
Optimistic tree search strategies for black-box
combinatorial optimization

Cedric Malherbe1, Antoine Grosnit1, Rasul Tutunov1, Jun Wang1,2,
Haitham Bou-Ammar1,2

1Huawei Noah’s Ark Lab, 2University College London
firstname.lastname@huawei.com

Abstract

This appendix contains additional material for the paper "Optimistic tree search
strategies for black-box combinatorial optimization". In Section B, convergence
rates for the baselines are provided. In Section D, we present additional results for
the optimization of black-box functions with known Lipschitz constant. Section E
introduces an algorithm (Algorithm 3) to compute the set of potentially optimal
nodes of the OCTS algorithm. Section F contains the details of the numerical
experiments. Finally, Section G contains the proofs of the results of the paper.

A Potential negative societal impact

In our work, we proposed a novel methodology to optimize binary functions with cheap-to-evaluate
cost. These new solvers are mostly agnostic to the specific application, and can be applied in a wide
range of optimization problem (ranging from graph analysis, to electronic design). Therefore, the
societal and ethical impacts of our contribution are heavily dependent on the nature of the problems
solved with the algorithm.

We start by noting that beneficial applications of OCTS are thick on the ground, ranging from the
design a more efficient telecommunication applications, to the control of contaminations, or the
design of new solvers for SAT problems. For instance, in the emergence of new pandemics – which
could be accelerated by the global warming that entails population displacements, and accelerates the
melt of the permafrost threatening to unleash ancient viruses – makes the ability to efficiently plan
the allocations of vaccines in a short time more desirable. Another by-product of climate change is
the need to make every system energetically efficient to massively curb their energy consumption.
The adoption of optimization methods to tune the parameters of energy glutton systems such as
data-centers cooling systems, has proven successful in real-world applications.

From the latter example we can perceive that, even though the better tuning of engineering systems
make them more accurate or efficient to accomplish their tasks, the positive or negative impact of our
work fully depends on the nature of the tasks considered. So, providing novel combinatorial solvers
could lead to a more accurate tumor detection model, as it could allow the design of a more racially
biased recognition system. However we hope that our contribution alone, as it is incremental, will
not in itself encourage individuals to design new malicious models.

Nevertheless, we believe that considering the fundamental challenges we face, starting with the global
warming calling for massive optimization efforts as we showed, the overall impact of our work will,
in the long run, be positive for the global economy and the well-being of the inhabitants of our planet.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

B Convergence rates of the baselines

In this section, we provide some generic results on the convergence of black-box combinatorial
solvers and derive convergence results for two of the most famous baselines used to solve Problem
(1) in practice: Sequential Exhaustive Search and Pure Random Search. First, it has to be noticed that
when only exploring a fraction of the input space (i.e. when n < |X |) even with a carefully designed
sequential algorithm, we cannot expect to have a control on the quality of the result provided by any
algorithm over the set of all combinatorial black-box functions. Indeed, the next result exhibits this
phenomenon.
Proposition B.1. (No free lunch) Let A be any deterministic sequential algorithm defined over
X = {0, 1}d and let C > 0 be any arbitrarily large constant. Then, for any budget n < |X | of
evaluations, there always exists a function fA,C : X → R such that if one runs the sequential
algorithm A over f with an evaluation budget of n, we have:

max
x∈X

fA,C(x)− max
i=1...n

fA,C(xi) ≥ C

where x1, . . . , xn denotes the set of evaluation points generated by the algorithm A over fA,C after
n iterations.

Hence, any deterministic algorithm might suffer an arbitrarily large error on at least a combinatorial
black-box function. To overcome this issue and investigate the finite-time behavior of black-box
combinatorial solvers, a possible strategy consists on focusing on a smaller set of combinatorial
functions through the lens of their Lipschitz constant, i.e., the value k ≥ 0 such that |f(x)− f(x′)| ≤
kdH(x, x′) for all (x, x′) ∈ X 2. This coefficient k ≥ 0 provides an information on the smoothness
of the function in the sense that it captures how fast the objective function can vary. More importantly,
due to the discrete nature of combinatorial spaces, it is important to note that every combinatorial
function has a finite Lipschitz constant given by kmin = maxx̸=x′∈X 2 |f(x) − f(x′)|/dH(x, x′)
which also appears in the theoretical analysis of OCTS (Theorem 5.3). Thus, when considering the
set of k-Lipschitz functions with a fixed k ≥ 0, one can derive a finite-time analysis of the baseline
strategies.
Proposition B.2. (Convergence of sequential exhaustive search). A sequential exhaustive search
simply consists in sequentially evaluating the function over the whole space X in any specific order.
As an example, we consider the exhaustive search which consists in exploring the tree representation
of the space provided in Section 3 in a breadth-first search manner. For this strategy, one can show
that for any function f ∈ Lip(k) and any budget 1 ≤ n ≤ 2d, we have:

max
x∈X

f(x)− max
i=1...n

f(xi) ≤ k

(
d−

⌊
ln(n)

ln(2)

⌋)

where x1, . . . , xn denotes the series of points generated be the exhaustive search.
Proposition B.3. (Convergence of random search). The second baseline, Random Search, consists
in evaluating the objective function on a series of n candidates x1, . . . , xn ∼ U(X) uniformly
distributed over the input space. For this strategy, one can show that for any function f ∈ Lip(k) and
any budget 2d/2 ≤ n ≤ 2d, we have with probability at least 1− 1/e:

max
x∈X

f(x)− max
i=1...n

f(xi) ≤ k

(
d−

⌊
ln(n)

ln(2)

⌋)
.

To the best of our knowledge, it the first time these sample complexity results are reported for
combinatorial black-box problems. It is important note that the convergence rates of both these
strategies are of order k(d− ln(n)/ ln(2)), as they play the role of baselines in our analysis. Finally,
we cast a simple result related to the number of iterations required to identify a global optimum using
random search.
Proposition B.4. (Consistency of random search). Consider the Random Search (RS) and let
x1, x2, x3, . . . denotes a series of points independently and uniformly distributed over the input space
X = {0, 1}d. Then, for any function f : X → R, if N∗ = min{t ≥ 1 | f(xt) = maxx∈X f(x)}
denotes the number of function evaluations required to identify a global optimum x∗ ∈ X ∗ :=
argmaxx∈X f(x), we have that

E[N∗] =
2d

|X ∗|
where |X ∗| denotes the number of global optima of the function f .

15

This result will be used in the numerical experiments section to compare our algorithms.

C Comparison of combinatorial vs. continuous trees

Here, we list a difference between the trees introduced in the paper 3 and the trees introduced to
optimize continuous structures [37]. Keeping in mind that the nature of those trees are really different,
we list here the following differences. We call combinatorial trees the trees we introduced in Section
3 and we call continuous trees, the trees introduced in [37].

• Width. In combinatorial trees, only one coordinate is switched at each split. Doing the same
in continuous trees would result in losing the decreasing diameter property (Assumption 3.3).
As a consequence, combinatorial trees only have 2 children per node (independently of the
dimension) while in continuous trees we have 2d children per node. Thus, continuous trees
are much wider/flat trees that exponentially explode with the dimension. Moreover, since
combinatorial trees impose that the left child has the same value as its parent node, an import
consequence is that one can easily navigate through the tree linearly with d evaluations while
it would require d2d evaluations in continous trees, which explodes with the dimension d.
Note that this trick imposes that the size of combinatorial trees is 2d+1 instead of 2d.

• The depth of combinatorial trees is d+ 1 while the depth of ContTree is infinite. In practice,
continuous trees are controlled by a parameter h which limits its depth at a given time and
impacts the performance of the search. In [36] they obtain two very distinct regimes of
convergence that depend on the parameter h (exponential and polynomial), while we only
obtain a single (fast) linear regime of convergence.

• the nodes of combinatorial trees can be represented as xl,i = binl(i) + 0⃗d−l. It allows to
simply store the index (l, i) of the tree search instead of the full vectors xl,i of dimension d
for a better scaling w.r.t. the dimension

• From a theoretical perspective, most of the analysis boils down to bounding the volume
of the sphere B(xl,i, R) for some R > 0 where xl,i is any point in the tree. In continuous
space, it is easy to integrate and proportional to Rd, while in combinatorial spaces, the
results are discrete (hence l(n)) and (combinatorically) explode with R. To overcome this
phenomenon, we introduce specific combinatorial techniques (see the proofs of the lemmas).

D Additional results for the OLTS algorithm (Section 4)

Here, we provide an additional analysis of OLTS. First, we start to explain the mechanisms behind
the optimistic node selection policy (line 5) based on the general analysis of optimistic searches
[37]. Let x∗ ∈ argmaxx∈X f(x) be any maximizer of the objective function. By construction of
the search tree, we know that at any time t ≥ 1, if a global maximizer x∗ has not been identified yet,
there necessarily exists a node(l⋆t , i

⋆
t) in the current tree search Tt−1 that contains the global optimum

as a child (i.e., x⋆ ∈ Xl⋆t ,i
⋆
t
). Moreover, by definition of the selection policy and since f ∈ Lip(k),

we know that:

max
(l,i)∈Tt−1

f(xl,i) + kDiam(Xl,i) ≥ f(xl⋆t ,i
⋆
t
) + kDiam(Xl⋆t ,i

⋆
t
)

≥ f(xl⋆t ,i
⋆
t
) + kdH(x∗, xl⋆t ,i

⋆
t
)

≥ f(x∗).

Thus, the algorithm will never select nodes from the tree such that f(xl,i) + kDiam(Xl,i) < f(x∗)
until it identifies a global optimum. As a consequence, the algorithm will only select nodes in the set
I =

⋃d−1
l=0 Il where

Il := {nodes(l, i) ∈ T s.t. f(xl,i) + kDiam(Xl,i) ≥ f(x∗)} (4)

until it finds the global optimum. Based on this observation, we may now formulate a result which
connects the size of the sets |Il| to the convergence of the algorithm. Note that it completes Proposition
D.1 provided in the paper.

16

Proposition D.1. (Convergence of the OLTS Algorithm) Consider any f ∈ Lip(k) and let
x1, . . . , xn

3 denote the set of evaluations points generated by OLTS after n iterations over the
function f tuned with Lipschitz constant k and the tree representation of Section 3. Then,the minimum
number of iterations n∗ required to identify the global optimum is upper bound as follows:

n∗ := min

{
n ≤ 2d : f(xn) = max

x∈X
f(x)

}
≤ 1 +

d−1∑

l=0

|Il|

Moreover, for any n < n∗, we have the following finite-time bound:

max
x∈X

f(x)− max
i=1...n

f(xi) ≤ k · (d− l(n))

where l(n) := min{0 ≤ L ≤ d− 1 :
∑L

l=0 |Il| ≥ n− 1}.

As explained in Section 4, we can derive a finer analysis of the convergence of the algorithm by using
the conditioning number defined as follows.

Definition D.2. (Conditioning Number). Let f : X → R be any k-Lipschitz function. Then, if f
admits a unique global maximum x∗ ∈ X , we denote by k∗ ≥ 0 the largest value such that, for all
x ∈ X , we have:

f(x) ≤ f(x∗)− k∗dH(x, x∗)

and we denote by c = k/k∗ ≥ 1 its conditioning number.

It is also interesting to note that this definition can be extended to functions with multiple local
optimum by taking the smallest k∗ among the local optima resulting in additional factors in the next
lemma. Based on this number, we can now make the link between the size of Il and the conditioning
number.

Lemma D.3. Let f ∈ Lip(k) be any objective function with a unique maximizer and denote by
c = k/k∗ its conditioning number. Then, if Il denotes the set defined in (4) at level l, we have that:

|Il| ≤
⌊c(d−l)⌋∧l∑

i=0

(
l

i

)
.

It is interesting to compare this result to the exhaustive search (Appendix B) where at each level
l ≥ 0, the function is evaluated on 2l =

∑l
i=0

(
l
i

)
points. In this case, we will have a gain as soon as

there exists l ≤ d− 1 such that ⌊c(d− l)⌋ < l. This translates into the condition c = k/k∗ < d− 1
and we deduce that if the Lipschitz constant k is set larger than k∗(d− 1) we will not get any gain
over an exhaustive search. This might not be surprsing as when k is too large the upper bound
in line 5 provides a loose information. However, it is possible to obtain a finite-time bound when
k < k∗(d − 1) by upper bounding the partial sums of binomial coefficients, which unfortunately
does not admit a closed form.

Lemma D.4. Let d ≥ 2 and set any c ≥ 1. Then, for any 2cd/(1 + 2c) ≤ l ≤ d, we have that

⌊c(d−l)⌋∑

i=0

(
l

i

)
≤ 2(

3c
2c+1)

d
2 .

Again, this Lemma allows to provide a bound on the size of the set |Il| that does not depends on the
level l and does not explode at the rate 2l provided by the exhaustive search. Using this result, we
can prove Theorem 4.3 (see Section G).

Example. As an example, when f(x) = −dH(x, 1⃗) with the tree of Section 3 and OLTS with
k = 1.5 and d = 4, we have |I0| = 1, |I1| = 2, |I2| = 3, |I3| = |I4| = 1. Thus, in this case, we have
l(1) = 0, l(4) = 1, l(7) = 2 and l(8) = 3 and we know that after 8 iterations, we will be at least at
the level 3.

3x1 = x0,0 and xt = xlt+1,2it+1 for t ≥ 2

17

E Computation of the potentially optimal nodes for OCTS (Section 5)

In this section, we provide an algorithm to compute the set of potentially optimal nodes. Recall first
that the set of potentially optimal nodes is defined as follows.
Definition E.1. (Potentially optimal nodes) Let T = {(l1, i1), . . . , (lt, it)} be any set of index of
the tree where we have an evaluation of the objective function f(xli,ii). Then, a node(l, i) from the
tree search T is said to be potentially optimal if there exists some Lipschitz constant k > 0 such that
for all (l′, i′) ∈ T :

f(xl,i) + kDiam(Xl,i) ≥ f(xl′,i′) + kDiam(Xl′,i′).

In order to further characterize this set, observe first that for any level l ∈ {1, . . . , d−1}, if there exists
(i, i′) ∈ {0, . . . , 2l}2 such that f(xl,i) > f(xl,i′) then for all k ≥ 0 we have f(xl,i)+kDiam(Xl,i) >
f(xl,i′) + kDiam(Xl,i′). Thus, in this case, we deduce that f(xl,i′) does not belong to the set of
potentially optimal nodes. Moreover, if there exists (l, i) ∈ Tt and (l′, i′) ∈ Tt with l′ < l and
f(xl′,i′) > f(xl,i), then f(xl,i) + kDiam(Xl,i) < f(xl,i′) + kDiam(Xl,i′) for all k ≥ 0 and we
deduce that (l, i) is not potentially optimal. As a consequence, we deduce that the set of potentially
optimal nodes necessarily belongs to the Pareto front of the graph displaying the level of the node l
and the function value f(xl,i). Let us now only consider the set of points that belong the Pareto front.
Then, for any level l′ < l, we have f(xl,i) + kDiam(Xl,i) ≥ f(xl′,i′) + kDiam(Xl′,i′) whenever
k ≤ (f(xl,i)− f(xl′,i′))/(l − l′). Moreover, for any level l′ > l, we have f(xl,i) + kDiam(Xl,i) ≥
f(xl′,i′) + kDiam(Xl′,i′) whenever k ≥ (f(xl′,i′) − f(xl,i))/(l

′ − l). Thus, we deduce that node
(l, i) on the Pareto front is potentially optimal if and only if maxl′>l(f(xl′,i′)− f(xl,i))/(l

′ − l) ≤
minl′<l(f(xl,i)−f(xl′,i′))/(l− l′). We can now derive a simple algorithm (Algorithm 3) to compute
the set of potentially optimal nodes. Moreover, Figure 5 gives an example of the computation of this
set.

1 2 3 4 5

Depth l of the nodes in the tree search

F
u
n
ct
io
n
va
lu
e
f
(x

l,
i)

on
th
e
n
o
d
e

Selection of the Potentially Optimal Nodes

Figure 5: Example of a the computation of the potentially optimal nodes on a toy example with
d = 6. The graph displays the values of the function and the depth of the nodes(l, i) of the search list
Tt. The four nodes selected are located on the pareto front.

F Numerical experiments

In this section, we provide the details on regarding the test functions, algorithms and results of
the empirical results of the paper. Note that the code of the numerical experiments can be found
at: https://anonymous.4open.science/r/combinatorial_opt_ICML-71ED. We point out that, in our
experience, the link is sometimes unexpectedly off (it may be due to the fact the anonymization
service is free). However, in the worst case the code will nonetheless be available upon acceptance.

F.1 Baselines

Here, we describe the algorithms used in the experimental section.

Random Search (RS), Algorithm 4. This algorithm simply consists in evaluating the value of the
function on a series of evaluation points generated randomly over the input space {0, 1}d.

Evolutionary algorithm (EA), Algorithm 5. In evolutionary computation, an initial set of candidate
solutions is generated and iteratively updated. We used the evolutionary algorithm provided in

18

Algorithm 3 Optimal Nodes
Require: Tree search nodes T = {(i1, l1), . . . , (i|T |, l|T |)}

1: T ∗ ← ∅
2: fmax = −∞
3: for l = 0 . . . d− 1 do
4: Get a node at level l with the largest value among all the nodes of level l if there is one (break

ties arbitrarily):
(l, i∗) ∈ argmax

(l′,i)∈T :l′=l

f(xl′,i)

5: if f(xl,i∗) ≥ fmax then
6: Add the node to the optimal node list and update the fmax value
7: T ∗ ← T ∗ ∪ {(l, i∗)}
8: fmax ← f(xl,i∗)
9: for (l, i) ∈ T ∗ do

10: if max(l′,i′)∈T ∗:l′>l(f(xl′,i′)− f(xl,i))/(l
′− l) > minl′<l(f(xl,i)− f(xl′,i))/(l− l′) then

T ∗ ← T ∗/{(l, i)}
11: Return: T ∗

Algorithm 4 Random Search (RS)
Require: evaluation budget n ≥ 1

1: for t = 1, . . . n do
2: Let xt ∼ U({0, 1}d)
3: Evaluate f(xt)
4: Return xt∗ where t∗ ∈ argmaxt=1...n f(xt)

[18]. At each time step, λ = 10 mutations are performed from a current incumbent x∗ with a static
mutation rate p = 1/d and using a binomial distribution. The mutation phase is defined by sampling
around the current incumbent using a binomial variable. At the end of the mutations (lines 5-8), we
switch to a novel if the offspring has better function values than the current incumbent (line 11). In
all the experiments, xinit ∼ U({0, 1}d) was uniformly sampled over the input domain.

Algorithm 5 Evolutionary Algorithm (EA)
Require: evaluation budget n ≥ 1, xinit ∈ {0, 1}d

1: x∗ ← xinit

2: Evaluate f(x∗), t← 1
3: while t ≤ n do
4: for i = 1, . . . λ do
5: Sample m = Bin(d, 1/d)
6: Let xt+1 = x∗ +m
7: Evaluate f(xt+1), t← t+ 1
8: if t = n then

Return xt∗ with t∗ ∈ argmaxt=1...n f(xi)
9: x∗

new ← argmaxx∈xt−λ,...,xt
f(x)

10: if f(x∗
new) ≥ f(x∗) then

11: x∗ ← x∗
new

Genetic Algorithm (GA), Algorithm 6. Genetic Algorithms use mechanisms inspired by biological
evolution, such as reproduction, mutation, recombination, and selection to optimize black-box
functions [44] The binary crossover-based evolutionary of [18] was used in the testbed. The selection,
crossover and mutation operations are defined as follows. First, we sample an initial population
of λ = 30 points sampled at random in the input space. Then, we perform a series of selection,
crossover, mutation until the evaluation budget is reached. For the selection phase (line 7), we
select λ elements xt+1, . . . , xt+λ from the existing points x1, . . . , xt by sampling the points without
replacement from the softmax of the function values, (i.e. the probability of selecting individual
i is equal to ef(xi)/

∑
i=1...t e

f(xi)). For the crossover, we consider each pair (xt+i, xt+i+λ/2) with

19

i = 1 . . . λ/2−1 and perform a crossover with probability p = 0.37. For a crossover, a random index
j ∼ U([1, . . . , d]) is sampled and we perform the operations xt+i ← xt+i[1, . . . , j] + xt+λ/2+i[j +
1, . . . , n] and xt+λ/2+i ← xt+λ/2+i[1, . . . , j] + xt+i[j + 1, . . . , n]. Finally, for the mutation phase,
we select each candidate xt + i with i = 1 . . . λ and flip each of its bit with probability 1/2d.

Algorithm 6 Genetic Algorithm (GA)
Require: evaluation budget n ≥ 1

1: λ = 30
2: for t = 1 . . . , λ do
3: xt ← Bin(d, 1/2)
4: Evaluate f(xt)
5:
6: while t ≤ n do
7: xt+1, . . . , xt+λ ← SOFTMAX(f(x1), . . . , f(xt), λ)
8: xt+1, . . . , xt+λ ←Crossover(xt+1, . . . , xt+λ)
9: xt+1, . . . , xt+λ ←Mutation(xt+1, . . . , xt+λ)

10: for i = 1 . . . λ do
11: Evaluate f(xt+1), t← t+ 1
12: if t = n then
13: Return xt∗ with t∗ ∈ argmaxt=1...n f(xi)

Simulated annealing (SA), Algorithm 7. The name of the algorithm comes from annealing in
metallurgy, a technique involving heating and controlled cooling of a material to alter its physical
properties. At each step, the simulated annealing heuristic considers some neighboring state xnew

of the current state x∗, and probabilistically decides between moving the system to state xnew or
staying in-state x∗. These probabilities ultimately lead the system to move to states of lower energy.
Typically this step is repeated until the computation budget has been exhausted. The probability of
switching to a new state (also called the annealing schedule) was taken from [39]. The algorithm is
presented in Algorithm 7. In all the experiments, xinit ∼ U({0, 1}d) was uniformly sampled over
the input domain.

Algorithm 7 Simulated Annealing (SA)
Require: evaluation budget n ≥ 1, xinit ∈ {0, 1}d

1: x1 ← xinit

2: Evaluate f(x1)
3: x∗ ← x1

4: T = 10
5: for t = 2, . . . , n do
6: i ∼ U(1, . . . , d)
7: xt = x∗

8: xt[i] = 1− xt[i]
9: Evaluate f(xt)

10: if e(f(xt)−f(x∗))/T ≥ U([0, 1]) then
11: x∗ ← xt

12: T ← T × e−1/d

13: Return: xt∗ where t∗ ∈ argmaxt=1...n f(xt)

Greedy Hill-Climber (GHC), Algorithm 8. Hill climbing is an optimization technique which
belongs to the family of local searches. It is an iterative algorithm that starts with an arbitrary solution
to a problem, then attempts to find a better solution by making an incremental change to the solution.
If the change produces a better solution, another incremental change is made to the new solution,
and so on until no further improvements can be found. The Greedy Hill Climber is a hill climber
that goes from the current solution from left to right, flipping exactly one bit per each iteration, and
accepting to keep the bit switch if it is at least as good as the current vector. In all the experiments,
xinit ∼ U({0, 1}d) was uniformly sampled over the input domain.

Randomized Local Search (RLS), Algorithm 9. Randomized Local Search (RLS), is an ellitist
strategy flipping one uniformly chosen bit in each iteration. Here, the main difference between RLS

20

Algorithm 8 Greedy Hill-Climber (GHC)
Require: evaluation budget n ≥ 1, xinit ∈ {0, 1}d

1: x1 ← xinit

2: Evaluate f(x1)
3: x∗ ← x1

4: for t = 2, . . . , n do
5: i = 1 + t mod d
6: xt = x∗

7: xt[i] = 1− xt[i]
8: Evaluate f(xt)
9: if f(xt) ≥ f(x∗) then

10: x∗ ← xt

11: Return: xt∗ where t∗ ∈ argmaxt=1...n f(xt)

and GHC is that here the flipped bit is chosen at random while it is deterministic in GHC. In all the
experiments, xinit ∼ U({0, 1}d) was uniformly sampled over the input domain.

Algorithm 9 Randomized Local Search (RLS)
Require: evaluation budget n ≥ 1, xinit ∈ {0, 1}d

1: x1 ← xinit

2: Evaluate f(x1)
3: x∗ ← x1

4: for t = 2, . . . , n do
5: i← U([1, . . . , d])
6: xt = x∗

7: xt[i] = 1− xt[i]
8: Evaluate f(xt)
9: if f(xt) ≥ f(x∗) then

10: x∗ ← xt

11: Return: xt∗ where t∗ ∈ argmaxt=1...n f(xt)

Optimistic Combinatorial Tree Search. It is the algorithm described in Algorithm 2. For this
algorithm, we used the tree of Section 3 with a root node randomly sampled over the input space.

Note that Bayesian methods are not included in the benchmark since they simply cannot be run
with the allocated budget of the experiments. In particular, in [39], they report that their Bayesian
implementation can perform 270 evaluations in 10 hours, which makes them unrealistic to scale on
the problems we consider (on at least 40000 function evaluations).

F.2 Computational cost of the algorithms at each iteration

In addition to the description of the algorithms provided above, we provide here the computational
time required to sample the next evaluation point xt+1 at each iteration t ≥ 1. The table below
reports the computational cost of each method.

OCTS GA EA RS RLS GHC SA Bayesian
Complexity to

O(d) O(t) O(1) O(1) O(1) O(1) O(1) O(2d)sample xt+1

Memory to
t+ 1 t+ 1 λ(30) 1 2 2 2 t+ 1compute xt+1

Time (s) to 0.001 0.004 0.001 0.001 0.001 0.0008 0.0007 62.00compute xt+1

Table 1: Computational complexity of different algorithms

Note that the time to compute xt+1 is measured on the contamination problem (d=25) on a i7 CPU @
1.80GHz 1.99 GHz with 16GB of RAM after t = 100 iterations over the Contamination problem. As

21

it can be seen, OCTS is in the same order of magnitude as other methods and significantly faster than
Bayesian methods. For the Bayesian optimization method, we took COMBO [39] as well as their
official implementation. Moreover, we point out that the complexity of maximising the acquisition
function in Bayesian optimization is equivalent to solving in practice a combinatorial black-box
optimization. Hence, the complexity of O(2d) reported in the table. However, we point out that in
most implementations, approximate methods such as simulated annealing are used.

F.3 Test problems

In this section, we provide a full description of the test problems of the benchmark.

OneMax (from [18]). The OneMax is probably the best-studied benchmark problem in the context
of discrete optimization. It asks to optimize the function

f(x) =

d∑

i=1

xi.

The problem has a very smooth and non-deceptive objective landscape. It is separable and admits a
unique maximum located in x∗ = 1⃗d. Due to the so-called coupon collector effect, it is relatively
easy to make progress when the function values are small, and the probability to obtain an improving
move decreases considerably with increasing function value. Note that this function is 1-Lipschitz
with kmin = 1 and has a conditioning number equal to k. This function was coded in our benchmark.

Harmonic (from [18]). Two extreme linear functions are OneMax (presented above) with its constant
weights and binary value

∑d
i=1 2

ixi with its exponentially decreasing weights. An intermediate
linear function is the Harmonic function:

f(x) =

d∑

i=1

ixi

Again, this problem is separable and admits a unique maximizer x∗ = 1⃗d. The function has kmin = d
and is d-Lipschitz. It has a conditioning number equal to k/d. This function was coded in our
benchmark.

LeadingOnes (from [18]). The LeadingOnes function is certainly the one receiving most attention
in the theory of evolutionary community. This problem asks to maximize the function:

f(x) = max{i ∈ [0, . . . , n] | ∀j ≤ i : xj = 1} =
n∑

i=1

i∏

j=1

xj

which counts the number of initial ones. This function is non-separable and has a unique maximizer
x∗ = 1⃗d. It was coded in our benchmark.

LABS (from [18]). Obtaining binary sequences possessing a high merit factor, also known as the
LowAutocorrelation Binary Sequence (LABS) problem, constitutes a grand combinatorial challenge
with practical applications in radar engineering and measurements. It poses a non-linear objective
function over a binary sequence space, with the goal to maximize the reciprocal of the sequence’s
autocorrelation:

f(x) =
d2

E(x)
where E(x) =

n−1∑

k=1

(
n−k∑

i=1

si × si+k

)2

with si set to si = 2xi − 1 to cast the problem in {−1, 1}d when xi ∈ {0, 1}d. This hard, non-linear
problem has been studied over several decades, where the only way to obtain exact solutions remains
exhaustive search. For this problem, we took the implementation of [18]4.

Concatenated Trap (from [18]). Concatenated trap is defined by partitioning a bit-string into
segments of length k and concatenating m = n/k trap functions that takes each segment as input.

4https://iohprofiler.github.io/

22

The trap function is defined as follows: ftrap(x) = 1 if x contains k ones and (k− 1− dH(x, 0⃗k))/k
otherwise with k = 5. Thus, the optimization objective can be formulated as follows:

f(x) =

m−1∑

i=0

ftrap(xik:(i+1)k)

where xi:j denotes the elements from i to j of the vector x. For this problem, we took the implemen-
tation of [18]4.

Maximum Independent Set (from [18]). Given a graph G = (V,E), a maximum independent
vertex set (which generally is not equivalent to a maximal independent vertex set) is a subset of
vertices where no two vertices are are direct neighbors. A maximum independent vertex set (MIS)
is defined as an independent vertex set V ′ having largest possible size. Using the standard binary
encoding V ′ = {i = 1 . . . d | xi = 1}, MIS can be formulated as follows:

f(x) =

d∑

i=1

xi − d
∑

i,j

xixjei,j .

where ei,j = 1 if (i, j) ∈ E and 0 otherwise. In particular, following [5], a specific, scalable problem
instance, defining its Boolean graph was considered and defined as follows:

ei,j = 1⇔j = i+ 1 ∀i ∈ {1, . . . d} − {d/2}
or j = i+ d/2 + 1 ∀i ∈ {1, . . . , d/2− 1}
or j = i+ d/2− 1 ∀i ∈ {2, . . . , d/2}.

For this problem, we took the implementation from [18]4.

MaxSAT (from [39]). Satisfiability problem is the one of the most important and general form of
combinatorial optimization problems. SAT solver competition is held in Satisfiability conference
every year5. We followed [39] and used the three benchmarks of weighted maximum satisfiability
problems with no hard clause with the number of variables not exceeding 100. The weights are
normalized by mean subtraction and standard deviation division. For the MaxSAT problem, we
directly took the implementation and description provided in [39]6.

Ising Problem (from [18]). The Ising Spin Glass model arose in solid-state physics and statistical
mechanics, aiming to describe simple interactions within many-particle systems. The classical Ising
model considers a set of spins placed on a regular lattice, where each edge < i, j > is associated
with an interaction strength Ji,j . In essence, a problem-instance is defined upon setting up the
coupling matrix Ji,j . Each spin directs up or down, associated with a value ±1, and a set of d spin
glasses is said to form a configuration, denoted as S = (s1, . . . , sd). The configuration’s energy
function is described by the system’s Hamiltonian, as a quadratic function of those d spin variables:
−∑i<j Ji,jsisj −

∑d
i=1 hisi where hi is an external magnetic field. The optimization problem of

interest is the study of the minimal energy configurations, which are termed ground states, on a final
lattice. The implementation of the Ising model of [18] was taken, assuming zero external magnetic
fields, and applying periodic boundary conditions (PBC). To formally define the objective function,
we adopt a strict graph perspective, where G = (V,E) is undirected and |V | = d. We apply an
affine transformation {−1,+1} → {0, 1} where the d spins become binary decision variables. A
generalized, compact form for the quadratic objective function is written as follows:

f(x) =
∑

(u,v)∈E

[xuxv − (1− xu)(1− xv)]

where the graph G is defined as follows ei,j = 1 if and only if j = i+ 1 for all i ∈ {1, . . . , d− 1} or
j = d and i = 1. For this problem, we took the implementation of [18]4.

Contamination (from [39]). The contamination control problem ([28]) considers a food supply
with d = 25 stages that may be contaminated with pathogenic microorganisms. The problem is
about minimizing the contamination of food where at each stage a prevention effort can be made

5http://sat2018.azurewebsites.net/competitions/
6https://github.com/QUVA-Lab/COMBO

23

to decrease a possible contamination. Specifically, we let random variable Zi denote the fraction
of contaminated food at stage i for 1 ≤ i ≤ d. At each stage i, a prevention effort can be made to
decrease the contamination by a random rate Γi incurring a cost ci. If no prevention effort is taken, the
contamination spreads with rate given by random variable ∆i. This results in the recursive equation
Zi = ∆i(1−xi)(1−Zi−1)+ (1−Γixi)Zi−1, where xi ∈ {0, 1} is the decision variable associated
with the prevention effort at stage i. Thus, the goal is to decide for each stage whether to implement a
prevention effort in order to minimize the cost while ensuring the fraction of contaminated food does
not exceed an upper limit Ui with probability at least 1 − ε. The random variables ∆i,Γi and the
initial contamination fraction Zi follow beta-distributions, whereas Ui = 0.1 and ε = 0.05. Here, the
problem consists of minimizing the Lagrangian relaxation of the problem:

argmin
x∈{0,1}d

d∑

i=1

[
cixi +

ρ

T

T∑

k=1

I{Zk > Ui}
]
+ λ∥x∥1

where each violation is penalized by ρ = 1. The regularization term encourages the prevention efforts
to occur at a small number of stages. For this problem, we turned the problem into maximization by
multiplying the objective function by (−1). We used the implementation of [39]6 where T is set to
100, the dimensionality d to 25 and

F.4 Experimental results

Here, we provide additional details and material regarding the results of the numerical experiments.

100 101 102 103 104

Number of function evaluations

0.0

0.1

0.2

0.3

0.4

0.5

Ap
pr

ox
im

at
io

n
er

ro
r

d=30
d=50

d=100

d=30
d=50

d=100

OneMax
OCTS
RS

100 101 102 103 104

Number of function evaluations

0.0
0.1
0.2
0.3
0.4
0.5

Ap
pr

ox
im

at
io

n
er

ro
r

d=30
d=50

d=100

d=30

d=50

d=100

Harmonic
OCTS
RS

100 101 102 103 104

Number of function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pr

ox
im

at
io

n
er

ro
r

d=30
d=50

d=100

d=30
d=50

d=100

LeadingOnes

OCTS
RS

Figure 6: Approximation error in terms of number of function evaluations displayed in log-scale.
For each function, we ran the algorithms on various dimensions d = 30, 50 and d = 100. The star
represents the iteration where the algorithm identifies the global optimum.

Convergence rates. For the first set of experiments (Figure 6), we ran both RS and OCTS (using the
tree provided in Figure 1 with a root node chosen at random). We ran each algorithm 10 times using a
budget of 104 evaluations on each function of the benchmark (OneMax, Harmonic and LeadingOnes).
For each run, we recorded the value of the approximation error maxx∈X f(x)−maxi=1...t f(xi) in
terms of number of function evaluations 1 ≤ t ≤ 104. The results are displayed in Figure 6. We
make the following observations:

1. In terms of convergence rates, regardless of the test problem and dimensionality, RS achieves
a decreasing rate of order O(−log(n)) (as indicated by Proposition B.2), while OCTS can
achieve an exponentially faster rate of order O(−n) after a certain threshold (as indicated
by Theorem 5.3). It validates the results obtained in the theoretical analysis.

2. In terms of number of function evaluations, OCTS successfully manages to find the global
optimum of all the problems with a budget n < 104, while it is unrealistic to identify it
using baseline strategies such as Random Search when the budget is n < 104 whenever
d > 30.

Scaling. For the second set of experiments (Figure F.4), we computed the expected number of
iterations required to identify the global optimum for OneMax, Harmonic, LeadingOnes. We used
both OCTS and RS. The setup was tested using dimensionalities d ranging from 2 to 100. For each
dimensionality, we ran OCTS until it identified the global optimum. We recorded the number of
iterations required to identify the global optimum:

N∗ = min{1 ≤ t ≥ 1 : f(xt) = max
x∈X

f(x)}

24

for each test function. Note that since identifying the global optimum is not realistic for the Random
Search (e.g. N∗ > 1015 when d > 60 which is unrealistic for a numerical estimation), we used the
theoretical result of Proposition B.4 to get the expected number of iterations required to identify the
global optimum.

1. First, it is interesting to note that to identify the global optimum using a baseline such as
Random Search, it requires at least Ω(2d) function evaluations. Thus, it is unrealistic to
optimize systems using baselines as soon as d > 30.

2. On the other hand, we can identify the global maximum in O(d2 log(d)) iterations using
OCTS. The message here is that it is still possible to identify the global maximum of
black-box combinatorial functions using a reasonable evaluation budget of O(d2 log(d))
function evaluations. This suggests that in practice, with a budget of n evaluations we can
expect to successfully optimize systems with a dimensionality up to d = n1/3, which allows
to cover a wider set of problems that could not be optimized previously.

20 40 60 80 100
Dimension d of the problem

103

108

1013

1018

1023

1028

Nu
m

be
r o

f e
va

lu
at

io
n

to
 g

et
 x

*

d2log(d)

OneMax
OCTS
RS

20 40 60 80 100
Dimension d of the problem

103

108

1013

1018

1023

1028

Nu
m

be
r o

f e
va

lu
at

io
n

to
 g

et
 x

*

d2log(d)

Harmonic
OCTS
RS

20 40 60 80 100
Dimension d of the problem

103

108

1013

1018

1023

1028

Nu
m

be
r o

f e
va

lu
at

io
n

to
 g

et
 x

*

d2log(d)

LeadingOnes
OCTS
RS

Figure 7: Expected number of iterations required to identify the global optimum of the test problems
OneMax, Harmonic and LeadingOnes (in log-scale) in terms of dimensionality d of the problem.

Choice of the tree. Here, we investigate the impact of the choice of the tree over the performance of
the OCTS algorithm. To do so, we performed 10 runs of OCTS with various trees on the problem
presented in the experimental section. The results are reported in the table below.

Ising (20) CT (20) LABS (20) MIS (20) Ising (50) CT (50) LABS (50) MIS (50)
T + R 20 (00) 4.00 (00) 7.33 (0.88) 10 (00) 50 (00) 10 (00) 5.17 (0.33) 18 (1.0)
T + R∗ 20 (00) 4.00 (00) 7.00 (0.88) 10 (00) 50 (00) 10 (00) 5.38 (0.46) 21.2 (1.6)
π(T) + R 20 (00) 3.80 (0.12) 6.97 (0.72) 10 (00) 45.2 (2.71) 8.76 (0.08) 5.19 (0.22) 19.2 (2.0)
π(T) + R∗ 20 (00) 3.84 (0.32) 6.24(0.62) 10 (00) 46.4 (1.49) 8.55 (0.25) 5.26 (0.32) 20.6 (1.01)
π∗(T) + R 20 (00) 3.8 (0.0) 5.88(0.00) 10 (00) 50 (00) 9.40 (00) 4.32 (00) 25.2 (0.1)

Table 2: Performance of the OCTS algorithm with different trees set as input

The table reports the best value observed after n = 10 ∗ d2 evaluations (with standard deviation)
where T denotes the tree of Figure 1 with xl,i = Binl(i) + 0⃗d−l. R denotes a root node sampled
uniformly over the input space {0, 1}d, π(T) denotes a random permutation of the order of variables.
Finally, R∗ set the root as the best points obtained from a RS with budget of d evaluations. Π∗(T)
denotes the ordering where the variables in the tree are ranked according to the best function values
recorded by switching the bit corresponding to the given variable and recording it (d evaluations in
total to get this ordering). As it can be seen, on most test problems OCTS is robust to the choice
of the root node in the sense that for a randomly chosen root (line T+R), the algorithm consistently
finds similar optima with low std. Moreover, it is interesting to note that using random permutation
(π(T) + R) does not improve the stability of the algorithm, which is due to the fact that on some
problems (e.g. LABS and CT) there is a sequential link between the variables which is preserved
by using T and not when permuting the variables. Thus, in practice it is recommended to keep the
natural ordering of the variables.

Comparison with Bayesian optimization. To motivate the choice of not including Bayesian
optimization in the main experiments of the paper, we provide here an additional experiment. Recall
first that, according to Table 1 presented in the subsection computational time, Bayesian methods
take approximately 1 minute to query a novel point. Thus, since it takes 1 hour for the current
Bayesian method to perform 100 function evaluations, it might be even faster to perform an exhaustive
search than querying a single point in some cases (whenever the function is cheap or moderate to

25

evaluate). However, to have an idea of a simple comparison of the proposed algorithms with Bayesian
optimization, we performed the following experiment: we took the algorithms of the paper with
the budget of the experiments set to 100 ∗ d2 evaluations (as set in the paper) and compared it to
Bayesian optimization with a budget of 100 evaluations on the contamination problems with different
λ ∈ {0.00, 0.01, 0.0001}. The table below reports the number of evaluations done by each methods,
as well as the clock time taken by each method to perform this number of iteration and the best value
for the maximum observed so far.

OCTS GA EA RS RLS GHC SA Bayesian
evals 62500 62500 62500 62500 62500 62500 62500 100
Conta (0.00) -21.35 (32s) -21.42 (43s) -21.35 (28s) -21.57 (24s) -21.52 (24s) -21.61 (21s) -21.43 (23s) -21.57 (88min)
Conta (0.01) -21.52 (34s) -21.60 (45s) -21.56 (30s) -21.73 (23s) -21.68 (22s) -21.78 (22s) -21.78 (22s) -21.74 (91min)
Conta (0.001) -21.35 (35s) -21.45 (45s) -21.36 (25s) -21.57 (23s) -21.49 (23s) -21.61 (21s) -21.45 (23s) -21.72 (87min)

Table 3: Comparison of the algorithms on the Contamination problems with different λ ∈
{0, 0.01, 0.0001}

As it can be seen, for cheap-to-evaluate black-box system, we can only query 100 points in more than
an hour with Bayesian methods while with other methods we can easily query 50000 points in less
than a minute. Of course, it results in a less competitive algorithm with such a different available
budget (higher is better). However, we point out that Bayesian optimization is suitable for problems
where the cost of evaluating the black-box evaluation is significantly larger than the time to generate
the next sample point, and we strongly advise using them in this case.

Real-world problems. For this set of experiments, OCTS was compared with six different methods
commonly used to solve combinatorial black-box problems: Simulated annealing (SA), Random
Search (RS), Randomized Local Search (RLS), Genetic Algorithm (GA), Evolutionary Algorithm
(EA) and Greedy Hill-Climbing (GHC) described in the previous section. The algorithms were
compared using the standardized IOH benchmark of [15] and the test problems provided in [39]:
LABS, Concatenated Trap, MaxSAT, MIS, Ising and Contamination. For the problems with a
free dimensionality (LABS, Concatenated Trap, MIS, Ising), we tested the algorithms on various
dimensions d ∈ {20, 30, 50, 70} to have a broader analysis of OCTS. For MaxSAT, the dimensionality
is imposed to be d = 28, 43 and 60. For the contamination problem, the dimensionality is fixed to
d = 25 but following [39], we tested the algorithm with = 0.0, 0.01, 0.0001. To ensure fairness, we
performed 10 different runs of each algorithm with different seeds for each algorithm using the same
random initialization point x1 when possible (e.g., EA, GHC, SA, RLS) and for the OCTS we used
the tree of Section 3 with the root node set to the same initialization point. Finally, we recorded the
value of the best value observed so far maxi=1...t f(xi) at each iteration t ≥ 1. Results are collected
in Figures 8, 9, 10, 11, 12 and 13. We make the following remarks:

• LABS. On each dimension, OCTS is able to identify sequences with scores that could not
be reach with any other methods. Moreover, OCTS is constantly the fastest algorithm on
this problem for any dimension. Finally, it is interesting to note that the standard deviation
tends to descrease as the dimensionality grows.

• Concatenated trap. On each dimension, OCTS is able to identify sequences with scores
that cannot be reach with any other method. Again, it is also the fastest algorithm of the
benchmark on any dimension of this problem.

• MIS. This is the problem of the benchmark where OCTS struggles the most. However, it
is interesting to note that on each dimension it almost finds the best function values with
the allocated budget, and still remains competitive. More precisely, on dimension 20, it still
finds the best value among all algorithms and is among the fastest on dimensions 50 and 70.
However, when d = 30, we suspect the problem presents a low conditioning (since RS is
almost as efficient as other methods on MIS 30).

• MaxSAT. Again, for dimensions 28 and 43, OCTS is able to identify novel optima that
none of the other method could identify. Moreover, it is also the fastest algorithm of the
benchmark. On MaxSAT, it successfully identifies the best optimum in par with SA.

• Ising. on this problem, OCTS successfully identifies the global optimum in par with SA. It
is interesting to note that it is the fastest algorithm to identify the best optimum.

• Contamination. Again, on this problem OCTS is able to identify novel optima that and is
the fastest algorithm of the benchmark.

26

OCTS EA GA RS RLS GHC SA

0 10000 20000 30000 40000

4

6

8
Be

st
 v

al
ue

 o
bs

er
ve

d
so

 fa
r LABS - 20

0 20000 40000 60000 80000
3

4

5

6

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r LABS - 30

0 50000 100000 150000 200000 250000

3

4

5

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r LABS - 50

0 100000 200000 300000 400000

3

4

5

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r LABS - 70

Figure 8: Results of the numerical experiments on the LABS problem. Best valued observed so far
in terms of number of function evaluations over ten runs with ±0.5 standard deviation in transparent.
Format: Problem name - Dimension.

OCTS EA GA RS RLS GHC SA

0 10000 20000 30000 40000
3.0

3.5

4.0

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Concatenated trap - 20

0 20000 40000 60000 80000
4

5

6

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Concatenated trap - 30

0 50000 100000 150000 200000 250000
6

8

10

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Concatenated trap - 50

0 100000 200000 300000 400000
8

10

12

14

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Concatenated trap - 70

Figure 9: Results of the numerical experiments on the Concatenated trap problem. Best valued
observed so far in terms of number of function evaluations over ten runs with ±0.5 standard deviation
in transparent. Format: Problem name - Dimension.

Overall, these experiments show that OCTS outperforms existing methods on a wide set of problems.
More importantly, this set of experiments shows that using tree search strategies allows to identify
novel optima that could not be reach with other methods on some problems (e.g. LABS, Concatenated
Trap, MaxSAT and Contamination).

27

OCTS EA GA RS RLS GHC SA

0 10000 20000 30000 40000
Number of function evaluations

6

8

10
Be

st
 v

al
ue

 o
bs

er
ve

d
so

 fa
r MIS - 20

0 20000 40000 60000 80000
Number of function evaluations

10

0

10

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MIS - 30

0 50000 100000 150000 200000 250000
Number of function evaluations

200

100

0

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MIS - 50

0 100000 200000 300000 400000
Number of function evaluations

600

400

200

0

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MIS - 70

Figure 10: Results of the numerical experiments on the MIS problem. Best valued observed so far in
terms of number of function evaluations over ten runs with ±0.5 standard deviation in transparent.
Format: Problem name - Dimension.

OCTS EA GA RS RLS GHC SA

0 10000 20000 30000 40000
Number of function evaluations

14

16

18

20

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Ising - 20

0 20000 40000 60000 80000
Number of function evaluations

20

25

30

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Ising - 30

0 50000 100000 150000 200000 250000
Number of function evaluations

35

40

45

50

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Ising - 50

0 100000 200000 300000 400000
Number of function evaluations

50

60

70

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Ising - 70

Figure 11: Results of the numerical experiments on the Ising problem. Best valued observed so far
in terms of number of function evaluations over ten runs with ±0.5 standard deviation in transparent.
Format: Problem name - Dimension.

28

OCTS EA GA RS RLS GHC SA

0 20000 40000 60000
Number of function evaluations

20

25

30

35

40

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MaxSAT - 28

0 50000 100000 150000
Number of function evaluations

60

80

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MaxSAT - 43

0 100000 200000 300000
Number of function evaluations

100

150

200

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r MaxSAT - 60

Figure 12: Results of the experiments on the MaxSAT problem. The plot display the best value
observed so far in terms of number of function evaluations.

OCTS EA GA RS RLS GHC SA

0 10000 20000 30000 40000 50000 60000
Number of function evaluations

22.0

21.8

21.6

21.4

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Contamination(= 0.0) - 25

0 10000 20000 30000 40000 50000 60000
Number of function evaluations

22.00

21.75

21.50

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Contamination(= 0.01) - 25

0 10000 20000 30000 40000 50000 60000
Number of function evaluations

22.0

21.8

21.6

21.4

Be
st

 v
al

ue
 o

bs
er

ve
d

so
 fa

r Contamination(= 0.0001) - 25

Figure 13: Results of the experiments on the Contamination problem. The plot display the best value
observed so far in terms of number of function evaluations.

29

G Proofs of the theoretical results

In this section, we provide the proofs of the theoretical results of the paper.

Proof of Proposition B.1. Consider any deterministic algorithm A, any n < |X| and any C > 0
arbitrarily large. Then, let f0(x) = 0 for all x ∈ X be the zero function and let x1 . . . , xn denotes
the series of evaluation points generated by the algorithm A on f0. Then, if we consider the function
fA,C(x) = CI{x /∈ {x1, . . . , xn}}, the algorithm A will generate the same evaluations points
x1, . . . , xn as the one generated on f0 since they share the same function values over these points.
Therefore, we will have maxi=1...n fA,C(xi) = 0 and since maxx∈X fA,C(x) = C, we deduce that
maxx∈X fA,C(x)−maxi=1...n fA,C(xi) ≥ C which concludes the proof.

Proof of Proposition B.2. Consider any f ∈ Lip(k), set any n ≥ 1 and consider the tree representa-
tion T defined in Section 3. By definition of the tree and since the sequential search is a breadth-first
search, we know that after n iterations, all the points on any level l with 2l ≤ n of the tree will have
been evaluated. Moreover, by definition of the tree, the level l contains all the different combination
of points on the first l components. Thus, if we denote by x⋆ ∈ argmaxx∈X f(x) any maximiser of
the objective function, then there exists xl ∈ ⋃i=0...2l−1 xl,i that share the same first l elements as
x∗ and therefore satisfies:

dH(xl, x∗) =
d∑

i=1

I{xl
i ̸= x∗

i } =
l∑

i=1

I{xl
i ̸= x∗

i }
︸ ︷︷ ︸

=0

+

d∑

i=l+1

I{xl
i ̸= x∗

i } ≤ (d− l).

Now, since the function is k-Lipschitz and xl has been evaluated, we have:

max
x∈X

f(x)− max
i=1...n

f(x) ≤ f(x∗)− f(xl) ≤ kdH(x∗, xl) ≤ k(d− l).

Finaly, since the previous inequality holds for any l such that n ≥ 2l, we directly get the result by
setting l = ⌊ln(n)/ ln(2)⌋.
Proof of Proposition B.3. Consider any f ∈ Lip(k), any n ≥ 2d/2 and set L = d− ⌊ln(n)/ ln(2)⌋.
Denote by XkL := {x ∈ X : f(x) ≥ maxx∈X f(x) − k × L} the level set of the function
corresponding to the desired accuracy and observe that since f ∈ Lip(k) then B(x∗, L) = {x ∈ X :
dH(x, x∗) ≤ L} ⊆ XkL for any global maximiser x∗ ∈ argmaxx∈X f(x). Thus, since L has been
chosen so that d/L ≥ 2, using the standard bounds on binomial coefficients

(
d
L

)
≥ (d/L)L, we have

the following:
|B(x∗, L)|
|X | =

∑L
i=0

(
d
i

)

2d
≥
(
d
L

)

2d
≥ (d/L)L

2d
≥ 2L−d ≥ 1

n
.

Therefore, it follows that:

P
(
max
x∈X

f(x)− max
i=1...n

f(xi) ≤ kL

)
= P

(
n⋃

i=1

{xi ∈ XL}
)

= 1− P (xi /∈ XL)
n

≥ 1− P (xi /∈ B(x⋆, L))
n

= 1−
(
1− |B(x∗, L)|

|X |

)n

≥ 1−
(
1− 1

n

)n

≥ 1− 1

e

(5)

which proves the result, where we used on the first inequality the fact that B(x∗, L) ∈ XkL and on
the third the inequality 1 + x ≤ ex.

Proof of Proposition B.4. Let x1, x2, x3, . . . be a series of evaluation points independently and
uniformly distributed over X = {0, 1}d and let X ∗ = argmaxx∈X f(x) denotes the set of global

30

optimum. First, observe that for any t ≥ 1, P(xt ∈ argmaxx∈X f(x)) := p = |X ∗|/|X |. Then, we
have that

E[N∗] =
∞∑

t=1

t× P(N∗ = t)

=

∞∑

t=1

t× P({xt ∈ X ∗} ∩ {xt′ /∈ X ∗}t−1
t′=1)

=

∞∑

t=1

t× p(1− p)t−1

=
p

(1− p)

∞∑

t=1

t(1− p)t

=
p

1− p
× (1− p)

p2

=
|X |
|X ∗|

(6)

which concludes the proof.

Proof of Proposition D.1. We start to bound the number n∗ of iterations required to identify a
global optimizer of the objective function f . Let N =

∑d−1
l=0 |Il| + 1 be the upper bound on n∗

and let (l2, i2), . . . , (lt, it) be the index of the nodes(lt, it) selected by the algorithm (line 4) at each
iteration t ≥ 2. Consider two cases: (1) n∗ ≤ N − 1 and (2) n∗ > N − 1. First, observe that
the result trivially holds if n∗ ≤ N − 1. Now assume that n∗ > N − 1 which necessarily implies
(in∗ , ln∗) /∈ {(lt, it)}N−1

t=1 . Since we know that the algorithm only selects nodes in
⋃d−1

l=0 Il until it
identifies the global optimum, we know that (lt, it) ∈

⋃d−1
l=0 Il for all 2 ≤ t ≤ N − 1. Moreover,

since the algorithm selects a different node at each iteration, we have (lt, it) /∈ {(lt′ , it′)}t′<t for all
2 ≤ t ≤ N − 1. Thus, considering iteration N , we have:

(lN , iN) ∈
d−1⋃

l=0

Il/{(it, lt)}N−1
t=2

Now, since (1) |{(it, lt)}N−1
t=2 | = N − 2, (2) |⋃d−1

l=0 Il| = N − 1, (3) (ln∗ , in∗) /∈ {(it, lt)}N−1
t=1 and

(4) (ln∗ , in∗) ∈ ⋃d−1
l=0 Il, we necessarily have (lN , iN) = (ln∗ , in∗) which means that the global

optimizer is identified at time N and completes the proof.

Now, we prove the finite-time bound by using similar arguments as in [37]. Let (lmax(n), imax(n))
be the index of (one of) the deepest node that has been selected up to round n, i.e., lmax(n) =
maxt=2...n lt. We prove by contradiction that lmax(n) ≥ l(n). Assume that lmax(n) < l(n). Then,
it implies that lt ≤ l(n) − 1 for all 2 ≤ t ≤ n. Moreover, since n < n∗, we also know that
(lt, it) ∈

⋃d−1
l=0 Il, which combined with the previous statement gives that (lt, it) ∈

⋃l(n)−1
l=0 Il for all

2 ≤ t ≤ n. Now since, n− 1 >
∑l(n)−1

l=0 |Il| by definition, we obtain the following contradiction:

l(n)−1∑

l=0

|Il| < n− 1 = |{(lt, it)}nt=2| ≤ |
l(n)−1⋃

l=1

Il| =
l(n)−1∑

l=0

|Il|

which proves that lmax(n) ≥ l(n). Now since lmax(n) ≥ l(n) and (lmax(n), imax(n)) ∈
⋃d−1

l=0 Il
since n < n∗, we have that:

max
i=1...n

f(xi) ≥ f(xlmax(n),imax(n))

≥ f(x∗)− kDiam(Xlmax(n),imax(n))

≥ f(x∗)− k(d− lmax(n))

≥ f(x∗)− k(d− l(n))

(7)

which concludes the proof.

31

Proof of Lemma D.3. Using the definition of Il and the fact that (1) Diam(Xl,i) = d − l and (2)
f(x) ≥ f(x∗)− k∗dH(x, x∗), we obtain the following inclusions:

Il = {nodes(l, i) ∈ T s.t. f(xl,i) + k(d− l) ≥ f(x∗)}
⊆ {nodes(l, i) ∈ T s.t. f(x∗)− k∗dH(xl,i, x

∗) + k(d− l) ≥ f(x∗)}
= {nodes(l, i) ∈ T s.t. dH(xl,i, x

∗) ≤ k/k∗(d− l)}
(8)

Now using the fact that for all (x, x′) ∈ X 2, we have dH(x, x′) =
∑d

i=1 I{xi ̸= x′
i} ≥

∑l
i=1 I{xi ̸=

x′
i} := dl(x, x

′), we obtain that:

Il ⊆ {nodes(l, i) ∈ T s.t. dl(xl,i, x
∗) ≤ k/k′(d− l)}

=

⌊k/k∗(d−l)⌋⋃

L=0

{nodes(l, i) ∈ T s.t. dl(xl,i, x
∗) = L}.

(9)

Finally, by definition of the tree, all the nodes at level l contain all the combinations {0, 1}l on their
first l elements. Thus, it follows that:

|Il| ≤
⌊k/k∗(d−l)⌋∑

L=0

|{nodes(l, i) ∈ T s.t. dl(xl,i, x
∗) = L}|

=

⌊k/k∗(d−l)⌋∑

i=0

(
l

i

) (10)

which proves the result.

Proof of Lemma D.4. First, note that the condition l ≥ 2cd/(1 + 2c) implies that c(d− l) ≤ l/2.
Then, using the bound of [12] using the binary cross entropy B(x) = −x log(x)− (1−x) log(1−x),
we have that

⌊c(d−l)⌋∑

i=0

(
l

i

)
≤ 2B(c(d−l)/l)l.

Now setting y = c(d− l)/l and observing that l/d = c/(c+ y), we have

B(c(d− l)/l)d = B(c(l − d)/l)× l

d
× d =

B(y)

1 + y
× 1 + y

c+ y
× c× d. (11)

Finally, using the fact that B(y)/(1 + y) ≤ 1/2 and that (1 + y)/(c+ y) ≤ (1 + 1/2)/(c+1/2) for
all y ≤ 1/2, we thus obtain that

B(c(d− l)/l)l ≤
(

3c

2c+ 1

)
× d

2

which proves the lemma.

Proof of Theorem 4.3. By virtue of Proposition D.1, recall that maxx∈X f(x)−maxi=1...n f(xi) ≤
k(d − (n)) where l(n) = min{0 ≤ L ≤ d − 1 :

∑L
l=1 |Il| ≥ n − 1}. So first, observe that since

|Il| ≤ 2l for all 0 ≤ l ≤ d−1, it necessarily follows that
∑L

l=0 |Il| ≤ 2L+1−1. Thus, independently
of the conditioning number c, we have l(n) ≥ ⌈ln(n)/ ln(2)⌉ − 1 which proves the first part of the
result. To prove the second part of the result, we need an intermediate lemma to bound the the size
|Il| using Lemma D.4. Now, setting Ls =

⌈
2c

1+2cd
⌉
− 1 and C = 2(

3c
2c+1)

d
2 and using the previous

bound, we have for all L > Ls:

L∑

l=0

|Il| ≤
Ls∑

l=0

2l +

L∑

l=Ls+1

C = 2Ls+1 − 1 + C(L− Ls)

Thus, we deduce that whenever n > nc = 2Ls+1 = 2⌈ 2c
1+2cd⌉, we have l(n) ≥

⌈
Ls +

n−nc

C

⌉
which

concludes the proof by observing that Ls =
ln(nc)
ln(2) − 1.

32

Proof of Proposition 5.2. The proof is based on the arguments of [37]. Let xl∗,i∗l be a node of tree
that contains (one of) the global optimum with the deepest level l∗ ∈ {0, . . . , d} and let i∗l be the index
of the node(l, i∗l) at level 0 ≤ l < l∗ which contains xl∗,i∗l as a child. Now, let τl = min{1 ≤ t ≤
2d : f(xl,i∗l) is expanded} be the time where the node of level l < l∗ containing xl∗,i∗l is expanded
and let l∗t = max{0 ≤ l ≤ d − 1 : xl,i∗l has been expanded before t} be the level of the deepest
expanded node containing xl∗,i∗l at time 1 ≤ t ≤ n. First, if l∗n = l∗−1, then the result trivially holds.
Now assume that l∗n < l∗ − 1 and observe that we have the property that any node of level l + 1 is
expanded at a time t ∈ ∆l := [τl, τl+1−1] belongs to I∗l+1 for any l ≤ l∗−2. Indeed, a node(l+1, i)
is expanded during ∆l if and only if f(xl+1,i) ≥ f(xl+1,i∗l+1

) since f(xl+1,i∗l+1
) has already been

evaluated and thus f(xl+1,i) + kminDiam(Xl+1,i) ≥ f(xl+1,i∗l+1
) + kminDiam(Xl+1,i∗l+1

) ≥ f(x∗)
which means that (l + 1, i) ∈ I∗l+1. However, it is also possible that during a round of optimal
nodes selection, no node of level l + 1 is expanded because their is a node(j, i) with a lower level
0 < j < l + 1 has a higher value. Nonetheless, in that case we have (j, i) ∈ I∗j since

f(xj,i) ≥ f(xl+1,i∗l+1
) ≥ f(x⋆)− kminDiam(Xl+1,i∗l+1

) ≥ f(x∗)− kminDiam(Xj,i).

Thus, since each batch of selection of potentially optimal nodes result in at most d expansions, we
deduce that for any 0 ≤ l ≤ l∗ − 2,

τl+1 − τl ≤


 ∑

(l+1,i)∈I∗
l+1

I{(l + 1, i) is expended during ∆l}+
l∑

h=1

∑

(h,i)∈I∗
h

I{(h, i) is expended during ∆l}


 d

= d

l+1∑

h=1

∑

(h,i)∈I∗
h

I{(h, i) is expended during ∆l}

(12)
Thus, since l∗n ≤ l∗ − 2, we have

l∗n∑

l=0

τl+1 − τl ≤ d

l∗n∑

l=0

l+1∑

h=1

∑

(h,i)∈I∗
h

I{(h, i) is expended during ∆l}

= d

l∗n+1∑

h=1

l∗n∑

l=h−1

∑

(h,i)∈I∗
h

I{(h, i) is expended during ∆l}

≤ d

l∗n+1∑

h=1

∑

(h,i)∈I∗
h

I{(h, i) is expended at any time}

≤ d

l∗n+1∑

h=1

|I∗h|

(13)

Finally, since τl∗n+1 > n by definition and τ0 = 1, we deduce that

n < 1 + d

h∗
n+1∑

l=1

|I∗l | ≤ d

h∗
n+1∑

l=0

|I∗l |

Then, for any l(n) such that n ≥ d
∑l(n)

l=1 |I∗l |, we have l∗n ≥ min(l∗, l(n)). Finally, since by
definition the node(l∗n, i

∗
n) has been expanded, we have:

max
x∈X

f(x)− max
i=1...n

f(xi) ≤ f(xl∗,i∗
l∗
)− f(xl∗n+1,i∗ln+1

)

≤ kmindH(xl∗,i∗
l∗
, xl∗n+1,i∗ln+1

)

≤ kmin(d− l(n)− 1)

(14)

which concludes the proof.

Proof of Theorem 5.3. Recall that by virtue of Proposition 5.2, we have maxx∈X f(x) −
maxi=1...n f(xi) ≤ kmin(d − l(n) − 1) with l(n) = max{0 ≤ L ≤ d − 1 : (n/d) ≥ ∑L

l=0 |I∗l |}.

33

It just remains to bound the terms |I∗l |. Similarly to the proof of Theorem 4.3, we have |I∗l | ≤ 2l for
all 0 ≤ l ≤ d− 1 independently of the value of c. Therefore, it follows that

∑L
l=0 |I∗l | ≤ 2L+1 − 1

which ensures that l(n) ≥
⌊
ln(n/d+1)

ln(2)

⌋
− 1 ≥

⌊
ln(n/d)
ln(2)

⌋
− 1 and proves the first part of the result.

For the second part of the result, we follow the proof of Theorem 4.3. Setting Ls =
⌈

2c
1+2cd

⌉
− 1

and C = 2(
3c

2c+1)
d
2 and using Lemma D.4, gives that for all L > Ls:

L∑

l=0

|Il| ≤
Ls∑

l=0

2l +

L∑

l=Ls+1

C = 2Ls+1 − 1 + C(L− Ls).

Therefore, it follows that for all n > nc = d2Ls+1 ≥ d(2Ls+1 − 1), we have l(n) ≥ Ls +⌊
(n/d+ 1− 2Ls+1)/C

⌋
and we deduce that:

d− l(n)− 1 ≤ d−
⌊
n/d− 2Ls+1

C

⌋
− Ls − 1 ≤ d−

⌊
n− nc

dC
+

ln(nc/d)

ln(2)

⌋

by plugging the values of nc and Ls, which proves the second part of the result combined with
Proposition 5.2.

34

