0.41955±0.0000 0.47791
IRM 0.60709±0.0090 0.58003±0.0001 0.37835±0.0000 0.41952±0.0000 0.49625
MLDG 0.46439±0.0046 0.57993±0.0001 0.37835±0.0000 0.42002±0.0002 0.46067
CORAL 1.00023±0.4004 0.63521±0.0451 0.37834±0.0000 0.41955±0.0001 0.60833
MMD 0.46926±0.0010 0.58035±0.0002 0.37834±0.0000 0.41952±0.0000 0.46187
DANN 0.52026±0.0312 0.58011±0.0001 0.37833±0.0000 0.41965±0.0000 0.47459
MTL 0.49153±0.0266 0.58023±0.0003 0.37834±0.0000 0.41971±0.0001 0.46745
SD 0.59537±0.0151 0.58003±0.0001 0.37835±0.0000 0.41954±0.0000 0.49332
SelfReg 0.71201±0.2118 0.58015±0.0001 0.37836±0.0000 0.41969±0.0000 0.52255
CAD 0.82516±0.3045 0.58014±0.0001 0.37833±0.0000 0.41961±0.0002 0.55081
Transfer 0.50443±0.0283 0.58002±0.0001 0.37834±0.0000 0.41946±0.0000 0.47056
RSD 0.53013±0.0238 0.58022±0.0002 0.37834±0.0000 0.41946±0.0000 0.47704
CausIRL 0.45862±0.0026 0.58044±0.0001 0.37834±0.0000 0.41951±0.0000 0.45923
MODE 0.48086±0.0000 0.58001±0.0001 0.37835±0.0000 0.41985±0.0000 0.46477

MAMR 0.45689±0.0037 0.58002±0.0001 0.37834±0.0000 0.42012±0.0001 0.45884

Table 3: Regression results on CACD dataset with training-domain validation. Each regression
interval (domain) in all tables denotes the target interval with the others as source intervals. The
minimum Mean Squared Errors are bolded. Note that we set the standard variances to 0 if they are
less than 0.01.

Algorithm [15-20) [20-30) [30-40) [40-50) [50-60] Avg

ERM 0.0434±0.00 0.0159±0.00 0.0024±0.00 0.0127±0.00 0.0547±0.00 0.0258
IRM 0.0903±0.04 0.0119±0.00 0.0016±0.00 0.0174±0.00 0.0626±0.00 0.0368
MLDG 0.0454±0.00 0.0140±0.00 0.0028±0.00 0.0137±0.00 0.0540±0.00 0.0260
MMD 0.0486±0.00 0.0178±0.00 0.0010±0.00 0.0152±0.00 0.0603±0.00 0.0286
CORAL 0.0446±0.00 0.0135±0.00 0.0030±0.00 0.0130±0.00 0.0535±0.00 0.0255
DANN 0.0474±0.00 0.0151±0.00 0.0013±0.00 0.0142±0.00 0.0566±0.00 0.0269
SD 0.0382±0.00 0.0109±0.00 0.0026±0.00 0.0131±0.00 0.0593±0.00 0.0248
MTL 0.0330±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.3040±0.00 0.1447
SelfReg 0.0433±0.00 0.0133±0.00 0.0023±0.00 0.0130±0.00 0.0542±0.00 0.0252
Transfer 0.0330±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.3040±0.00 0.1446
RSD 0.0464±0.00 0.0190±0.00 0.0045±0.00 0.0217±0.00 0.0650±0.01 0.0313
CAD 0.0330±0.00 0.0641±0.00 0.1199±0.00 0.2022±0.00 0.3040±0.00 0.1447
CausIRL 0.0464±0.00 0.0167±0.00 0.0012±0.00 0.0147±0.00 0.0604±0.00 0.0278
DDG 0.0490±0.00 0.0176±0.00 0.0016±0.00 0.0153±0.00 0.0598±0.00 0.0287
MODE 0.0481±0.00 0.0176±0.00 0.0010±0.00 0.0146±0.00 0.0602±0.00 0.0283

MAMR 0.0331±0.01 0.0143±0.00 0.0021±0.00 0.0078±0.00 0.0371±0.01 0.0189

For age estimation datasets, we normalize the labels from 0 to 1 and leave out one domain at the99

training stage then make predictions on this domain at the test stage. To ensure a similar capacity100

among different age intervals, we make compensation for the small capacity interval by slightly101

relaxing the interval.102
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Table 4: Regression results on CACD-O dataset with training-domain validation.
Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.0370±0.00 0.0146±0.00 0.0032±0.00 0.0126±0.00 0.0506±0.00 0.0236
IRM 0.0382±0.00 0.0140±0.00 0.0029±0.00 0.0166±0.00 0.0562±0.00 0.0256
MLDG 0.0371±0.00 0.0141±0.00 0.0035±0.00 0.0130±0.00 0.0496±0.00 0.0235
MMD 0.0422±0.00 0.0168±0.00 0.0021±0.00 0.0144±0.00 0.0561±0.00 0.0263
CORAL 0.0357±0.00 0.0145±0.00 0.0031±0.00 0.0120±0.00 0.0503±0.00 0.0231
DANN 0.0399±0.00 0.0185±0.00 0.0022±0.00 0.0141±0.00 0.0546±0.00 0.0259
MTL 0.0393±0.00 0.0673±0.00 0.1207±0.00 0.2026±0.00 0.2981±0.00 0.1456
SD 0.0307±0.00 0.0105±0.00 0.0028±0.00 0.0135±0.00 0.0558±0.00 0.0227
SelfReg 0.0369±0.00 0.0130±0.00 0.0033±0.00 0.0122±0.00 0.0507±0.00 0.0232
Transfer 0.0393±0.00 0.0673±0.00 0.0823±0.03 0.2026±0.00 0.2981±0.00 0.1379
RSD 0.0423±0.00 0.0181±0.00 0.0024±0.00 0.0145±0.00 0.0549±0.00 0.0264
CAD 0.0393±0.00 0.2294±0.13 0.1207±0.00 0.2373±0.03 0.2981±0.00 0.1849
CausIRL 0.0415±0.00 0.0172±0.00 0.0020±0.00 0.0142±0.00 0.0536±0.00 0.0257
DDG 0.0424±0.00 0.0179±0.00 0.0025±0.00 0.0151±0.00 0.0563±0.00 0.0268
MODE 0.0416±0.00 0.0176±0.00 0.0021±0.00 0.0147±0.00 0.0557±0.00 0.0263

MAMR 0.0449±0.01 0.0205±0.01 0.0026±0.00 0.0069±0.00 0.0375±0.01 0.0225

Table 5: Regression results on AFAD dataset with training-domain validation.
Algorithm [15-20) [20-25) [25-30) [30-35) [35-40] Avg

ERM 0.0483±0.00 0.0151±0.00 0.0032±0.00 0.0139±0.00 0.0540±0.00 0.0269
IRM 0.0467±0.00 0.0143±0.00 0.0049±0.00 0.0165±0.00 0.0599±0.00 0.0285
MLDG 0.0474±0.00 0.0160±0.00 0.0031±0.00 0.0131±0.00 0.0543±0.00 0.0268
MMD 0.0552±0.00 0.0170±0.00 0.0009±0.00 0.0160±0.00 0.0615±0.00 0.0301
CORAL 0.0481±0.00 0.0157±0.00 0.0031±0.00 0.0138±0.00 0.0555±0.00 0.0272
DANN 0.0537±0.00 0.0163±0.00 0.0011±0.00 0.0153±0.00 0.0587±0.00 0.0290
SD 0.0342±0.00 0.0124±0.00 0.0026±0.00 0.0194±0.00 0.0667±0.00 0.0270
MTL 0.3914±0.00 0.2936±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.2122
SelfReg 0.0499±0.00 0.0167±0.00 0.0028±0.00 0.0132±0.00 0.0579±0.00 0.0281
Transfer 0.3914±0.00 0.2936±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.2122
RSD 0.0506±0.00 0.0194±0.00 0.0042±0.00 0.0171±0.00 0.0576±0.00 0.0298
CAD 0.3915±0.00 0.2936±0.00 0.1990±0.00 0.1168±0.00 0.0601±0.00 0.2122
CausIRL 0.0505±0.00 0.0178±0.00 0.0010±0.00 0.0157±0.00 0.0632±0.00 0.0296
DDG 0.0556±0.00 0.0166±0.00 0.0012±0.00 0.0164±0.00 0.0610±0.00 0.0302
MODE 0.0546±0.00 0.0166±0.00 0.0008±0.00 0.0161±0.00 0.0614±0.01 0.0299

MAMR 0.0281±0.00 0.0068±0.00 0.0012±0.00 0.0190±0.00 0.0641±0.00 0.0238
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