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A PRECISE TRANSFORMER COMPLEXITIES AND APPROXIMATION RATES

This section records the exact approximation rates, or equivalently the precise model complexities,
of the transformer networks implemented in our quantitative constrained universal approximation
results. The rates are simply those recorded in Table 1 but with explicit constants.

Table 2 makes use of the following notation. We denote the diameter of the compact set K by
diam(K) , maxy1,y22K ky1 � y2k. Furthermore, k > 0 in Table 2 is a universal constant inde-
pendent of ✏K , ✏f , f , K, n, m, and of d. The big O notation used in Table 2 masks any constants
not depending on these quantities.
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Table 2: Complexities of encoder-decoder Network with P-attention for 0 < ✏K  1.

Remark A.1. If ✏K > 1 then the above rates hold but the term (1 �
✏�1
K
4 )2 in D̂’s depth estimate

must be replaced by (1�
✏�1
K
4 )(1� ✏

�1
K ) in order for the rates to remain valid.

B CAN THE PROBABILISTIC TRANSFORMER NETWORK BE TRAINED?

The purpose of this appendix is to answer the following questions:

(i) Are our probabilistic transformer networks trainable and, if so, how?

(ii) How do probabilistic transformer networks perform on a toy non-convex problem?

We first affirm (i) by describing a potential training algorithm for our model. Then, we address
(ii) on a toy non-convex problem whose objective is to learn (randomly generated) functions taking
values on the standard 2-sphere in R3. Our code is available at code is available at Anonymized
(2021).

B.1 A TRAINING ALGORITHM

Our analysis only has practical implications as we can affirmatively answer the following question:

“Is the probabilistic transformer network F̂ of Theorem 2.7 trainable?”

Our theoretical analysis motivates the following training procedure, whose steps we briefly explain.
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Step 1 - Get Particles: We assume that the user is has access to a subroutine Generate which gen-
erates particles on K. This is always possible, for example, by randomly by sampling the available
training outputs {yt}Tt=1; for example, this is what is done in our toy implementations. However, if
one has access to additional structure, such as a K-supported probability measure (Miolane et al.,
2020) then, samples can be drawn therefrom, or if K is equipped with a meaningful metric, then the
randomized partition procedure such as (Bartal, 1999; Pulat, 1989) can be deployed.

Step 2 - Train Model: When m > 1, the Wasserstein distance is costly to evaluate numerically
(Pele & Werman, 2009; Cuturi, 2013; Kolouri et al., 2019; Sommerfeld et al., 2019). A variety of
approximate or regularized transport distances have been introduced to manage this problem but only
approximately. However, in the context of Theorem 2.7 and Algorithm 3 we are always interested in
distances to the pointmass and therefore, W1 has the following exceptional closed-form expression
which bypasses these computational issues:

TX

t=1

W1(�f(xt),P-attention(f̂(xt), Y )) =
TX

t=1

NX

n=1

kyt � Ynk [SoftmaxN �f̂(xt)]n. (11)

Remark B.1 (Exceptional Closed-Form for W1(�f(xt),P-attention(f̂(xt), Y )) in (11)). A deriva-
tion of the closed-form identity 11 is in Lemma C.4.

Step 2 - Prediction: In the case where K is a Riemannian manifold, Since Fréchet means are
readily implemented in a variety of packages (Miolane et al., 2020), we assume that the user
has access to a subroutine FréchetMean which takes an N ⇥ Q-matrix of weights (wn,q)

N,Q
n,q=1

and an N ⇥ Q ⇥ 1-array and computes the Fréchet mean (9). By Corollary 2.11, once the net-
work F̂ is trained, its outputs generate points on K via the Fréchet mean (9); i.e.: F̂ (x) =

argminy2K

PN,Q
n,q=1 wn,qd

2
g(y, yn,q).

Algorithm 1: Training Probabilistic Transformers for Exact Constraint Satisfaction
Input: Training Data {(xt, yt)}Tt=1 ✓ Rn

⇥K

Output: Probabilistic Transformer Network: F̂ ,PN
n=1

PQ
q=1[SoftmaxN �f(·)]nwn,q�yn,q

1 Get Particles: Use Generate K to generate y1, . . . , yS 2 K

for n = 1, . . . , N do

{sq}
Q
q=1  argsortQ {kys � Ynk}

S
s=1

{yn,q}
Q
q=1  {ysq}

Q
q=1

endfor

2 Train Model:

Get Labels: for t  T do

for n  N do

(Lt)n  I(kyt � Ynk  minm=1,...,N kyt � Ymk)
endfor

endfor

3 f̂  argminf̂
PT

t=1

PN
n=1 k(Lt)n � [SoftmaxN �f̂(xt)]nk2

return F̂ (·) ,PN
n=1 SoftmaxN �f̂(·)n�Yn

Remark B.2 (Prediction). Predictions can be made using F̂ by either applying an expectation, in
which case classical tranformer networks of Vaswani et al. (2017) are recovered, using the Fréchet
mean as a final layer if K is a geodesically convex subset of a Riemannian submanifold of Rm, or
taking the most-likely particle if noting more is known of K other than its point-set.

We now address question (ii).

B.2 PERFORMANCE ON A TOY NON-CONVEX PROBLEM

Let K ✓ R2 be a 2-dimensional sphere in R3. Let a, b, c be independently drawn from a uniform
distribution on [0, 1] and let A be a 2 ⇥ 103 random matrix with i.i.d. standard Gaussian entries.
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Let f = f̃(Ax) be the random K-valued function where ui = ax
2
i + bxi + c, for i = 1, 2, and

f̃(u) , (cos(f̃(u)1) sin(f̃(u)2)), sin(f̃(u)1) sin(f̃(u)2)), cos(f̃(u)1) cos(f̃(u)2))). Therefore, A
projects R103 onto the latent low-dimensional space R2 and f̃ sends data in R2 to a point on the
sphere obtain by a random polynomial transformation of its spherical coordinates (which is a non-
convex constraint set).

We independently repeat this experiment 500-times, generating a random f each time and gener-
ating 1k training inputs {xt}

103
t=1 ✓ [0, 1]10

3

(resp. 100 testing inputs) by independently and uni-
formly sampling from [0, 1]10

3

and producing 1k corresponding training (resp. 100 testing) outputs
{f(xt)}10

3

t=1 ⇢ K. For each independent experiment, a probabilistic transformer network P-Trans.)
is trained using Algorithm 3, and benchmarked against a deep feedforward network (MLP) and a
classical transformer network (Trans.). Table 3 reports the average and standard deviation, across all
experiments, of the test-set MSE and the distance to the constraint set (dK) of the test-set predictions
for each learning model.

Figure 5 shows that, high emphasis is placed on constraint satisfaction (� 2 [0, 0.75]) then the P-
Trans.+Fréchet model outperforms the benchmark models. As the emphasis parameter � approaches
the critical value of ⇡ .75 then, the MSE dominates the constraint satisfaction metric dK and the
P-Trans.+Fréchet’s larger average test MSE is larger than that of the MLP and Trans. models. This
validates the error terms ✏K and the factor k Lip(��1)d in Theorem 2.7 (ii), reflected in Table 3,
which is due to the decoder network D̂ in f approximating a random projection of R3 onto K.

Figure 5: Performance for varying importance on constraint satisfaction vs. MSE.

Therefore, we find that our probabilistic transformer network is both implementable, and that, as
expected, it offers good predictive performance even while enforcing non-convex constrained. In
other words, we have obtained positive answers to the natural questions (i) and (ii) posed at the start
of Appendix B.

dK MSE
Mean Std Mean Std

MLP 0.274 0.106 0.384 0.034
Transformer 0.822 0.100 0.334 0.009
P-Transformer 0.000 0.000 0.657 0.059

Table 3: Performance metrics across all 500 experiments.

Table 3 emphasizes that classical transformer networks are not built to handle non-convex con-
straints. Indeed, the poor performance of the transformer network, with respect to the dK , is due to
most its predictions lying inside the sphere (which is hollow).

Further study into training algorithms for our model, and detailed ablation of the model parameters
are topics of focus in forthcoming research. Nevertheless, we have obtained an affirmative answer
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to both our questions (i) and (ii). Namely, we have shown that our probabilistic transformer morel
is trainable via a simple procedure such as Algorithm 3.

B.3 EXAMINING THE IMPACT OF K’S GEOMETRY ON TRANSFORMER NETWORKS

To gain further insight into how probabilistic transformers encode geometric priors, we will examine
the impact of perturbations to K on the probabilistic transformer’s approximation capabilities. We
consider toy illustrations beginning with the convex setting before moving on to the fully non-convex
setting where no projections, charts, or even a Riemannian structure is available.

We further underline that step 3 in Algorithm 3 may be performed in a variety of ways and, unlike the
previous experiments, all networks in this section are obtained by randomizing their hidden weights
and only training their final layer. Theoretical guarantees for this approach has become relatively
well understood (Louart et al., 2018; Gonon et al., 2020a;b). Implicitly, our examples also show that
probabilistic transformers can equally be integrated into domains where randomized models such
as extreme learning machines (ELMs) are typical; e.g. in the reservoir computing Lukoševičius &
Jaeger (2009); Grigoryeva & Ortega (2018; 2019).

This section’s primary goal is to experimentally validate the main quantitative claim made implicitly
in our main result; i.e. Theorem 2.7. Namely, we verify that:

“The model complexities in Table 1 are independent of K’s geometry.”

That is, the approximation quality of any optimized probabilistic transformer network only depends
on the involved dimensions. Expressed another way, we empirically validate our result that the prob-
abilistic transformer networks can encode any geometric prior with the model complexity agnostic
of K’s geometry.

Accordingly, all model architectures’ hyperparameters are kept fixed across all experiments. Each
experiment reports the probabilistic transformer’s MSE relative to the benchmark MLP model
⇣

MSE
MSE-MLP

⌘
.

Our result is validated upon observing that the probabilistic transformer model’s MSE
MSE-MLP is of the

same order across all experiments. In other words: probabilistic transformers can approximate a
K-valued function while simultaneously encoding K’s geometry with the same efficiency as an MLP
trained only to approximate f that ignores K’s geometry.

Each toy experiment is trained on a dataset of 900 instances and tested on a dataset of 100 instances.
We maintain the coloring scheme of Figure 5 in all our subsequent plots, namely the MLP is colored
in blue, the Transformer is colored in orange, and the P-Transformer is colored in green.

B.3.1 CONVEX CONSTRAINTS

Our first set of examples concern the case where K is a convex constraint set, as studied in Corollar-
ies 2.9. In each instance, we generate a random target function f , mapping R2 to K. The function f

is defined via the following two-step procedure:

f : R
f̃
! R2 PK

! K;

where f̃ : R2
3 x 7! Ax is a random rotation matrix re-scaled by a factor of 1.5 with the angle

sampled uniformly from [0, 2⇡] and where PK : R2
3 x 7! argminy2K ky � xk is the metric

projection onto the K, which exist in this context by (Motzkin, 1935). Figures 6 and 9 illustrate
this two step transformation by first representing the uniformly generated input data in violet then,
illustrating their images under f̃ in light green, and finally plotting their value under f in dark green.

We perform our illustrations in the visualizable two dimensional case where K is either the square
[�1, 1]2 or the disk {y 2 R2 : kyk  1k. This is because the projection operators (PK) are readily
interpretable from their closed-form formulations (Bauschke & Combettes, 2011). Respectively,
these are given by PK(x) = (min{max{xi,�1}, 1})2i=1 and PK(x) := x

max{1,kxk} .

Figures 7 and 10 demonstrate the constraint set (K) in green and the particles, which populate
Y ’s rows, in violet. These are generated randomly by first sampling uniformly from [�2, 2]2 and
then projecting each sample onto K via PK . Figures 7 and 10 illustrate the role of the particles
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defining the probabilistic attention mechanism, defined in (3); namely, they identify the points in K

on which any output may approximately lie. Thus, the role of the encoder and decoder networks can
be summarized as learning to classify which input is closest to which particle.

Figure 6: x 7! f(x). Figure 7: Particles (Y ) on Constraint Set (K).

Therefore, at high-level, the probabilistic attention mechanism 3 quantizes the constraint set K. The
(simplified) classical Attention mechanism of (4) implements a (convex) interpolation between the
particles quantizing K and an analogous statement is true of Riemannian analogue (Section 2.3.2).
For general K, however, such interpolations within K can be impossible or unclear how to imple-
ment them. Nevertheless, the probabilistic attention mechanism never faces such a difficulty since
it explicitly “interpolates” in P1(K) and not on K directly.

Figure 8: Performance: MSE vs. dK .

MSE
MSE MLP MSE dK

MLP 1 4.35e-04 7.39e-03
Transformer 4.81 1.20e-02 0.00e+00
P-Transformer 4.01 5.86e-03 0.00e+00

Table 4: Performance Metrics

We obtain analogous results to the 500 experiments performed in the case where K is geodesically-
convex in Section B.2. Just as in Figure 5, Figures 8 and 11 show that the transformer can simul-
taneously encode K and approximate f , wheras the MLP cannot. More precisely, in each case, if
at-least roughly equal importance is placed on predictive accuracy (MSE) and constraint satisfaction
(dK) then, the transformer models offer the best performance. This is equally reflected in the test
set performance metrics of Tables B.3.1 and B.3.1 which are consistent with the findings of Table 3.
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Figure 9: x 7! f(x). Figure 10: Particles (Y ) on the constraint set (K).

At times, when K’s geometric is sufficiently simple we the transformer can outperform the prob-
abilistic transformer. This is not surprising, since Corollary 2.9 guaranteed that the transformer
universal in this setting an exactly implements the K’s geometry. Nevertheless, in both instances,
the MLP cannot compete when encoding the geometric prior defined by the constraint set K.

Figure 11: Performance: MSE vs. dK .

MSE
MSE MLP MSE dK

MLP 1 4.09e-04 4.75e-03
Transformer 2.98 3.87e-03 0.00e+00
P-Transformer 3.41 4.50e-03 6.11e-19

Table 5: Performance Metrics

B.3.2 FULLY NON-CONVEX CONSTRAINTS

Let us study the milieu in which probabilistic transformer is the only universal approximator capable
of constraint satisfaction (unlike the case where K is convex and we showed that the transformer
filled this role). Specifically, we consider the case where K does not admit a single chart (since it
has non-trivial homotopy), nor is there a well-defined projection operator of some Rm onto K.

Analogously to the convex situation investigated in Section B.3.1, we define

f : R
f̃
! R

⇢
! K;

where f̃(x) , P5
i=0 �ix

i is a (random) quintic polynomial function with �i ⇠ N(0, 1), and the
constraint set’s geometry is defined by K; where ⇢ : R! R2. In this experiment, we also allow the
training data to be perturbed by multivariate Gaussian noise with variance 10�1.

Similarly to Figures 6 and 9, in Figures 12 and 15, we use a color coded visualization method to
understand f . Sample points from [�10, 10] and label them with a color gradient ranging from pink
to blue such that pinkish points are close to �10 and blueish points are a nearer to 10. The image
(f(x) of each input (x) on K is illustrated using the same colour as x did. This coloring helps us
visualize the winding of f around K.
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Nevertheless, as in the convex case, we can generate particles on K by first sampling from [�10, 10]
and then mapping them onto K using ⇢. Thus, even if no chart or projection operator is available,
we can easily build probabilistic attention mechanisms.

Figure 12: x 7! f(x). Figure 13: Particles (Y ) on Constraint Set (K).

In Figures 12 and 13, the map defining K’s geometry is ⇢(y) , (2 cos(y)2 + 1) ·

(cos(y/3), sin(y/3)). Figure 14 and Table B.3.2 show that our probabilistic transformer network’s
performance is “robust to changes of geometric priors”, in the sense that the relative performance
of our models is entirely analogous to the above experiments where K was convex or it was a
geodesically convex patch on a Riemannian manifold.

Figure 14: Performance: MSE vs. dK .

MSE
MSE MLP MSE dK

MLP 1 2.40e+00 6.56e-01
Trans. 1.01 2.51e+00 3.98e-01
P-Trans. 1.05 2.76e+00 0.00e+00

Table 6: Performance Metrics

We complete our discussion by considering an instance where K’s geometry is both non-convex
and it is not a differentiable manifold (due to the self-intersecting point). This last toy exam-
ple is illustrated in Figures 15 and 16 in which case K’s geometry is the image of the map
⇢(y) , �(sinc(y + 1)(cos(y/2), sin(y/2))) where � is a randomly generated invertible feedfor-
ward network with invertible square weight matrices and tanh activation function (i.e.: a random
homeomorphism on R2).
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Figure 15: x 7! f(x). Figure 16: Particles (Y ) on Constraint Set (K).

We conclude our study examining the impact of K’s geometry on the probabilistic transformer’s
performance by noting that the probabilistic transformer’s relative performance is analogous to its
performance in the previous experiments. Figure 17 and Table B.3.2 reaffirm that the probabilistic
transformer outperforms the MLP and the transformer network when the mixed objective of opti-
mizing the MSE and the distance to the constraint set.

Figure 17: Performance: MSE vs. dK .

MSE
MSE MLP MSE dK

MLP 1 3.15e+00 1.11e+00
Trans. 1.01 3.39e+00 5.84e-01
P-Trans. 1.09 4.04e+00 0.00e+00

Table 7: Performance Metrics

This appendix showed that the probabilistic transformer is implementable, that it can indeed approx-
imate functions while exactly encoding constraints, and that its performance doesn’t degrade for
more complicated geometries. In conclusion, probabilistic transformers can generically and canon-
ically encode geometric priors without sacrificing the expressibility of more familiar deep learning
models.

C PROOFS

In what follows, we denote the set of couplings of two probability measures µ, ⌫ 2 P1(Rn) on Rn

by Cpl(µ, ⌫). I.e. these are Borel product measures ⇡ on Rn
⇥ Rn with respective marginals µ and

⌫. We begin by deriving some useful lemmata.

C.1 LEMMATA

This section records lemmata that will be frequently be used throughout this paper’s proofs. The
lemmata’s proofs are deferred until Section C.2.1 of this Appendix.

Note. For the reader interested in convex constraints: We recognize that the results where K is
convex follow the more general results where K is a geodesically convex subset of some embedded
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submanifold of Rm. Nevertheless, so as to provide a self-contained reading to those focused on
classical transformers or on convex constraints, independent proofs for both of these two cases.

C.1.1 LEMMATA IN THE CASE WHERE K IS CONVEX

The results are especially useful for results pertaining to convex constraint sets.
Lemma C.1 (Collapsing Measure-Valued Estimates for Convex Constraint Sets). Let K ✓ Rm be
non-empty, compact, and convex. Let F 2 C(Rn

,P1(K)) and f 2 C(Rn
,K). For every x 2 Rn,

the following hold:

(i) Convex Constraints Hold: EY⇠F (x)[Y ] 2 K,

(ii) Non-Expansive Distance:
��f(x)� EY⇠F (x)[Y ]

��  W1

�
�f(x), F (x)

�
.

Moreover, let ✏ > 0 and some non-empty compact C ⇢ Rn be non-empty and compact. If
maxx2C W1(�f(x), F (x))  ✏ then, in addition we have that:

max
x2C

��f(x)� EY⇠F (x)[Y ]
��  ✏. (12)

The next lemma, though immediate, is still helpful to write down explicitly as it clearly relates
P-attention to Attention. For any N 2 N+, we denote the standard N -simplex by �N ; i.e.:

�N ,
(
w 2 [0, 1]N :

NX

n=1

wn = 1

)
.

Lemma C.2 (An Identity: P-attention as implicit Attention). Let {yn,q}n=1,...,N,q=1,...,Q ✓ K ⇢

Rm, let Y be an N ⇥ 1⇥m-array with Yn = Q
�1
PQ

q=1 yn,q , and let f(x) 2 C(Rn
,�N ). Then:

Attention (f(x)|Y ) = EX⇠P-attention(F (x),Y ) [X] .

C.1.2 LEMMATA IN THE CASE WHERE K IS A CLOSED GEODESIC BALL

We now consider the analogue of Lemma C.1, in the case where K is geodesically convex of con-
trolled radius1. A K subset of (M, g) is called geodesically convex if for every two points y1, y2 2 K

there is a unique geodesic (Riemannian distance minimizing curve) joining y1 to y2.
Lemma C.3. Let (M, g) be a connected Riemannian manifold with sectional curvatures uniformly
bounded-above by C � 0 and which is complete as a metric space under dg . Fix y0 2M ,

0 < ⇢ < 2�1 min

⇢
injg(y0),

⇡
p
C

�
(13)

(where, following Afsari (2011), 1
p
C

, 1 whenever C  0), and let K be a non-empty, compact,

and geodesically convex subset of B(y0, ⇢). Then, the “Fréchet mean” function:

P1 (K)! B(y0, ⇢)

P 7! argminy2K EY⇠P
⇥
d
2
g (y, Y )

⇤
,

(14)

is a well-defined (i.e.: single-valued) and non-expansive (i.e.: 1-Lipschitz) function. Furthermore, if
P is finitely-supported then:

P 2 K. (15)

C.2 EXCEPTIONAL CLOSED-FORM FOR WASSERSTEIN DISTANCE

The following result is folklore in the optimal transport community. Since its statement is difficult
to track down, we record the statement and derive its proof here, for a self-contained reading.
Lemma C.4 (Closed-Form Expression for Wasserstein Distance to Pointmass). Let K ✓ Rm be
non-empty and compact, let y be in K, and let P 2 P1 (K). Then:

W1(P, �y) = EY⇠P[kY � yk].
1We use the terminology controlled in direct analogy with (Kratsios & Papon, 2021, Theorem 10).
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C.2.1 PROOFS OF LEMMATA

Proof of Lemma C.1. Fix µ , F (x). We first show (ii). Since Rn is a Banach space, then (Bru et al.,
1993) implies that there exists a unique contracting barycenter map on P1(Rn); i.e.: a Lipschitz map
�Rn : P1(Rn) ! Rn satisfying �Rn(�x) = x for all x 2 Rn, whose Lipschitz constant Lip(�Rn) is
at most 1. Moreover, the result guarantees that the barycenter map is linear an given by the Bochner
integral (i.e. the usual vector-valued expectation of a Rn-valued random-vector):

�Rn : P1(Rn) 3 µ 7! EY⇠µ [Y ] 2 Rn
. (16)

Therefore, we conclude that:

kf(x)� EY⇠µ [Y ] k =kf(x)� �Rn(F (x))k

=k�Rn(�f(x) � �Rn(F (x))k

W1

�
�f(x), F (x)

�
.

(17)

This gives (ii). Furthermore, if the right-hand side of (17) is upper-bounded by a constant ✏ > 0,
uniformly over C, then so must be the left-hand side. This gives (12).

We now show (i). Since K ⇢ Rn, we may view P1(K) as a subspace of P1(Rn). Thus, �Rn |P1(K)

satisfies �Rn(�x) = x for all x 2 K. Moreover, we may view (16) as a map on P1(K). Therefore,
if µ 2 P1(K) then, any Rn-valued random-vector Y with law µ, by definition, µ-a.s. takes values
in K. Since K is convex, and µ 2 P1(K) (i.e. EY⇠µ[|Y |] < 1) then the formulation of Jensen’s
inequality given in (Dudley, 2002, Theorem 10.2.6) guarantees that

EY⇠µ[Y ] 2 K. (18)

Hence, we may refine (16) to state: �Rn |P1(K) is 1-Lipschitz and satisfies

�Rn |P1(K) : P1(K) 3 µ 7! EY⇠µ [Y ] 2 K. (19)

Thus (i) holds.

Proof of Lemma C.2. Follows directly from the linearity of integration and the fact that integration
against a pointmass is just point-evaluation.

Proof of Lemma C.4. By definition of the Wasserstein distance between P and �y we have that:

W1(P, �y) = inf
⇡2Cpl(P,�y)

E(Y1,Y2)⇠⇡[kY1 � Y2k]. (20)

Since P⌦ �y 2 Cpl(P, �y) (e.g. see (Villani, 2009, Page 6)) then it is enough to show that if ⇡ is a
coupling in Cpl(P, �y) then ⇡ = P⌦ �y . We show this now.

Let B1, B2 ✓ K be Borel and let ⇡ 2 Cpl(P, �y). If y 2 B2, then P(B1) = ⇡(B1 ⇥K) � ⇡(B1 ⇥

B2) � ⇡(B1⇥{y}). Therefore, 1�P(B1) � ⇡(K⇥{y})�⇡(B⇥{y}); thus, ⇡(B1⇥{y})  P(B1).

Therefore, P(B1)  ⇡(B1 ⇥ {y})  ⇡(B1 ⇥ B2); whence, ⇡(B1 ⇥ B2) = ⌫(B2)�y(B1)
(def)
=

⌫ ⌦ �y(B2 ⇥B1). Now, suppose that y 62 B2 then, ⇡(B1 ⇥B2)  ⇡(K ⇥B2) = �y(B2) = 0. We
have show that ⇡ = ⌫ ⌦ �y . Hence, (20) reduces to:

W1(P, �y) = inf
⇡2Cpl(P,�y)

E(Y1,Y2)⇠⇡[kY1 � Y2k]

=E(Y1,Y2)⇠P⌦�y [kY1 � Y2k]

=EY1⇠P[EY2⇠�y [kY1 � Y2k]] (21)
=EY1⇠P[kY1 � yk]; (22)

where we have applied the Fubini-Tonelli Theorem (see (Kallenberg, 2021, Theorem 1.27)) in (21)
and the definition of a pointmass to derive (22).

Proof of Lemma C.3. We first observe that, since (M, g) is connected and complete as a metric
space, then by the Hopf-Rinow Theorem ((Jost, 2017, Theorem 1.7.1)) (M, g) is a complete Rie-
mannian manifold (sometimes also called a geodesically complete Riemannian manifold; see (Jost,
2017, Definition 1.7.1).

10
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Fix a P 2 P1(K). Since K is compact, then P 2 P2(K). The completeness of (M, g) (as a
Riemannian manifold) and the facts that K is a non-empty geodesically convex subset of B(y00, ⇢)
(where ⇢ satisfies (13)) implies that the conditions of (Afsari, 2011, Theorem 2.1) are met; whence,
the “Fréchet mean function” of (14) is well-defined function from P1 (K) to B(y0, ⇢). It remains to
show that it is 1-Lipschitz. Since ⇢ < injg(y0), then the remark on (Jost, 2017, Page 299) implies
that (Jost, 2017, Theorem 6.9.2) holds; therefore, for any y1, y2, y3 2 B(p, ⇢) the map:

[0, 1] 3 t 7! d
2(�[y1,y2](t), �[y1,y3](t)) 2 [0,1),

is convex. We may now conclude our proof by arguing analogously to (Sturm, 2003, Theorem 6.3’s
proof) . Fix P,Q 2 P1(K) and let ⇡ 2 P(K⇥K) with marginals P and Q. Then, applying Jensen’s
inequality, we have that:

dg(P̄ , Q̄) 

Z
d
2(y1, y2)⇡(d(y1, y2)). (23)

Since we have just showed that right-hand side of (23) holds for any such ⇡. Consequently, taking
the infimum over all such ⇡ implies that:

dg(P̄ , Q̄)  W1(P,Q).

Thus, (14) is 1-Lipschitz.

For the last claim, suppose that P 2 P1(K) is finitely supported. Since K is geodesically convex
and since P is finitely supported then (Afsari, 2011, Theorem 3.4 (i)) implies that P̄ is an element
of the smallest closed geodesically convex subset CP containing the support of P; since K itself is
itself closed and geodesically convex then we infer that CP ✓ K. Thus, (14) takes values in K.

C.3 PROOF OF THEOREM 2.2

Proof of Theorem 2.2. Since K ✓ Rn is non-empty and compact, for each x 2 Rn the set Cx

is closed and has non-empty intersection with K, thus each Cx \ K is compact. Thus, the map
' : Rn

3 x 7! Cx \ K 2 2Rm

is a non-empty and compact-valued multifunction. Moreover,
by (Aliprantis & Border, 2006, 18.4 Lemma) ' is weakly-measurable since C is and so is the
correspondence Rn

3 x 7! K 2 2Rm

. Thus, the hemicontinuity of ' and the assumptions made
on L are such that the Measurable Maximum Theorem (see (Aliprantis & Border, 2006, Theorem
18.19)) applies; whence, the “optimality” sets

O(x) , argmaxy2'(x) �L(x, y) 2 R = argminy2Cx\K L(x, y), (24)

are a well-defined for each x 2 Rn and, there exists a Borel measurable function S : Rn
! Rm

satisfying the “optimal selection condition”:

S(x) 2 O(x) (8x 2 Rn). (25)

Since Rn is a complete and separable metric space and since P is a Borel probability measure on Rn,
then by (Klenke, 2014, Theorem 13.6), P is a Radon measure on Rn. Since S is Borel measurable,
Rn and Rm are locally-compact and second-countable topological spaces, and since P is a Radon
measure on Rn, then Lusin’s Theorem (as formulated in (Klenke, 2014, Excersize 13.1.3)) implies
that, for every ✏ 2 (0, 1], there is a compact subset X✏ ✓ Rn on which S|X✏ is continuous and
P(X✏) � 1 � ✏. By (Villani, 2009, Point 5 - Page 99), the map Rm : y 7! �y 2 P(Rm) is an
isometry. In particular, the map Rm : y 7! �y 2 P(Rm) is continuous. Hence, S? : X✏ 3 x 7!

�S(x) 2 P1(Rm) is continuous. However, by construction, S(x) 2 '(x) ✓ K; thus, S? defines a
map with codomain P1(K).

Therefore, (Kratsios, 2021, Theorem 3) implies that there exists an F̂ of the form

F̂ : Rn
3 x 7!

NX

n=1

[SoftmaxN (f̂(x))]n
1

Q

QX

q=1

�kn,q 2 P1(Rm), (26)

satisfying:
max
x2X✏

W1

⇣
F̂ (x), S?(x)

⌘
< ✏. (27)

11
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Grouping the sums
PN

n=1 and
PQ

q=1 and the weights Q
�1[SoftmaxN (f̂(x))n] in (26), we may

rewrite (26) in the form (6).

By construction, for each x 2 X✏ we have that S(x) 2 O(x). Thus, (25) implies that:

max
x2X✏

W1

✓
F̂ (x), inf

y?2O(x)
�
?
y

◆
 max

x2X✏

W1

⇣
F̂ (x), S?(x)

⌘
< ✏. (28)

This gives (ii).

Now, by construction, each y1, . . . , yN,Q 2 K. Therefore, for each x 2 Rn, F̂ (x) is supported in K

and, moreover, F̂ (x) 2 P1 (K). Thus, (i) holds.

C.4 PROOF OF THEOREM 2.7

We make use of the following notation during Theorem 2.7’s proof. For d  m, d 2 N+, we
denote p

m
d : Rm

3 (x1, . . . , xm) ! (x1, . . . , xn) 2 Rd and similarly, ◆md : Rd
3 (x1, . . . , xn) 7!

(x1, . . . , xn, 0, . . . , 0) 2 Rm. Before proceeding, we also emphasize the following identities: if
x1, . . . , xn 2 R then ◆

m
d �p

m
d (x1, . . . , xn, 0, . . . , 0) = (x1, . . . , xn, 0, . . . , 0) and conversely, pdm�◆md

is the identity on Rd.

Proof of Theorem 2.7. Let k 2 N+, let X ✓ [0, 1]n be non-empty, and let f 2 C
k
tr(X ,K). Since

f 2 C
k
tr(X ,K) then, there exists a k-times continuously differentiable f : Rn

! Rm such that: for
every x 2 X , we have that:

f(x) = f(x). (29)
Note that X ✓ [0, 1]n. We begin by building our encoder to approximate p

m
d � �

�1
� f 2

C([0, 1]n,Rm). By Assumption 2.4 and the fact that f(X ) ✓ K we have that, for each x 2 X :

0  inf
y2K

L(x, y)  L(x, f(x))  l (kf(x)� f(x)k) = l(0) = 0.

Therefore, by (29), for each x 2 X , we know that {f(x)} ✓ argmin
y2K

L(x, y). In particular, for each

x 2 X we have that argmin
y2K

L(x, y) is non-empty and therefore, for any F̂ : [0, 1]n ! P1(K) we

may compute:

sup
x2X

W1

✓
F̂ (x), argmin

y2K
L(x, y)

◆
(def)
= sup

x2X

inf
y?2argmin

y2K
L(x,y)

W1

⇣
F̂ (x), �y?

⌘

 sup
x2X

W1

⇣
F̂ (x), �f(x)

⌘

= sup
x2X

W1

⇣
F̂ (x), �f(x)

⌘
.

(30)

Therefore, it is enough to construct models D̂ and Ê such that the composite model F̂ = D̂ � Ê

controls the approximation error on the right-hand side of (30). The remainder and bulk of the proof
is devoted to precisely this task.

NB, by Assumption 2.5 we have that f(x) = ��1
� ◆

m
d � (p

m
d � � � f)(x). Now, since p

m
d is a

linear map between finite-dimensional normed spaces then, is is analytic, and therefore it is smooth.
Moreover, by hypothesis, both � and ��1 are both also smooth. Thus, the map p

m
d ���f : Rn

! Rd

is k-times continuously differentiable.

Since p
m
d � f is k-times continuously differentiable then, by (Kratsios & Papon, 2021, Proposition

17), [0, 1]n is efficient for pmd ���f (in the sense of (Kratsios & Papon, 2021, Definition 16)); thus,
(Kratsios & Papon, 2021, Corollary 43) (activation function parameter ↵ set to ↵ = 0. Thus, �0 is
non-affine, continuous, and piecewise linear) implies that there is a Ê 2 NN

�0
n,d satisfying:

sup
x2[0,1]n

kp
m
d � � � f(x)� Ê(x)k < ✏f , (31)

Furthermore, Ê also satisfies the following quantitative estimates:

12
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(i-E ) Ê has width d W  d(4n+ 10),

(ii-E ) Ê has depth of the order O(d+ d✏

2n
3(kn+1)�

2n
kn+1

f ),

(iii-E ) The number of trainable parameters determining Ê are of the order O(d(d2+1)✏
�

2n
3(kn+1)

f ).

Since X ✓ [0, 1]n and f(X ) = f(X ) ✓ K then, Assumption 2.5 implies that pmd � � � f(X ) ✓
p
m
d (�(K)) ✓ Rd. This together with (31) implies that:

sup
x2X

kÊ(x)� p
m
d (�(K))k

(def)
= sup

x2X

inf
y2pm

d (�(K))
kÊ(x)� yk

 sup
x2X

inf
y2pm

d ���f(X )
kÊ(x)� yk

 sup
x2X

kÊ(x)� p
m
d � � � f(x)k

= sup
x2X

kÊ(x)� p
m
d � � � f(x)k

✏f .

(32)

Thus, (32) indicates that Ê need not take values in p
m
d (�(K)) but, it does take values in the following

closed and bounded subset of Rm:

�(K)✏f , {y 2 Rm : ky � p
m
d (�(K))k  ✏f}

By (Munkres, 2000, Theorem 26.5), �(K) is compact since K is compact and since � is continu-
ous. Thus, the Heine-Borel Theorem (see (Munkres, 2000, Theorem 27.3)) implies that �(K)✏f is
compact as it is closed and bounded (because �(K) is closed and bounded). Thus, we can approx-
imate functions from p

m
d (�(K))✏f to P1 (K) uniformly using the main result of Kratsios (2021).

Specifically, we will approximate a random project (in the sense 2of (Ohta, 2009, Definition 3.1)) of
Rd onto p

m
d (�(K)), uniformly on the compact subset �(K)✏f of Rd.

To this end, we make the following observation on the bi-Lipschitz regularity of �, when restricted
to K ✓ Rm. Since K is non-empty and compact, then �|K : K ! Rd is Lipschitz, as it is at-
least once continuously differentiable. Since K is compact, and � is continuous, then by (Munkres,
2000, Theorem 26.5) �(K) is also compact. Therefore, since ��1 is also at-least once continuously
differentiable then, ��1

|�(K)✏f
: �(K)✏f ! Rm is Lipschitz. Hence, �|K : K ! �(K) ✓ Rd is

bi-Lipschitz3. In particular, �(K)✏f and �(K) have diameter at-most:

diam(�(K))  Lip(�) diam(K) and diam(�(K)✏f )  Lip(�) diam(K) + 2✏f . (33)

We may therefore apply (Heinonen, 2001, Theorem 12.1), as p
m
d (�(K)) has a (finite) doubling

constant �(pmd (�(K))) since it is a subset of Rd. More precisely, we have that:

�(pmd (�(K))) = �(Rd) = 2d, (34)

where the first inequality in (34) follows from (Robinson, 2011, Lemma 9.6 (i)) and the second
in (34) from (Robinson, 2011, Lemma 9.2).

Therefore, we may apply (Bruè et al., 2021, Theorem 3.2) to conclude that there exists a Lipschitz
map ⇧ : Rd

! P1(pmd (�(K))) such that, for all y 2 p
m
d (�(K)), ⇧ satisfies:

⇧y = �y. (35)

Moreover, the same result bounds ⇧’s Lipschitz constant, denoted by Lip(⇧), by
k log(�(pmd (�(K)))) where, k is an absolute constant; i.e. it does not depend on Rn

, Rd, ✏, or
2The author of this first paper on the subject calls such maps Lipschitz stochastic retracts. The terminology

“random projection” was later adopted by other authors, such as Ambrosio & Puglisi (2020) and Bruè et al.
(2021) in connection with the work of Lee & Naor (2005) and the Johnson & Lindenstrauss (1984)’s Lemma.

3A map f : Rn ! Rm is bi-Lipschitz (see (Heinonen, 2001, page 78)) if there are constants c, C > 0 such
that, for every x1, x2 2 Rn the estimate holds: ckx1 � x2k  kf(x1)� f(x2)k  Ckx1 � x2k.
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on �(pmd (�(K))). Consequently, k does not depend on n, d, ✏, or on K . Combining this with (34),
⇧’s Lipschitz constant is bounded as follows:

Lip(⇧)  k log2(�(p
m
d (�(K))))  kd. (36)

Since ⇧ is 1-Lipschitz (continuous), �(K)✏f is compact and p
m
d (�(K)) is compact then by (Krat-

sios, 2021, Theorem 3), there exists a D̂ 2 NN
�
d,N and y1,1, . . . , yN,Q 2 p

m
d (�(K)) such that the

“probabilistic decoder network” D̂0 defined by:

D̂0 : Rd
3 x 7!

NX

k=1

P-attention
⇣
D̂(x), Y

⌘
2 P1(p

m
d (�(K)));

where, Y is the N ⇥Q⇥m-array with Yn,q = yn,q , and D̂0 satisfies:

sup
y2pm

d ��(K✏f
)
W1

⇣
⇧(y), D̂0(y)

⌘
 ✏K ,; (37)

where we have set the activation function parameter ↵ to ↵ = 1. Thus, �1 is smooth and non-
polynomial; in which case (Kratsios, 2021, Theorem 3 and Example 7) and the estimates in (33) and
in (36) also implies D̂0 satisfies the following “complexity estimates”:

(i-D) Q  8(✏�1
K Lip(�) diam(K)d

5
2 )d,

(ii-D) N 

✓
kd22

9
2 Lip(�)(diam(K)+✏f )

p
d+1✏K

◆d

(iii-D) D̂0 has depth at most O
⇣
(dN

3
2 (Lip(�) diam(K) + 2✏f )(1� 4�1

✏
�1
K )(1� ✏

�1
K )(1 + 4�1

d))2d
⌘
.

Here, we denote the Lipschitz constant of �|K by Lip(�). We have also used Jung’s Theorem
(Jung, 1910) and the fact that d2

2(d�1)(d+1) < d
5
2 allows us to simplify the estimate in (Kratsios,

2021, Theorem 3 (ii)) to simplify the expression in (i-D) and in (iii-D).

Since ��1
� i

m
d : pmd (�(K)) ! K is Lipschitz and since ◆

m
d is 1-Lipschitz then, (��1

� i
m
d )# :

P1(pmd (�(K)))! P1(K) is also Lipschitz with Lipschitz-constant at most Lip(��1). Let D̂(·) ,
(��1

� i
m
d )#D̂0(·). Thus, (37) implies:

sup
y2�(K)✏f

W1

⇣
(��1

� i
m
d )#(⇧(y)), D̂(y)

⌘
Lip(��1) sup

y2�(K)✏f

W1

⇣
⇧(y), D̂0(y)

⌘

Lip(��1)✏K ,

(38)

Moreover, the injectivity of ��1
� i

m
d implies that D̂ has the following simple expression:

D̂ : Rd
3 x 7!

NX

k=1

P-attention
⇣
D̂(x), Ỹ

⌘
2 P1(K),

where Ỹ is the N ⇥Q⇥m-array with Yn,q = ��1
� ◆

m
d (yn,q).

Therefore, by (30), we have the following preliminary estimate:

sup
x2X

W1

✓
D̂ � Ê(x), argmin

y2K
L(x, y)

◆
 sup

x2X

W1

⇣
D̂ � Ê(x), �f(x)

⌘
(39)

 sup
x2X

h
W1

⇣
D̂ � Ê(x), (��1

� ◆
m
d )# �⇧ � Ê(x)

⌘
(40)

+ W1

⇣
(��1

� ◆
m
d )# �⇧ � Ê(x), (�

�1
� ◆

m
d )# �⇧ � f(x)

⌘

(41)

+ W1

�
(��1

� ◆
m
d )# �⇧ � f(x), (�

�1
� ◆

m
d )# � �f(x)

�⇤
.

(42)

14



Under review as a conference paper at ICLR 2022

To conclude the proof, we must first bound term (40). Since we found that Ê (X )[f(X ) ✓ X✏ then,
utilizing (38) we compute:

sup
x2X

W1

⇣
D̂ � Ê(x), (��1

� ◆
m
d )# �⇧ � Ê(x)

⌘
= sup

x2X

W1

⇣
(��1

� ◆
m
d )# � D̂0 � Ê(x), (�

�1
� ◆

m
d )# �⇧ � Ê(x)

⌘

Lip(��1)1 sup
y2X✏

W1

⇣
D̂0(Ê(x)),⇧(Ê(x))

⌘

Lip(��1) sup
y2X✏

W1

⇣
D̂0(y),⇧(y)

⌘

(38)
 Lip(��1)✏K ;

(43)
where Lip(��1) denotes the Lipschitz constant of � on �(K)✏f . For the second term, i.e. (41),
we combine the fact that ⇧ is Lipschitz with Lip(⇧) given in (36) and our estimate on f obtained
in (32) to find that:

sup
x2X

W1

⇣
(��1

� i
m
d )# �⇧ � Ê(x), (�

�1
� i

m
d )# �⇧ � f(x)

⌘

Lip(��1) sup
x2X

W1

⇣
⇧ � Ê(x),⇧ � f(x)

⌘

Lip(��1) sup
x2X

Lip(⇧)W1

⇣
Ê(x), f(x)

⌘

(36)
 k Lip(��1)d sup

x2X

W1

⇣
Ê(x), f(x)

⌘

(29)
+(31)
 k Lip(��1)d✏f

. (44)

The third term, i.e. (42), we use the random projection property of ⇧ on K defined in (35) and the
assumption that f(X ) ✓ K. This is done as follows:

sup
x2X

W1

�
(��1

� ◆
m
d )# �⇧ � f(x), (�

�1
� ◆

m
d )#�f(x)

�
Lip(��1

� ◆
m
d )W1 (⇧ � f(x), f(x))

= sup
x2X

Lip(��1) Lip(◆md )W1 (⇧ � f(x), f(x))

= sup
x2X

Lip(��1)W1 (⇧ � f(x), f(x))

*f(x)2K

+(35)
 sup

y2K
Lip(��1)W1 (⇧(y), y)

=0

.

(45)
Therefore, incorporating (43), (44), and (45), we may control the right-hand of (39) with the follow-
ing upper-bound:

sup
x2X

W1

✓
D̂ � Ê(x), argmin

y2K
L(x, y)

◆
✏K + k Lip(��1)d✏f + 0. (46)

Relabelling k Lip(��1) as k and the ��1
� i

m
d (yk,q) as yk,q , and incorporating the rate d 2 O(m

1
s )

(implied by Assumption 2.5) into the complexity estimates (i)-(iii) and (i-D)-(iii-D) yields the rates
of Table 2 and, the explicit rates of Table 2. Thus the proof is complete.

D PROOF OF COROLLARIES

This appendix contains proofs of the paper’s main corollaries.
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D.1 PROOF OF COROLLARY 2.3

Proof of Corollary 2.3. Let (⌦,F , ⌫) be a probability space on which the random-field (Y x)x2Rn ,
satisfying Y

x
⇠ F (x), is defined. Consider the non-empty-valued correspondence4

O(x) is defined
as in (24). We continue where Theorem 2.2’s proof left off. For any x 2 X✏, we now compute the
concrete lower-bound on inf

y?2O(x)
W1(F̂ (x), �y?).

inf
y?2O(x)

W1(F̂ (x), �y?) = inf
y2Cx\K

inf
⇡2Cpl(F̂ (x),�y)

Z

(u,v)2Rn⇥Rn

ku� vk⇡(d(u, v))

= inf
y?2O(x)

Z

(u,v)2K⇥K
ku� vk

⇣
F̂ (x)⌦ �y(d(u, v))

⌘

= inf
y?2O(x)

Z

u2K

Z

v2K
kx� vkF̂ (x)(du)�y(dv)

= inf
y?2O(x)

Z

u2K
kx� y

?
kF̂ (x)(du)

(def)
= inf

y?2O(x)
EY x⇠F̂ (x) [kY

x
� y

?
k]

�EY x⇠F̂ (x)


ess-inf
y?2O(x)

kY
x
� y

?
k

�
(47)

(def)
= EY x⇠F̂ (x)

����Y
x
� argmin

y2Cx\K
L(x, y)

����

�
. (48)

In more detail: The first equality is just the definition of the Wasserstein distance. The second equal-
ity follows from the fact that for any y

?
2 Rn (and in particular any such y

? in Cx \K) the product
measure F̂ (x) ⌦ �y? is the only coupling of F̂ (x) with �y? (see Lemma C.4) and the facts that, by
(i), F̂ (x) is supported in K and, by definition, �y? is also supported in K. The third equality follows
the Fubini-Tonelli Theorem (see (Kallenberg, 2021, Theorem 1.27)) since all involved quantities
are integrable over the compact set K ⇥K. The inequality (47) follows from Fatou’s Lemma (see
(Kallenberg, 2021, Lemma 1.20)) and the fact that the essential-infimum lower-bounds the infimum.
The final equality is just the definition of the distance from Y

x(!) to the optimality set O(x) (for
each ! 2 ⌦). Combining the upper-bound on the right-hand side of (28) with the lower-bound
in (48) yields the result.

D.2 PROOF OF COROLLARY 2.8

Proof of Corollary 2.8. We continue with the notation of Theorem 2.7, and specifically with the
following estimate derived in (46):

sup
x2X

W1

⇣
D̂ � Ê(x), �f(x)

⌘
 ✏K + k Lip(��1)d✏f . (49)

Combining (49), the monotonicity of integration, Assumption 2.4, Jensen’s inequality (applicable
due to the concavity of l), and from Lemma C.4, we deduce the following estimate: for each x 2 X :

EY x⇠D̂� ˆE (x) [L(x, Y
x)] EY x⇠D̂� ˆE (x) [l(kf(x)� Y

x
k)]

l

⇣
EY x⇠D̂� ˆE (x) [kf(x)� Y

x
k]
⌘

(C.4)
= l

⇣
W1

⇣
D̂ � Ê(x), �f(x)

⌘⌘

(49)
 l(✏K + k Lip(��1)d✏f ). (50)

4Also called multifunction, multivalued function, or set-valued function.
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D.3 PROOF OF COROLLARY 2.9

Proof of Corollary 2.9. Let L : Rn
⇥ Rn

3 (x, y) 7! kf(x) � yk 2 [0,1). Then, for each
fixed x 2 Rn, the strict convexity of y 7! L(x, y) and the assumption that f(x) 2 K imply that
{f(x)} = argminy2K L(x, y). Thus, for each x 2 X and each P 2 P1 (K), we have that:

W1

�
P, �f(x)

�
= W1

✓
P, argmin

y2K
L(x, y)

◆
. (51)

Since f 2 C
k
tr(X ,K) and K is non-empty satisfying Assumption 2.5, and compact Theorem 2.7

implies that for each ✏K , ✏f > 0 there exist a D̂ and a Ê as in Table 2 satisfying the estimate:

W1

✓
D̂ � Ê(x), argmin

y2K
L(x, y)

◆
 ✏K + kd✏f . (52)

Define the map � : P1 (K) 3 P 7! EY⇠P[Y ] 2 Rm. By Lemma C.1 (i), � takes values in K and
according to Lemma C.1 (ii) it is 1-Lipschitz. Notice also that �(�y) = y for each y 2 K and, in
particular, �(�f(x) = f(x)). These observations together with (51) and (52) imply that:

sup
x2X

kf(x)� EY x⇠D̂�Ê(x)[Y
x]k = sup

x2X

k�(�f(x))� �(D̂ � Ê)(x)k

 sup
x2X

1 · W1

⇣
�f(x), D̂ � Ê(x)

⌘

(52)
 sup

x2X

1 · W1

✓
D̂ � Ê(x), argmin

y2K
L(x, y)

◆

Thm.2.7
 ✏K + kd✏f .

Whence, (i) and (ii) hold.

D.4 PROOF OF COROLLARY 2.11

Proof of Corollary 2.11. Let L : Rn
⇥ Rn

3 (x, y) 7! kf(x) � xk 2 [0,1), note that L satisfies
Assumption 2.4, and that for each x 2 X we have that argminy2K L(x, y) = {f(x)}. By The-
orem 2.7, for every f 2 C

k
tr(X ,K) and for every ✏ > 0, there exist a D̂ and a Ê as in Table 2

satisfying D̂ � Ê(x) 2 P1 (K) for each x 2 Rn and satisfying the uniform estimate:

max
x2X

W1(�f(x), D̂ � Ê(x))  ✏K + k Lip(��1)d✏f . (53)

Since K satisfies Assumption 2.10 then, Lemma C.3 applies. Therefore, (14) Theorem 2.7 imply:

max
x2X

dg

⇣
f(x), D̂ � Ê(x)

⌘
=max

x2X

dg

⇣
�f(x), D̂ � Ê(x)

⌘

(14)
 max

x2X

1W1(�f(x), D̂ � Ê(x))

Thm.2.7
 ✏K + k Lip(��1)d✏f

Furthermore, (15) and the fact that P1 (K) 3 P 7! P 2 K is a left-inverse of the map K 3 y 7! �y

imply that: for every x 2 Rn it follows that:

D̂ � Ê(x) 2 K.

This concludes the proof.

D.4.1 DISCUSSION: THEOREM 2.7 VS. COROLLARY 2.8

The modulus of continuity ! in Assumption 2.4 does not enter into the estimate in Theorem 2.7 (ii)
but it does appear in the estimate of Corollary 2.8. This is because5:

W1(D̂ � Ê(x), argminy2K L(x, y)) = inf
y2argminy2K L(x,y)

EY x⇠D̂�Ê(x) [kY
x
� yk] . (54)

5The right-most expression in (54) is justified in Lemma C.4; see Corollary 2.8’s proof.
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Thus, the right-hand side is controlled by the of (54) the average (in Y
x) worst-case (in x) Euclidean

average distance between Y
x and the optimality set argminy2K L(x, y); whereas, the estimate in

Corollary 2.8 is controlling the average (in Y
x) worst-cast (in x) loss L(x, Y x). In other words,

Corollary 2.8 controls the optimal value of L on K and Theorem 2.7 approximates the optimal
prediction.

E FURTHER COROLLARIES TO THE DEEP MAXIMUM THEOREM

This brief appendix contains additional corollaries of Theorem 2.2 which were not included in our
manuscript’s main body. The intent here is to show how our “Deep Maximum Theorem” simplifies
in the convex case, a similar result can be derived for the geodesically convex case.
Corollary E.1 (Deep Maximum Theorem: Convex Case). Assume the context of Theorem 2.2. Let
{Y

x
}x2Rn be an Rm-valued random field with X

x
⇠ F̂ . If each Cx \K is a convex set and L is

strictly convex then, Rn
3 x 7! E[Y x] 2 Rm has the following representation:

E[Y x] = Attention(f̂(x), Y ), (55)

where Y = (
PQ

q=1
1
Qyk,q)Nk=1 is an N ⇥m-matrix. Moreover, the following hold:

(i) Constraint Satisfaction: E[Y x] 2 K for each x 2 Rn ,

(ii) Probable Optimality: max
x2X✏

kE[Y x]� y
?(x)k  ✏,

where y
?(x) is the well-defined and unique minimizer of L(x, ·) on Cx \K.

Proof of Corollary E.1. First we note that since each Cx \K is a non-empty, compact, and convex
subset of Rn and since L is strictly convex and bounded-below on K \ Cx (since it is continuous
and K \Cx is compact) then it must have a unique minimizer (see Planiden & Wang (2016)). Thus,
y
?(x) exists and is uniquely defined for each x 2 Rn.

Consider the setting of Theorem 2.2 and suppose further that K is convex. Then, we may apply
Lemma C.1. Thus, in the notation of Theorem 2.2, for each x 2 X✏ and every y

?
2 argmin

y2Cx\K
L(x, y)

we have the estimate:
���EY⇠F̂ (x)[Y ]� EỸ⇠�y?

[Ỹ ]
���  W1

⇣
F̂ (x), y?

⌘
. (56)

Applying the estimate: max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

W1(F̂ (x), �y?)  ✏ obtained in Theorem 2.2 to the

right-hand side of (56), and noting that EY⇠�y? [Y ] = y
? yields:

max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

���EY⇠F̂ (x)[Y ]� y
?
��� =max

x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

���EY⇠F̂ (x)[Y ]� EỸ⇠�y?
[Ỹ ]
���

max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

W1

⇣
F̂ (x), y?

⌘

✏.

This gives the second part of the statement.

Since supp(F̂ (x)) ✓ K then, any Rn-valued random-vector distributed according to F̂ (x), F̂ (x)-
a.s. takes values in K. Thus, F̂ (x) (X 2 K) = EX⇠F̂ (x)[IK(X)] = 1. This gives the first claim.

For completeness, we include the deterministic analogue of Corollary E.1 when K is a geodesically
convex subset of a complete connected Riemannian submanifold (M, g) of Rm satisfying Assump-
tion 2.10. The result is a qualitative generalization of Corollary 2.11.
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Corollary E.2 (Deep Maximum Theorem: Riemannian Case). Assume the context of Theorem 2.2
and suppose that Assumption 2.10 holds. Suppose also that for each x 2 [0, 1]n there exists a unique
y(x) 2 Cx \K minimizing L; i.e.:

L(x, y(x)) = inf
y2Cx\K

L(x, y),

moreover, assume that x 7! y(x) is continuous on [0, 1]n. Then, the function:

[0, 1]n 3 x 7! P-attention(f̂(x), Y ), (57)

is well-defined; moreover, the following hold:

(i) Constraint Satisfaction: P-attention(f̂(x), Y ) 2 K for each x 2 Rn ,

(ii) Probable Optimality: max
x2X✏

dg

⇣
P-attention(f̂(x), Y ), y?(x)

⌘
 ✏,

where y
?(x) is the well-defined and unique minimizer of L(x, ·) on Cx \K.

The proof of Corollary E.2 is nearly identical to that of Corollary 8.

Proof of Corollary E.2. Consider the setting of Theorem 2.2 and suppose further that K satisfies
Assumption 2.10. Then, we may apply Lemma C.3. Thus, in the notation of Theorem 2.2, for each
x 2 X✏ and every y

?
2 argmin

y2Cx\K
L(x, y) we have the estimate:

dg

⇣
F̂ (x), �y?

⌘
 W1

⇣
F̂ (x), y?

⌘
. (58)

Applying the estimate: max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

W1(F̂ (x), �y?)  ✏ obtained in Theorem 2.2 to the

right-hand side of (58), and noting that �y? = y
? yields:

max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

dg

⇣
F̂ (x), y?

⌘
=max

x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

dg

⇣
EY⇠F̂ (x)[Y ],EỸ⇠�y?

[Ỹ ]
⌘

max
x2X✏

inf
y?2 argmin

y2Cx\K
L(x,y)

W1

⇣
F̂ (x), y?

⌘

✏.

This gives (ii). Lastly, (i) follows from (15) in Lemma C.3.
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Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming, volume 271
of Graduate Texts in Mathematics. Springer, Cham, 2014.

Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega, and Josef Teichmann.
Discrete-time signatures and randomness in reservoir computing. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–10, 2021.

20

https://www.bis.org/bcbs/publ/d305.pdf
https://www.bis.org/bcbs/publ/d457.pdf
https://doi.org/10.1007/978-1-4419-9467-7
https://doi.org/10.1007/978-1-4419-9467-7
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478


Under review as a conference paper at ICLR 2022

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Proceedings of
Advances in Neural Information Processing Systems (NeurIPS), pp. 2292–2300, 2013.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Con-
trol, Signals, and Systems, 2(4):303–314, 1989.

Meng Ding and Guoliang Fan. Multilayer joint gait-pose manifolds for human gait motion modeling.
IEEE Transactions on Cybernetics, 45(11):2413–2424, 2014.

Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. Euclidean distance matrices:
Essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6):12–30,
2015. doi: 10.1109/MSP.2015.2398954.

Richard M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2002.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Charles L. Fefferman. A sharp form of Whitney’s extension theorem. Annals of Mathematics, 161
(1):509–577, 2005.

Thomas Fletcher. Geodesic regression and the theory of least squares on Riemannian manifolds.
International Journal of Computer Vision, 105(2):171–185, 2013.
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