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Abstract

Exploration is fundamental to reinforcement learning (RL), as it determines how
effectively an agent discovers and exploits the underlying structure of its environ-
ment to achieve optimal performance. Existing exploration methods generally fall
into two categories: active exploration and passive exploration. The former intro-
duces stochasticity into the policy but struggles in high-dimensional environments,
while the latter adaptively prioritizes transitions in the replay buffer to enhance
exploration, yet remains constrained by limited sample diversity. To address the
limitation in passive exploration, we propose Modelic Generative Exploration
(MoGE), which augments exploration through the generation of under-explored
critical states and synthesis of dynamics-consistent experiences through transition
models. MoGE is composed of two components: (1) a diffusion-based generator
that synthesizes critical states under the guidance of a utility function evaluating
each state’s potential influence on policy exploration, and (2) a one-step imagina-
tion world model for constructing critical transitions based on the critical states
for agent learning. Our method adopts a modular formulation that aligns with
the principles of off-policy learning, allowing seamless integration with existing
algorithms to improve exploration without altering their core structures. Empirical
results on OpenAI Gym and DeepMind Control Suite reveal that MoGE effectively
bridges exploration and policy learning, leading to remarkable gains in both sample
efficiency and performance across complex control tasks.

1 Introduction

Reinforcement learning has demonstrated remarkable potential across various tasks, including
autonomous driving, large language models, game playing, and embodied artificial intelligence
[70, 12, 67, 50, 20, 68, 69]. It optimizes policies through trial and error, with policy performance
fundamentally relying on the diversity and coverage of samples collected during interaction with
environments. [19, 71, 22]. Similar to imitation learning (IL), RL algorithms face out-of-distribution
(OOD) challenges due to limited diversity in training data. However, RL mitigates this issue by
leveraging its exploration capabilities to reach unvisited regions of the state space. In this context,
enhancing exploration strategies to collect diverse samples and achieve broader state space coverage
becomes crucial for improving the effectiveness and generalization of RL algorithms [27, 4].

Conventional exploration strategies can be broadly classified into two categories: active exploration
purely based on policy, and passive exploration based on states. Existing approaches achieve active
exploration by introducing randomness into the policy [47, 17] or adding exploration bonuses, which
help prevent the policy from converging prematurely to a narrow subset of actions [3]. Specifically,
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methods like SAC [22] and DSAC [14] leverage maximum entropy as exploration bonuses to
encourage exploration, while algorithms such as MPO [2] employ multimodal policies to maintain
action diversity and stochasticity. However, the active exploration mechanisms are inherently limited
by the agent’s actual interacted trajectories, which are constrained by the environment’s initial states,
finite episode lengths, and the agent’s current policy [63]. As a result, many critical regions distant
from typical rollouts or rarely visited often remain unexplored, reinforcing value estimation errors
and narrowing the scope of policy learning [36, 16]. Furthermore, forcing exploration through the
policy can divert focus from reward optimization, leading to suboptimal learning [9].

In contrast to active exploration, which relies on policy-driven interactions, passive exploration modi-
fies the sample distribution of the agent to incorporate prioritized information. Passive exploration
originates from Prioritized Experience Replay (PER) [54], which enhances learning by selectively
reusing valuable experiences but remains fundamentally limited to previously collected samples. To
address this restriction, certain approaches like SER [40] and PGR [66] leverage generative models
to augment the replay buffer, thereby artificially intensifying the state-action distribution. However,
this expansion is still confined to the vicinity of observed data, adhering closely to the original data
distribution. Other methods integrate world models with current policies to simulate state transitions,
potentially generating higher-quality transitions [24, 25, 26]; nevertheless, these generated samples
typically exhibit limited diversity due to their strong dependence on the policy-conditioned transitions
originating from existing states. Moreover, generating complete transitions in high-dimensional state
spaces further amplifies the bias introduced by synthetic data, as the complexity grows exponentially
with dimensionality [65].

To tackle the issues above in policy exploration, we propose MoGE, a novel exploration paradigm for
enhancing off-policy RL algorithms by generating critical transitions across the entire state space
guided by exploratory priors. It consists of two components: a generator that produces critical states
with high exploratory potential for the current policy and value network, and a dynamics model that
simulates one-step transitions, enabling the generation of critical transitions. Specifically, our work
makes three main contributions: (1) We employ a conditional diffusion generator to sample critical
states with high exploratory potential. To guarantee the state-space compliance and feasibility of the
generated states, we theoretically prove that the state distribution in the replay buffer asymptotically
converges to the stationary occupancy measure of the optimal policy. By continuously fine-tuning
the generator on the replay buffer, we ensure that its learned distribution shares a common support
with the optimal policy’s occupancy measure, generating critical states in a compliant way. (2) To
guarantee the dynamical consistency of the generated samples, we design a one-step imagination
world model to imitate the dynamics of the environment. This world model allows for efficient
pre-training through supervised learning, supporting the construction of training experiences and
designing the classifier of the conditional diffusion-based critical state generator. (3) We propose an
off-policy RL training framework that integrates MoGE seamlessly into existing algorithms without
requiring any modifications to their original structure. By introducing importance sampling that mixes
critical transitions generated by MoGE with replay buffer samples, MoGE enhances exploration,
leading to improved performance and sample efficiency. Experiments on standard continuous control
benchmarks, including OpenAI Gym [6] and DeepMind Control Suite [62] demonstrate that MoGE,
as a plug-in module, consistently improves both the final performance and the sample efficiency of
baseline off-policy RL algorithms.

2 Preliminaries

2.1 Reinforcement Learning and Policy Exploration

In RL, an agent interacts with an environment modeled as a Markov Decision Process (MDP) [61],
defined asM = (S,A, P, r, γ), where S andA represent the state and action spaces, P : S×A → S
denotes the environment’s transition dynamics, r : S ×A → R is the reward function, and γ ∈ [0, 1)
is the discount factor [37]. To formally describe the target of RL, we introduce the occupancy
measure dπ(s), which is defined as dπ(s) = (1−γ)

∑∞
t=0 γ

tP(st = s | π). This occupancy measure
represents the visitation frequency of a given state s under the policy π [34]. Likewise, we can define
the dπ(s, a) = dπ(s)π(a|s), which represents the visitation frequency of a given state-action pair
(s, a). The target of policy is to maximize the expected cumulative reward, which can be expressed in
terms of the occupancy measure as J(π) = E(s,a)∼dπ(s,a)[r(s, a)]. Meanwhile, a value function is
trained to estimates the value of the current policy by minimizing the temporal difference (TD) error,
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which is formulated as J(π) = E(s,a)∼dπ(s,a)

[
(Qπ(s, a)− (r + γQπ(s′, a′)))

2
]
, where Qπ(s, a)

denote the value function that evaluate the quality of given (s, a). Through this formulation, the actor
optimizes the policy towards higher cumulative rewards, while the critic evaluates and stabilizes the
learning process by minimizing prediction errors.

Effective policy training depends on discovering policy-improving states. Since such critical states
often require active exploration, identifying them under the current policy enables targeted updates
that accelerate learning. If these states can be estimated, they can be selectively replayed for more
efficient updates. In existing RL frameworks, two common metrics are used to quantify their
criticality:

Policy entropy. The policy entropy reflects the randomness of action selection at a given state. High
entropy may indicate either insufficient visitation, offering high information gain, or proximity to
critical decision points in the MDP where small action changes lead to divergent outcomes [43, 15].
Focusing learning on such regions enhances policy robustness and long-horizon decision-making.
For example, in the case of a Gaussian distribution, the utility function is defined as:

f(s) = H(π(·|s)) = 1

2
log

(
(2πe)d detΣ(s)

)
, (1)

where π(·|s) = N(·;u(s),Σ(s)) while π and e denote the constant.

TD error. High TD error states are critical for exploration, as they highlight regions where the value
function poorly approximates returns under the current policy [33, 16]. These states often correspond
to areas of high uncertainty or insufficient optimization. Prioritizing them helps reduce value bias,
correct suboptimal actions, and improve policy robustness. The TD error for a given state under the
current policy can be estimated as:

f(s) = δt(s) ≈ r(s, πθ(s)) + γQψ(dϕ(s, πθ(s)), π(dϕ(s, πθ(s))))−Qψ(s, πθ(s)). (2)

2.2 Diffusion Models for Generative Tasks

Diffusion models have emerged as effective generative models due to their ability to capture complex
data distributions [31, 55, 56]. Inspired by non-equilibrium thermodynamics, they simulate two
complementary processes: a forward diffusion process incrementally adding noise to the original
data, and a reverse denoising process reconstructing the data distribution from noise. In the forward
diffusion process, an initial data sample s0 ∼ q(s0) is gradually transformed into Gaussian noise sT
by iteratively applying:

q(st|st−1) = N (st;
√

1− βtst−1, βtI), (3)

where βt controls the noise schedule. Letting αt = 1 − βt and ᾱt =
∏t
i=1 αi, the true reverse

distribution conditioned on s0 is given by:

q(st−1|st, s0) = N
(
st−1;

1
√
αt

(
st −

1− αt√
1− ᾱt

ϵt

)
,
1− ᾱt−1

1− ᾱt
βtI

)
. (4)

Since s0 is unknown during generation, diffusion models approximate this posterior with a parame-
terized neural network ϵφ(st, t) to predict the noise term ϵt. To align with the real reverse process,
the approximate reverse process is expressed as:

pφ(st−1|st) = N
(
st−1;

1
√
αt

(
st −

βt√
1− ᾱt

ϵφ(st, t)

)
,
1− ᾱt−1

1− ᾱt
βtI

)
. (5)

The training objective is to minimize the noise prediction error:

Lgenerator = Es0,ϵ,t
[
∥ϵ− ϵφ(

√
ᾱts0 +

√
1− ᾱtϵ, t)∥22

]
, ϵ ∼ N (0, I), (6)

enabling efficient data generation by progressively denoising from standard Gaussian noise.

3 Methods

In this section, we introduce the MoGE paradigm, illustrated in Figure 1. In Section 3.1, we focus
on the method and theoretical foundation of generating critical states through the policy model, as
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Figure 1: Overview of MoGE. MoGE is composed of two sub-modules: a generator and a one-step
world model. The generator produces critical states under-explored but potentially valuable for policy
exploration under the guidance of policy and value function, while the one-step world model predicts
the next state and reward to construct the transitions. The formulated exploratory can be mixed with
real samples from the buffer to perform the policy improvement and evaluation.

well as the selection of guidance methods. In Section 3.2, we introduce the structure and application
of the one-step imagination world model. In Section 3.3.1, we first analyze the quality of samples
generated by MoGE in both novelty and dynamics consistency, and after that, we propose a training
framework that integrates MoGE with existing off-policy actor-critic methods in Section 3.3.2.

3.1 Critical State Generation with Steady Occupancy Measurement Alignment

State-based passive exploration leverages prior knowledge to uncover policy-improving states without
active search, enabling more directed and sample-efficient policy training. However, when such
states are not visited by the policy or stored in the replay buffer, they cannot be utilized for learning.
Generative models overcome this limitation by enabling the synthesis of specific states once the
model is trained. By leveraging advanced generative techniques such as diffusion and flow matching
[39, 18], the model is capable of synthesizing high-fidelity samples that accurately approximate even
intractable target distributions.

Motivated by the insight above, MoGE adopts a classifier-guided diffusion model [11], pφ(s|c), which
serves as a utility-conditioned generator to synthesize policy-improving states. The unconditional
diffusion model learns the manifold of plausible states, while a separately trained classifier provides
directional guidance, steering generation toward high-utility regions. This guided synthesis bridges
generative modeling and policy optimization, allowing the agent to access critical yet previously
unvisited states. In this classifier-guided diffusion framework, the gradient used during inference
combines the unconditional diffusion gradient with a classifier-based gradient. Specifically, imple-
menting Bayes’ formulation and denoting the classifier c by a continuous utility function f(s), the
classifier-guided gradient can be expressed as:

∇logpφ(st|f(st)) = ∇logpφ(st)︸ ︷︷ ︸
Diffusion gradient

+ ω∇logp(f(st)|st)︸ ︷︷ ︸
Classifier utility gradient

, (7)

where ω is the guidance scale, which controls the strength of this guidance, balancing between
following the unconditional diffusion prior and aligning with the target utility function. By selecting
an appropriate utility function f(s), this approach allows targeted control over state generation
probability, enabling effective exploration of high-value regions.

However, a central challenge in training generative models within RL settings lies in determining
an appropriate stationary target distribution. Since the data distribution in RL is inherently policy-
dependent and evolves as the policy updates, obtaining a stable and realistic state distribution becomes
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infeasible, thereby complicating the training of the generator. As a result, arbitrary or poorly aligned
state generation can lead to exploration inefficiencies and instability during policy updates. To address
this, the generated states must align closely with an approximately physically grounded and stable
occupancy measure, ensuring both state-space compliance and dynamical consistency. In practice,
we observe that the behavior policy in the replay buffer exhibits statistically diminishing variation
over training, inducing an approximately stationary occupancy measure that can serve as a physically
grounded target for the generative model. To formally establish this alignment, we first propose the
following theorem as a theoretical guarantee.
Theorem 1 (Steady-State Occupancy Measurement Alignment Theorem). Let β(a | s) be a behavior
policy, π∗(a | s) be a specific static policy, and let νt(s) and dπ

∗
(s) represent the state occupancy

measures under β(a | s) and π∗(a | s), respectively. Assuming that the divergence between the
policy and π∗(s) gradually decreases over the course of training. and that the replay buffer has
finite capacity following a First-In-First-Out (FIFO) scheme with states sampled exclusively from the
current policy interaction, the following convergence relationship holds:

lim
t→∞

TV(νt(s), d
π∗
(s)) = 0. (8)

Proof. See Appendix A.2.

By aligning the unconditional diffusion model’s training distribution with the stable occupancy
measure in the replay buffer, the critical state generator inherently guarantees generated states remain
valid within the true state space since the conditional diffusion shares the same support with the
unconditional one [11, 57]. This alignment ensures high-quality, stable critical state generation and
enhances the reliability and efficacy of subsequent policy improvements. In this work, we introduce
two utility functions below that satisfy these requirements and analyze how each facilitates policy
exploration and learning. Since the MoGE is equipped with a transition model, which enables the
computation and gradient propagation of certain utility functions that would otherwise be intractable.
The two criteria are policy entropy and TD error (see preliminaries for a detailed introduction).
During training, we use different utility signals for different tasks, which facilitates more effective
policy learning and accelerates value function convergence.

3.2 Transition Imaging with One-step World Model

When the environment can not return the reward r and next state s′ for arbitrary (s, a), the utility
function f cannot be directly evaluated without environment interaction. Therefore, we employ
learned surrogate models—a reward model r(s, a) and a dynamics model f(s, a)—to approximate
these quantities and provide differentiable estimates of r and s′. To work in conjunction with
the critical state generator, we introduce a one-step imagination world model Fϕ to estimate the
environment dynamics. Since we need to estimate the environment’s transition and reward functions
for arbitrary (s, a) pairs, we only require the world model to be accurate for one-step dynamics under
the current state and policy. Consequently, our world model diverges from conventional designs
[24] in both structure and training approach. By focusing on one-step predictions, it trades off
long-horizon accuracy to ensure reliable transitions within the region characterized by the optimal
policy’s occupancy measure.

Our proposed one-step imagination world model Fϕ consists of five parameterized components to
predict the following variables:

Representation: zt = gϕ(st)
Reconstruction: st = hϕ(zt)
Latent dynamics: zt+1 = dϕ(zt, at)
Reward: r̂t = Rϕ(zt, at)
Termination prediction: ĉt = Cϕ(zt, at).

(9)

The detailed structure of the world model is depicted in Figure 10 of Appendix C.1. Departing from
prior work that relies on probabilistic components [25], we find that implementing all modules of
the world model as deterministic networks suffices for effective performance. Except for the latent
dynamics model, which uses a two-layer Transformer encoder [64] to flexibly handle both sequential
and single-step inputs, all other components are implemented as standard MLPs. At each time step t,
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Algorithm 1 Off-policy RL training framework with MoGE
Input: Policy πθ, critical-state generator pφ, One-step world model Fϕ, critic Qψ
Initialize: πθ, pφ, Fϕ, Qψ

1: // Pretraining
2: Interact with environment using random actions: (r, s′, c)← env.step(random)
3: Store random transitions (s, arand, r, s

′) into replay buffer B
4: Update Fϕ, by minimizing model loss Lworldmodel in (10) using random interaction data
5: Re-warmup the buffer B with the current target πθ
6: for each iteration do
7: // Data Collection
8: Initialize s
9: Interact with environment: (r, s′, c)← env.step(πθ(s))

10: Store transition (s, πθ(s), r, s
′) into replay buffer B

11: // Off-policy RL Learning
12: Sample transitions Γ = {(st, at, rt, st+1)

T
t=0} ∼ B

13: Update Fϕ,pφ by minimizing model loss Lworldmodel and Lgenerator in (10),(6) using Γ
14: Generate critical states se by using classifier-guidance generatorpφ with utility function f(s)
15: Generate full transitions with one-step imaging: (r, s′e, c)← Fϕ(se, πθ(se))
16: Combine critical transitions Γe = {(se, πθ(se), r, s′e)} with Γ : Γ′ = Γ ∪ Γe
17: Update πθ, Qψ with downstream algorithm using Γ′ (for πθ, do approximate importance

sampling with λ-mixture )
18: end for

the observation st is first encoded into a latent representation zt using an encoder network gϕ. Given
latent state zt in feature space and the executed action at, the world model outputs: (1) a prediction
of the next latent state zt+1, (2) the corresponding one-step reward r̂t and (3) the termination factor
that evaluates whether the transition is terminated. During training, we treat the reward signal and
termination factor as augmentations of the next-step state, and design separate loss functions through
three output heads. This design simplifies the architecture while preserving the predictive capacity of
the world model. The total training loss of the world model is presented as:

Lworldmodel(ϕ) =
1

BT

B∑
n=1

T∑
t=1

[
||ŝt − st||2︸ ︷︷ ︸
reconstruction

+ ||r̂t − rt||2︸ ︷︷ ︸
reward

+ ct log ĉt + (1− ct) log(1− ĉt)︸ ︷︷ ︸
termination

+ β1||sg(gϕ(st+1))− dϕ(gϕ(st), at)||2︸ ︷︷ ︸
dynamics

+ β2||gϕ(st+1)− sg(dϕ(gϕ(st), at))||2︸ ︷︷ ︸
representation

s
]
,

(10)

where β1 = 0.5, β2 = 0.1,(st, at, rt, st+1)0:T are the transitions sampled from buffer B, and sg(·) is
the stop-gradient operator. T is the total length of the transition that depends on the sample method,
and B is the batch size. The model accommodates both sequence and single-step inputs, with T = 1
indicates the single-step setting.

3.3 MoGE with Off-policy RL

3.3.1 Sample Quality of MoGE

As a generative exploration framework, MoGE synthesizes novel transitions that extend beyond
the replay buffer. In what follows, we examine two key questions that underpin its design and
effectiveness:

(1) How does the generated transitions contribute to exploration and policy improvement?

(2) Will the generated transitions influence the policy improvement and evaluation of the algorithm?
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(a) Novelty and Policy-Dependent Generation. Let Dreplay denote the replay buffer induced by a
historical behavior policy β, corresponding to a state-action distribution ρreplay(s, a). Conventional
passive exploration frameworks [49, 40, 66] intensify transitions from the replay buffer by reorder-
ing or imitating, remaining inherently constrained by β. Consequently, the generated transitions
(s, a, s′)∼ρ cannot escape the coverage bias of the behavior policy. In contrast, MoGE explicitly
constructs a generative distribution

ρgen(s, a) = pφ(s)πθ(a|s), (11)

where pφ(s) denotes a learned state generator guided under a time-varying utility landscape
f(s, πθ(s)). The critical state distribution is refined as follows:

pφ(s) ∝ pφ(s) exp
(
ω f(s, πθ(s))

)
, (12)

Because f evolves alongside the policy and critic, the target distribution for generation continuously
shifts as the policy updates. This property induces continual novelty—MoGE adaptively generates
new, high-utility regions as the policy changes, rather than remaining tied to the historical behavior
distribution. Therefore, MoGE effectively decouples generation from the replay buffer, enabling
exploration guided by both the current policy and the estimated value function instead of fully
resampling or imitating past experiences.

(b) Dynamic Consistency and Bellman Validity. While novelty broadens exploration coverage,
it must coexist with dynamical validity to ensure that generated transitions remain consistent with
the environment’s transition kernel penv(s

′|s, a). To this end, MoGE employs a learned world model
pψ(s

′|s, a) enforcing the transition-level relation

(s, a, s′) ∼ Fϕ(s′|s, a) such that s′ ≈ fenv(s, a), (13)

where fenv denotes the true environment dynamics. This mechanism ensures that the generated
samples adhere to the underlying physical or causal transition relationship.

In contrast, methods that directly synthesize or interpolate transitions (e.g., via diffusion or latent
interpolation) without explicit dynamics modeling can easily introduce spurious correlations among
(s, a, s′) (loss functions that imitate the replay buffer do not ensure that valid transition dependencies
are preserved among samples). Such correlations violate the Markov property and lead to inconsistent
TD estimates:

E(s,a,s′)∼ρsyn [r(s, a) + γV (s′)] ̸= T πV (s), (14)
where T π is the Bellman operator. These off-manifold transitions break the Bellman consistency
and yield biased policy evaluation. By leveraging the world model Fϕ, MoGE ensures that generated
transitions satisfy the Bellman-consistent transition relation, thus preserving both physical and
statistical validity.

(c) Summary. In summary, MoGE achieves continual novelty via evolving utility-guided generation
that adapts to the current policy, while maintaining dynamic consistency through model-based
transition regularization. This synergy enables MoGE to explore beyond the behavior policy’s support
without violating Bellman validity, leading to more reliable and effective policy learning.

3.3.2 Training Off-policy Algorithm with MoGE

To enhance exploration alongside policy improvement and evaluation by introducing the MoGE-
generated samples in an off-policy manner, we propose a training framework that integrates MoGE
into existing off-policy RL algorithms. Taking Actor-Critic as an example, the training framework is
illustrated in Algorithm 1. Notably, due to the existence of the critical generation, a distribution shift
arises between the initial state distribution of the buffer and the generator. While this bias is negligible
during policy evaluation, it must be addressed during policy improvement through Importance
Sampling (IS). Since the distribution of the diffusion model cannot be explicitly represented, the
importance sampling ratio for the initial state distribution is intractable. Therefore, we employ a
sample mixing method to approximate importance sampling under bounded error. The formulas for
policy evaluation and improvement are as follows:

LPEV(ψ) = E(s,a,r,s′)∼Dk

[
Qψ(s, a)−

(
r + γ Ea′∼πθ

[Qψ̄(s
′, a′)]

)]2
,

LPIM(θ) = (1− λ)E(s,a)∼Denv

[
g(s, a)

]
+ λE(s,a)∼Dgen

[
g(s, a)

]
,

(15)
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(j) Swimmer-v3
DSAC DSAC+PER DSAC+PGR TD3+PGR TD3+PER TD3DSAC+MoGE TD3+MoGE

Figure 2: Training curves on benchmarks. The solid lines depict the mean performance, while
the shaded areas represent the confidence intervals over three seeds. The first row corresponds to
the training curves on the DeepMind Control Suite, while the second row represents the results on
OpenAI Gym.

where Dk = (1− k)Denv + kDgen, 0 ≤ k < 1, and g(s, a) denotes the return in a single state-action
pair (s, a). It is worth noting that the error of this policy improvement method is controllable only
when λ is sufficiently small. The details of this approximation method, along with the selection of k
and λ, are referred to in the Appendix A.3.

4 Experiments

4.1 Experimental Setup.

Baselines. We choose two widely used representative off-policy RL algorithms as our MoGE
baselines: the stochastic policy algorithm DSAC [13, 14] and the deterministic policy algorithm TD3
[17], which achieve active exploration through exploration bonus with policy entropy and random
noise injection, respectively. To further evaluate the performance of MoGE, we compare it with
passive exploration methods like PGR [66] and prioritized experience replay (PER) [49], where
PGR is a state-of-the-art method in data augmentation that directly generates buffer samples using a
diffusion model that has been shown to significantly enhance downstream learning.

Benchmarks. We evaluate our method on a diverse benchmark of 10 challenging locomotion tasks
drawn from the DeepMind Control Suite (DMC) [62] and the OpenAI Gym [6]. The Gym Benchmark
introduces a wide range of control tasks. For example, the Humanoid environment raises the difficulty
with high-dimensional state and action spaces (376/17 state/action dims). The DMC tasks feature
complex agents: humanoid tasks (67/24 state/action dims) and quadruped tasks (78/12 state/action
dims) that demand sophisticated balance and coordination.

Implementation details. To validate the plug-in capability of the MoGE, we preserve the original
off-policy algorithms without further fine-tuning. In this paper, the total training step size for all
experiments is set at 1.5 million, with the results of all experiments averaged over 3 random seeds.
All hyperparameters are aligned with standard implementations, and the configuration details are
documented in the Appendix B.

4.2 Experimental Results

All the training curves are shown in Figure 2 and the detailed results are listed in Table 1. Our method,
MoGE (with DSAC), consistently achieves superior Total Average Return (TAR) across a wide
range of locomotion tasks. Despite the challenges introduced by high-dimensional state and action
spaces as well as intricate dynamics, it maintains exceptional stability and efficiency, highlighting its
robustness and adaptability.
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In the challenging DMC Suite tasks, MoGE demonstrates substantial performance enhancements
over the original TD3 and DSAC algorithms. MoGE achieves an average Total Average Return (TAR)
of 817.7, significantly outperforming the original DSAC method (568.5) by a notable +43.8%. In
individual tasks, such as Humanoid-walk, MoGE reaches 891.7, a remarkable +508.6% improvement
over the original DSAC (146.5). Similarly, TD3 with MoGE significantly surpasses original TD3,
delivering a +73.3% improvement.

In the OpenAI Gym tasks, MoGE continues to exhibit exceptional performance. MoGE achieves
an average TAR of 9135.5, surpassing the standard DSAC (8301.0) by +10.0%. Notably, MoGE
sets new benchmark results across all evaluated environments. In Humanoid-v3, it attains a score
of 12151.1, a substantial +16.8% increase over DSAC (10402.2). MoGE’s consistent performance
highlights its superior effectiveness, offering clear and significant improvements in both early-stage
learning and final asymptotic returns compared to traditional TD3 and DSAC implementations.

Table 1: Total Average Return (TAR) on 5 DMC Suite tasks and 5 OpenAI Gym tasks. Mean ± Std
over 3 seeds. Bold = best; Higher is better.
Environment TD3 TD3+PER TD3+PGR TD3+MoGE DSAC DSAC+PER DSAC+PGR DSAC+MoGE

Humanoid-walk 120.1 ± 106.8 34.4 ± 1.2 22.5 ± 2.4 222.4 ± 72.0 146.5 ± 60.9 122.5 ± 48.5 195.0 ± 92.3 891.7 ± 19.1

Humanoid-stand 10.6 ± 0.2 11.5 ± 0.9 8.3 ± 0.2 28.4 ± 0.7 776.6 ± 15.6 816.5 ± 94.5 754.4 ± 16.2 907.5 ± 6.9

Humanoid-run 15.9 ± 1.8 8.7 ± 2.8 7.0 ± 0.4 25.2 ± 2.5 267.4 ± 3.9 271.1 ± 35.5 223.4 ± 3.3 488.9 ± 8.7

Quadruped-run 84.1 ± 5.4 63.3 ± 2.5 83.2 ± 16.6 128.2 ± 0.4 793.9 ± 29.9 662.7 ± 162.6 717.9 ± 107.4 824.3 ± 19.0

Quadruped-walk 236.5 ± 19.5 380.2 ± 7.2 290.2 ± 11.7 405.2 ± 54.7 857.9 ± 102.8 649.3 ± 67.7 823.2 ± 17.5 976.2 ± 3.1

AVG.DMC 93.4 ± 26.7 99.62 ± 2.9 82.2 ± 6.3 161.9 ± 26.1 568.5±42.7 504.4 ± 81.8 542.8 ± 47.3 817.7 ± 11.4

Walker2d-v3 5031.1 ± 84.2 5253.7 ± 206.1 6007.5 ± 4.9 6082.8 ± 606.7 6288.3 ± 83.3 6391.6 ± 246.9 6501.1 ± 87.3 6978.4 ± 68.7

Humanoid-v3 5967.1 ± 547.8 5203.9 ± 33.9 5531.8 ± 62.3 5885.8 ± 38.3 10402.2 ± 187.7 10363.6 ± 109.0 11004.0 ± 121.5 12151.1 ± 35.4

Ant-v3 6037.5 ± 119.2 6134.7 ± 212.5 5961.3 ± 170.7 6369.1 ± 265.7 7610.0 ± 10.0 7637.0 ± 27.1 7837.2 ± 203.0 8176.6 ± 44.9

Halfcheetah-v3 7363.0 ± 3666.4 7438.1 ± 3774.3 9687.1 ± 4099.0 11167.3 ± 2234.8 17072.0 ± 61.3 16913.0 ± 70.2 17324.7 ± 41.1 18054.9 ± 459.6

Swimmer-v3 133.5 ± 5.3 131.8 ± 3.3 134.1 ± 2.8 137.1 ± 2.8 132.3 ± 5.1 131.0 ± 6.6 136.0 ± 3.0 141.3 ± 2.0

AVG.Gym 4906.4 ± 884.6 4832.4 ± 846.0 5464.4 ± 867.9 5928.4 ± 629.7 8301.0 ± 69.5 8287.2 ± 92.0 8535.6 ± 91.2 9135.5 ± 122.1

4.3 Ablation

We perform three ablation studies to evaluate the impact of each core component in our framework:

Utility function for exploration. We compare the choice of utility function for different parts of
updating, as illustrated in Figure 3a. Compared to policy entropy, TD error is more beneficial during
policy evaluation. On the other hand, entropy plays a more significant role in policy improvement
since high-entropy regions encourage broader exploration, while high TD-error regions may stem
from inaccurate environment estimation, potentially leading to unreliable evaluations.

Guidance scale ω. We chose different guidance intensities to test the balance between the regions
with high potential for exploration and feasibility guarantee, as shown in Figure 3b. When the
guidance strength is set to 1, it effectively balances the generation of states with high exploratory
value and feasibility, ensuring that the diffusion-generated states maintain alignment with the optimal
occupancy measure while maximizing exploration potential.

Mix ratio λ. We vary the value of λ by testing from 0.1 to 0.5. Results in Figure 3c show that
λ = 0.2 stable performance across this range. When λ is too small, the policy fails to acquire enough
critical states for effective exploration. Conversely, if λ is too large, the discrepancy in the state
distribution becomes non-negligible, which aligns with the discussion in Appendix A.3.

5 Related Works

Active exploration. Active exploration methods explicitly modify policies to enhance exploration,
which originates from the epsilon-greedy policy [61, 41, 47, 17]. Entropy-based strategies like SAC
[23], DSAC [14], DACER [69, 68], and PPO [52] incorporate entropy terms to balance exploration
and exploitation, preventing premature convergence and enhancing stability. More advanced explo-
ration approaches explicitly encourage policy diversity. Count-based methods, such as pseudo-counts
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Figure 3: Ablation study curves. We select the Humanoid-run task in DMC Suite with high
complexity to perform all ablation experiments.

[5] and neural density models [45], estimate state visitation frequencies to incentivize exploration in
under-sampled regions. Intrinsic motivation strategies, including RND [7] and ICM [46], generate
exploration bonuses from novelty signals or prediction errors. Bootstrap DQN [44] further introduces
uncertainty-aware exploration by leveraging ensemble networks to identify poorly understood state-
action pairs. Recent advances maintain exploration diversity through maximum entropy principles,
and exploration-driven policy optimization [1, 46], which directly augments policies for broader state
coverage. These methods, while easy to implement, often require complex parameter tuning and may
struggle with scalability in high-dimensional spaces compared with MoGE.

Passive exploration. The policy update process not only depends on its optimization objective, but
also on the samples collected for estimating the gradient. By shifting the distribution of replayed
samples, the policy is able to cover a wider range of states. Prioritized experience replay (PER) [49]
dynamically adjusts the replaying frequency of collected samples by TD-error. Some further research
[48, 58] uses different metrics for experience replay. Rather than only selecting the samples, data
generation is more flexible since it not only models the initial state but also captures its transition.
Diffuser [32] utilizes a diffusion probabilistic model that plans by iteratively denoising trajectories.
Synthetic experience replay (SER) [40] proposes a diffusion-based approach to flexibly upsample an
agent’s collected experience. Prioritized generative replay (PGR) [66] generates learning-informative
transitions under a given relevance function. Another paradigm of passive exploration is model-based
RL [21]. These methods learns a parameterized transition model of state and action and directly
optimize the policy through imagined samples, such as Dreamer [24, 25, 26] and other variants
[8, 28, 72, 29]. Our proposed MoGE method can generate critical initial states and their transitions,
thus guaranteeing data compliance.

6 Conclusion

We proposed MoGE, a novel exploration paradigm that addresses the limitations of passive exploration
in off-policy RL. It enhances exploration by generating critical states guided by exploratory priors
and then estimates state transitions through a world model, forming valid training samples that
guarantee state-space compliance and dynamical feasibility. Experimental results on OpenAI Gym
and DeepMind Control Suite benchmarks demonstrate that MoGE significantly improves sample
efficiency and overall performance, validating the effectiveness of this exploration paradigm. We
believe MoGE establishes a new perspective for exploration augmentation in reinforcement learning,
with significant potential for future improvements, such as incorporating adaptive mechanisms
for prioritizing critical state transitions or leveraging more expressive generative models beyond
conditional diffusion to further boost exploration efficiency and policy robustness.
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A Theoretical Analysis

A.1 Useful lemmas

Lemma 1 (Discounted-Occupancy Lipschitz Lemma). Let 0 < γ < 1. For any two stochastic
policies π and π′ sharing the same initial state distribution µ, their discounted state–occupancy
measurements dπµ(s) and dπ

′

µ (s) meet the following condition:∥∥dπµ − dπ′

µ

∥∥
TV
≤ γ

1− γ
sup
s∈S

TV
(
π(· | s), π′(· | s)

)
, (16)

where TV (·, ·) denotes the total variation of two distributions:

TV (a(s), b(s)) =
1

2

∑
s

|a(s)− b(s)|. (17)

Proof. By the definition, the discounted occupancy measure can be reformulated as a fixed-point
equation:

dπµ = (1− γ)µ+ γ dπµPπ, dπ
′

µ = (1− γ)µ+ γ dπ
′

µ Pπ′ , (18)

where Pπ =
∑
a π(a | s)P (s′ | s, a) is the one-step transition kernel of π. It denotes the transition

probability from state s to s′ under the policy π. Defining the subtraction of the two transition kernels
as ∆, the following equation holds:

∆ := dπµ − dπ
′

µ = γ∆Pπ + γ dπ
′

µ (Pπ − Pπ′). (19)

By rearranging ∆ to the left-hand side and factoring out the common terms, we obtain:

∆(I − γPπ) = γdπ
′

µ (Pπ − Pπ′). (20)

Because the induced norm of the transition kernel ∥Pπ∥1 = 1 and γ < 1, (I − γPπ)−1 exists and
(I − γPπ)−1 =

∑
k≥0(γPπ)

k converges. Multiplying by this inverse, we can derive the Neumann
series as follows:

∆ = γ

∞∑
k=0

(γPπ)
k dπ

′

µ (Pπ − Pπ′). (21)

The L1 norm of the above equation is given by:

∥∆∥1 ≤ γ
( ∞∑
k=0

γk
)
∥dπ

′

µ ∥1∥Pπ − Pπ′∥1. (22)

Due to the definition of the transition kernel, we can derive that:

∥Pπ − Pπ′∥1→1 = sup
s∈S

∥∥∥∥∥∑
a∈A

[π(a | s)− π′(a | s)]P (· | s, a)

∥∥∥∥∥
1

≤
∑
a∈A
|π(a | s)− π′(a | s)| · ||1||

= 2TV(π(· | s), π′(· | s)
)

(23)

Since ∥dπ′

µ ∥1 = 1, We can obtain that:

∥∆∥1 ≤
2γ

1− γ
sup
s

TV(π(· | s), π′(· | s)
)
. (24)

Dividing by 2 converts the L1 norm to total variation, the proof is completed.

For clarity, we provide the proof in the discrete state-action space. Since we assume the continuous
state-action space is a measurable continuous space, the contraction property in the total variation
norm and the convergence of the Neumann series of (I − γP ) also hold in this setting. Therefore,
the conclusion can be directly extended to the continuous state-action space.
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Lemma 2 (FIFO-Buffer Proximity Lemma). Assume the replay buffer B holds exactly the most
recent K transitions (FIFO of fixed size K). We can define the occupancy measurement under the
behavior policy in B as: νt = 1

K

∑K−1
h=0 d

πt−h , and let ∆τ := sups∈S TV
(
πτ+1(· | s), πτ (· | s)

)
.

Then the following inequality holds:∥∥νt − dπt
∥∥
TV
≤ γ

1− γ

K−1∑
j=0

∆t−j . (25)

Proof. By the convexity of total variation, we can obtain:

∥νt − dπt∥TV ≤
1

K

K−1∑
h=0

∥dπt−h − dπt∥TV. (26)

By using the triangle inequality in, we can obtain that ∥dπt−h − dπt∥TV ≤ τmix
∑h−1
j=0 ∆t−j with

τmix = γ/(1− γ). Insert this bound and interchange the sums, we can derive that:

∥νt − dπt∥TV ≤
τmix

K

K−1∑
h=0

h−1∑
j=0

∆t−j

= τmix

K−1∑
j=0

K − j
K

∆t−j ≤ τmix

K−1∑
j=0

∆t−j .

(27)

Lemma 3 (Behaviour-Mixing Contraction Lemma). Assuming that each policy πt−h (for h ∈ [0,K−
1]) writes the same number of transition samples into the buffer during the last K time steps, and the
difference between consecutive policies remains at a negligible scale: supsTV(πt+1, πt)(s)≪ 1,
the behavior policy represented in the buffer can be approximately expressed as βt ≈ 1

K

∑K−1
h=0 πt−h

Let δτ := sups∈S TV
(
πτ (· | s), π∗(· | s)

)
, then the following bound holds:

sup
s∈S

TV
(
βt(· | s), π∗(· | s)

)
≤ 1

K

K−1∑
h=0

δ t−h. (28)

Proof. Fix s ∈ S, since the total variation is convex in its first argument, we can derive that:

TV
( 1

K

K−1∑
h=0

πt−h(· | s), π∗(· | s)
)
≤ 1

K

K−1∑
h=0

TV
(
πt−h(· | s), π∗(· | s)

)
. (29)

Taking the supremum over s and moving the sup outside the sum gives the claimed inequality.

Lemma 4 (The λ–mixture estimator bias). Let ρ(s, a) = dπenv(s, a) be the target state–action
distribution and ρ′(s, a) = dβgen(s, a) be the behaviour distribution. For any measurable function
g : S×A → R bounded by ∥g∥∞, define the λ–mixture sampling measure as qλ = (1−λ)ρ+λρ′, 0 ≤
λ ≤ 1. Denote the exact importance sampling (IS) estimator ĴIS = E(s,a)∼qλ

[
w(s, a) g(s, a)

]
with

weight w = ρ/qλ, and the λ–mixture estimator Ĵmix = E(s,a)∼qλ
[
g(s, a)

]
. Then the following

inequality holds:∣∣E[Ĵmix
]
− E

[
ĴIS

]∣∣ ≤ λM√
2KL

(
ρ′ ∥ ρ

)
= O

(
λKL(πθ∥β)1/2

)
. (30)

Proof. Rewrite the bias as follows:

ĴIS − Ĵmix = λEρ′ [
(
ρ
ρ′ − 1

)
g ]. (31)

By applying Hölder’s inequality, we can obtain that:

∥ρ− ρ′∥1 ≤
√
2KL(ρ′∥ρ). (32)

Because |g| ≤M , the magnitude of the bias is upper-bounded by λM
√
2KL(ρ′∥ρ). Replacing the

distribution notation with the corresponding policies gives the stated O(λKL) dependence.
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A.2 Proof of Theorem 1

Proof. From lemma 3, the upper bound of total variation between the behavior policy βt and the
optimal policy π∗ can be derived as:

sup
s

TV(βt, π
∗) ≤ 1

K

K−1∑
h=0

δt−h. (33)

If the target policy converges to the optimal policy, i.e., δt−h → 0 holds, then the following relation
is satisfied:

lim
t→∞

sup
s

TV(βt, π
∗) = 0. (34)

The above expression indicates that the behavior policy βt will gradually converge to the optimal
policy π∗. Then, using the triangle inequality, we can obtain the following:

TV(νt, d
π∗
) ≤ TV(νt, d

πt)︸ ︷︷ ︸
At

+TV(dπt , dπ
∗
)︸ ︷︷ ︸

Bt

. (35)

From lemma 2, the first part At can be derived as :

At ≤ τmin

K−1∑
j=0

∆t−j . (36)

Since the policy can converge to the optimal policy within a finite number of steps N , the final policy
shift error is considered to vanish after these steps. Therefore, the term At can be regarded as zero.
From lemma 1, the Bt can be reformulated as:

Bt =
∥∥∥dπt − dπ

∗
∥∥∥
TV
≤ τmix sup

s
TV

(
πt(·|s), π·∗(·|s)

)
= τmixδt. (37)

Likewise, due to policy convergence in finite steps, δt = 0 holds when t > N . Thus, the proof is
complete.

Notably, if the policy does not converge to the optimal policy within a finite number of steps, but the
policy shift ∆t decays sufficiently fast after each update, where the following condition holds:

∞∑
t=0

∆t =

∞∑
t=0

sup
s∈S

TV(πt+1(· | s), πt(· | s)) <∞. (38)

Under this condition, it can still be guaranteed that At = 0, and the original proof remains valid.

A.3 Discussion of importance sampling in MoGE

In MoGE, since the critical experiences are generated by the diffusion-based generator and the
one-step imagination world model, both the initial-state distribution and the policy of the experiences
may differ from those in replay buffer B under the assumption that the one-step world model can
accurately estimate the environmental dynamics, where all transitions share the same dynamics kernel
P (s′ | s, a).
Problem Setting. We consider training samples composed of two distributions: (1)Denv collected
with the behavior policy β and the real initial state distribution denv(s) from the buffer B; (2) Dgen
generated synthetically with target policy πθ by MoGE, where the initial state distribution is denoted
as dgen(s).

For policy evaluation, letQπ be the action-value function of the target policy πθ. It obeys the Bellman
identity

Qπ(s, a) = Es′∼P, a′∼πθ

[
r(s, a) + γ Qπ(s′, a′)

]
, ∀(s, a). (39)

Because Eq. (39) holds in a point-wise way, where the (s, a) can be sampled from anonymous
distribution, the squared TD–error of any parameterised critic Qψ ,

LPEV(ψ) = E(s,a,r,s′)∼Dk

[
Qψ(s, a)−

(
r + γ Ea′∼πθ

[Qψ̄(s
′, a′)]

)]2
, (40)
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still attains its global minimum at Qϕ = Qπ for any mixture of the training Dk = (1 − k)Denv +
kDgen, 0 ≤ k ≤ 1. Hence, the critic remains unbiased without importance sampling; off-policy sam-
pling only affects optimization variance. An IS correction becomes necessary only when regressing
the full Monte-Carlo return G0, which is behaviour-dependent. However, for policy improvement,
the importance sampling is non-negligible since the existence of a distribution mismatch:

LPIM(θ) = E(s,a)∼Denv

[
ρ(s, a) g(s, a)

]
+ E(s,a)∼Dgen

[
w(s) g(s, a)

]
(41)

where g(s, a) denote the return differs in different algorithm, and w(s) = denv(s)
dgen(s)

, ρ(s, a) = πθ(a|s)
β(a|s) .

However, for algorithms that compute the objective function directly based on the target, i.e.,
g(s, a) = g(s, πθ(s)), importance sampling for the policy can be omitted. In this case, policy
improvement only requires importance sampling for the initial state distribution. Since computing
w(s) and is intractable in high-dimensional continuous spaces. We therefore approximate the IS
expectation by a sampling mixture using a mixing rate λ since the bias can be bound by Lemma 4.
The target for policy improvement in MoGE can be finally derived as a sampling mixture:

LPIM(θ) = (1− λ)E(s,a)∼Denv

[
g(s, a)

]
+ λE(s,a)∼Dgen

[
g(s, a)

]
(42)

with λ ∈ [0, 1). For example, the resulting actor loss for SAC-style objectives is like:

LPIM(θ) = (1− λ)E(s,a)∼Denv

[
α log πθ(a | s)−Qψ(s, a)

]
+ λE(s,a)∼Dbeh

[
α log πθ(a | s)−Qψ(s, a)

]
. (43)

Note that Eq. 43 is the first-order Taylor expansion of the exact IS estimator; its bias scales with
O
(
λKL(πθ∥β)1/2

)
. Empirically, a small λ retains the coverage benefit of the generated data while

keeping bias and training instability negligible.

Theoretically, the choice of k is unrestricted; however, to reduce training variance, it is advisable to
constrain k within a smaller range. In this work, we set k = 2λ.

B Environmental configuration

B.1 Environment Introduction

DeepMind Control Suite. We chose 5 challenging tasks involving the humanoid and quadruped
robots. The final reward for each task is the product of the standing reward and the forward velocity
reward, expressed as: Reward = (Standing Reward)× (Forward Velocity Reward).

(a) Humanoid (b) Quadruped

Figure 4: DMC environments.

Humanoid tasks: The Humanoid consists of three primary tasks, each designed to challenge an
agent’s ability to control a simulated humanoid robot. The three tasks are described as follows:

• Stand: The agent’s objective is to maintain an upright posture. The reward function
encourages stability and a vertical torso position while minimizing deviations from an ideal
standing height.

• Walk: The agent is rewarded for moving forward at a target velocity of 1 m/s. This task
evaluates the agent’s capability to coordinate limb movement and maintain balance while
walking.
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• Run: In this task, the agent is required to achieve a high-speed forward motion of 10 m/s.
The challenge includes maintaining dynamic stability and efficient stride patterns.

Quadruped tasks: The Quadruped environment represents a four-legged robotic model with two
major tasks aimed at testing multi-legged coordination and locomotion:

• Walk: The agent must achieve forward movement at a steady pace. This task assesses the
stability and synchronization of its four legs during controlled walking.

• Run: The agent is required to accelerate to higher velocities, demanding agile gait adjust-
ments and robust stability during high-speed movement.

OpenAI Gym. We chose 5 widely used locomotion tasks in various domains:

Figure 5: Walker2d-v3

State-action space: S ∈ R17, A ∈ R6.

Objective. Maintain forward velocity as fast as possible while
avoiding falling over.

Initialization. The walker is initialized in a standing position with
slight random noise added to joint positions and velocities.

Termination. The episode ends when the agent falls, the head
touches the ground, or after 1000 steps.

Figure 6: Humanoid-v3

State-action space: S ∈ R376, A ∈ R17.

Objective. Maintain balance and walk or run forward at a high
velocity while avoiding falls.

Initialization. The humanoid starts in an upright position with
slight random perturbations to joint angles and velocities.

Termination. The episode ends when the head height is less than
1.0 meter, the torso tilts excessively, or after 1000 steps.

Figure 7: Ant-v3

State-action space: S ∈ R111, A ∈ R8.

Objective. Navigate forward as quickly as possible using four legs
while maintaining stability.

Initialization. The ant is initialized in a stable, upright position
with random noise applied to its joints.

Termination. The episode ends if the ant falls, flips over, or reaches
the maximum step count of 1000.

B.2 Reproducibility Statement & Detailed Hyperparameters

In MoGE, we adopt the hyperparameter settings without additional fine-tuning and use the same
configuration across all previously demonstrated tasks, which are listed in Table 3. Our core algorithm
file is accessible at https://github.com/WangLK-Franklin/MoGE.

In this paper, all experiments are conducted with a total of 1.5 million environment interaction steps,
and the results are averaged over three random seeds. The experiments are performed on an AMD
Ryzen Threadripper 3960X 24-Core Processor and an NVIDIA GeForce RTX 4090 GPU. Besides,
the walltime results(s) of 1.5M steps are included in Table 2.
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Figure 8: Halfcheetah-v3

State-action space: S ∈ R17, A ∈ R6.

Objective. Achieve maximum forward velocity with smooth,
coordinated movements.

Initialization. The agent starts with a slight forward tilt and
randomized joint noise.

Termination. The episode ends after 1000 steps or if the agent’s
head touches the ground.

Figure 9: Swimmer-v3

State-action space: S ∈ R8, A ∈ R2.

Objective. Propel forward through water-like dynamics using
sinusoidal wave patterns.

Initialization. The swimmer starts in a straight posture with minor
random perturbations.

Termination. The episode ends after 1000 steps, with no explicit
termination for falling.

The results show that MoGE incurs slightly higher walltime compared to baseline algorithms. No-
tably, to reduce computational overhead, we perform MoGE training only once every 10 environment
interaction steps, which significantly controls the overall compute cost. Moreover, unlike methods
requiring retraining the generative model on the buffer until convergence before use, MoGE con-
tinuously updates its generator during training. This makes MoGE’s diffusion-based training more
efficient and lightweight in practice.

C Supplemental clarification

C.1 Design of One-step imagination world model

In MoGE, the structure of the one-step imagination world model is illustrated in Figure 10. Since
MoGE is developed under the MDP setting. The reason why modeling dynamics in a latent space
instead of directly learning the mapping f(s, a)ßs′ is motivated by several practical considerations:

(A)) Learning a compact latent representation helps capture abstract, task-relevant features of the
environment, improving generalization and training efficiency even under MDPs. Besides, different
dimensions of the state may contribute unevenly to dynamic modeling. Using an encoder to transform
the raw state allows the model to extract the most relevant components, which facilitates more
accurate transition prediction.

(B) Latent dynamics are often smoother and easier to predict compared to raw state transitions,
especially in high-dimensional environments. Fitting dynamics in a latent space typically improves
the accuracy of transition modeling.

(C) Decoupling representation learning from dynamics prediction allows better reuse and transfer of
components. In fact, in MoGE, the policy network is built on top of the same encoder, enabling a
unified state representation that facilitates more effective policy learning.

To further support our claim, a simple experiment is conducted across three environments (each
with three random seeds) using the same diffusion and baseline algorithm setup. This experiment
compares the TAR between vanilla dynamics (Using the Transformer as a predictor of next states and
rewards) and latent dynamics. The results are demonstrated in the Table 4:

The results show that, compared to directly mapping the current state and action to the next state, intro-
ducing a latent space leads to better learning of both environment transitions and state representations
in the policy network.
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Table 2: Performance comparison of MoGE and related baselines on Humanoid-run task.
Env MoGE PGR SER DSAC

Humanoid-run 151657 ± 395 207813±1464 210321±788 128153±122

Table 3: Hyperparameter settings.

Hyperparameter Value Hyperparameter Value

Training

Learning rate 1× 10−4 Target network soft-update rate 0.05
Batch size 1024 Buffer size 1_000_000
Optimizer Adam Sampling Uniform
Discount factor (γ) 0.99 Num of vector envs 10 (Only in DMC tasks)
Sample batch size 20

World Model learning

Dynamics loss coefficient (β1) 0.5 Representation loss coefficient (β2) 0.1
Learning reate 1× 10−4 Optimizer Adam

Diffusion model

Diffusion steps 100 Noise Schedule Cosine
Guidance scale 1.0 ϵ-prediction True
Denoising network [256,256,256] Activation GELU
Optimizer Adam Learning rate 1× 10−5

Actor

Minimum policy log std -20 Policcy network [256,256,256]
Maximum policy log std 0.5 Activation in hidden dim GELU
Learning rate 1× 10−4 Activation in output dim Linear

Critic

Value network [256,256,256] Activation in hidden dim GELU
Learning rate 1× 10−4 Activation in output dim Linear

Architecture (8M)

Transformer layers 2 Latent space dimension 256
Transformer heads 8 Dropout 0.1
MLP activation GELU Normalization LayerNorm

C.2 Broader baseline experiments with model-free algorithms

To further validate the effectiveness of MoGE compared with active exploration, we perform extra ex-
periments with more mainstream model-free algorithms. All the algorithms are evaluated in standard
settings and tested on the 3 OpenAI Gym tasks: Walker2d-v3, Humanoid-v3, and Halfcheetah-v3.

Deep Deterministic Policy Gradient (DDPG) [38]: an off-policy actor-critic method that leverages
deterministic policies and experience replay for efficient learning in continuous action spaces.

Trust Region Policy Optimization (TRPO) [51]: an on-policy method that optimizes policies by
enforcing a trust region constraint to ensure stable updates.

Proximal Policy Optimization (PPO) [52]: improved upon TRPO by using a clipped surrogate
objective for simpler and more efficient training.

Soft Actor-Critic (SAC) [22]: introduces maximum entropy to encourage exploration and improve
stability, making it well-suited for complex, high-dimensional tasks.

All the training curves are illustrated in Figure 11 and the detailed results are listed in Table 5.
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Table 4: Ablation of MoGE with vanilla vs. latent dynamics on humanoid control tasks.
Env MoGE w/ latent dynamics MoGE w/ vanilla dynamics

Humanoid-run 489 ± 9 408 ± 35
Humanoid-walk 892 ± 19 684 ± 71
Humanoid-stand 907 ± 7 785 ± 88

One-step imagination

EncoderEncoder Decoder EncoderEncoder Decoder

action reward

𝑠𝑡  𝑠 𝑡  𝑠 𝑡+1 𝑠𝑡+1 

𝑧𝑡+1 𝑧𝑡  

𝑎𝑡  𝑟𝑡  

Figure 10: One-step imagination world model. During training, the current state st is encoded by
the representation network hϕ into a latent representation zt. Given this latent state and the action at,
the one-step world model predicts the next latent state zt+1, the immediate reward r̂t, and termination
factor ĉt. The solid-line process represents inference, while the dashed-line process is used for loss
function construction.

C.3 Broader baseline experiments with model-based algorithms

Similarly, to validate the performance of MoGE when integrated with reinforcement learning algo-
rithms, we additionally select two mainstream model-based RL algorithms for comparison. These
algorithms are sourced from the https://github.com/nicklashansen/tdmpc2, and the experi-
ments are performed in DMC Humanoid tasks:

TD-MPC2 [29]: a model-based reinforcement learning algorithm that combines temporal difference
learning with model-predictive control to enhance sample efficiency and long-horizon planning.

DreamerV3 [26]: a model-based reinforcement learning framework that leverages a world model
for imagination-based training, enabling effective policy learning with high sample efficiency in
continuous control tasks.

All the training curves are illustrated in Figure 12 and the detailed results are listed in Table 6.

C.4 Broader baseline experiments with modified Actor-Critic algorithms

To provide a more comprehensive evaluation, some half-formulated methods that were modified
based on the traditional Actor-Critic method can be included. We conduct the experiments in DMC
Humanoid tasks, which are one of the hardest tasks within 3 seeds, and the introductions of the
methods are illustrated as follows:

REDQ [10]: a model-free RL algorithm that employs a large ensemble of Q-functions with random-
ized subset updates to improve sample efficiency and reduce overestimation bias.

DroQ [30]: a lightweight variant of ensemble Q-learning that applies dropout regularization to
approximate uncertainty and achieve doubly efficient learning.

BRO [42]: a scalable actor-critic framework that leverages network scaling, regularization, and
optimism to balance compute and sample efficiency in continuous control.
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(c) Halfcheetah-v3

Figure 11: Supplemental study curves with 6 mainstream model-free algorithms.

Table 5: Total Average Return (TAR) on 3 OpenAI Gym tasks for supplemental experiments. Mean ±
Std over 3 seeds. Bold = best, Higher is better.
Environment TD3 SAC DDPG TRPO PPO DSAC DSAC+MoGE

Walker2d-v3 5031.1 ± 84.2 5997.0 ± 291.1 3268.1 ± 240.9 5635.6 ± 211.9 3880.9 ± 327.7 6501.1 ± 87.3 6978.4 ± 68.7
Humanoid-v3 5967.1 ± 547.8 8831.7 ± 352.2 4548.7 ± 807.6 947.2 ± 503.9 6011.0 ± 2014.4 11004.0 ± 121.5 12151.1 ± 35.4
Halfcheetah-v3 7363.0 ± 3666.4 16921.3 ± 380.8 14793.1 ± 462.3 4207.4 ± 756.6 5139.2 ± 2392.8 17324.7 ± 41.1 18054.9 ± 459.6

AVG.GYM 6120.4 ± 1432.8 10583.3 ± 341.4 7536.6 ± 503.6 3596.7 ± 490.8 5010.4 ± 1578.3 11472.7 ± 93.0 12394.8 ± 187.9

Simba [35]: a large-scale RL framework that exploits simplicity bias in over-parameterized networks
to improve stability, generalization, and training efficiency.

As shown in Table 7, except for the simplest case (Humanoid-Stand), MoGE achieves the best
performance across all more challenging tasks.

C.5 Broader baseline experiments with enhanced exploration approaches

We have conducted additional experiments to study the effect of different exploration strategies on
the DSAC algorithm via ablation comparisons. Due to the development and implementation effort
involved, and time constraints, we focus on three representative environments—the Humanoid tasks
in DMC—for this evaluation. The three approaches are as follows:

Plan2Explore [53]: a model-based exploration method that uses self-supervised world models to
plan informative trajectories without external rewards.

MaxInfoRL [59]: an exploration framework that maximizes mutual information between states,
actions, and returns to encourage diverse and informative behaviors.

OMBRL [60]: a model-based exploration algorithm that incorporates optimism through intrinsic
reward shaping, enabling scalable and principled exploration.

Demonstrated in Table 8, the results show that MoGE still offers a significant advantage compared to
these methods. Intrinsic exploration methods encourage visiting novel or unpredictable states, but
their signals (e.g., prediction error, uncertainty) are often task-agnostic and may lead to uninformative
or misaligned exploration. In contrast, MoGE leverages task-aware utility functions (e.g., TD-
error, entropy) to generate states that are directly aligned with policy improvement objectives**.
Besides, unlike intrinsic reward methods that require careful reward balancing and affect the policy’s
optimization objective, MoGE decouples exploration from reward design, enabling more stable
training without interfering with the task-specific learning signal.

D Limitation and Future Work

While MoGE demonstrates strong performance in enhancing exploration and improving sample
efficiency in reinforcement learning, several limitations remain. First, the generation of critical states
through the diffusion-based generator introduces additional computational overhead compared to
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(c) Humanoid-run

Figure 12: Supplemental study curves with 2 mainstream model-based algorithms.

Table 6: Total Average Return (TAR) on 3 DMC Suite tasks for supplemental experiments. Mean ±
Std over 3 seeds. Bold = best, Higher is better.

Environment DSAC DreamerV3 TD-MPC2 DSAC+MoGE

Humanoid-walk 146.5 ± 60.9 0.9 ± 0.4 814.3 ± 49.8 891.7 ± 19.1
Humanoid-stand 776.6 ± 15.6 5.6 ± 0.3 838.9 ± 39.2 907.5 ± 6.9
Humanoid-run 267.4 ± 3.9 0.8 ± 0.4 254.6 ± 11.1 488.9 ± 8.7

AVG.DMC 396.8 ± 26.8 2.4 ± 0.4 635.9 ± 33.4 762.7 ± 11.6

standard replay buffer sampling. Second, MoGE assumes that the state distribution learned by the
generator aligns well with the replay buffer’s occupancy measure. In practice, minor discrepancies
may arise. Overall, while MoGE enhances exploration capabilities, its time cost is influenced by the
quality of the learned state distribution and the smoothness of the conditional diffusion process.

In the future, we may explore integrating MoGE with on-policy RL frameworks to enable real-
time generation of critical states, further enhancing exploration efficiency during live interactions.
Additionally, investigating more expressive utility functions for the diffusion-based generator could
improve the selection of high-value states, optimizing policy learning. Moreover, dynamically
adjusting the generator’s sampling strategy based on task complexity and training progress may
further boost robustness and generalization.

E Positive and Negative Social Impact

Our method, MoGE, performs exploration augmentation in reinforcement learning by generating
critical samples through a diffusion-based generator and a world model, significantly improving
sample efficiency and policy performance in complex control tasks. This capability has promising
implications for real-world applications such as embodied AI, autonomous driving, and large-scale
decision-making systems, where efficient exploration of vast state spaces is crucial. However, the
ability to synthetically generate exploration samples may lead to overconfidence in simulation-
trained policies, thereby increasing risks if these policies are deployed prematurely in real-world
environments. We advocate for careful validation and consideration of ethical implications to ensure
the responsible and safe application of MoGE.
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Table 7: TAR for supplemental experiments
with modified AC methods.

Env DSAC+MoGE Simba BRO RedQ DroQ

Humanoid-run 489 ± 9 268 ± 40 417 ± 15 187 ± 12 164 ± 21

Humanoid-walk 892 ± 19 801 ± 13 881 ± 25 665 ± 5 682 ± 14

Humanoid-stand 907 ± 7 920 ± 14 905 ± 3 902 ± 4 896 ± 6

Table 8: TAR for supplemental experiments
with enhanced exploration approaches.

Env DSAC+MoGE Plan2Explore MaxInfoRL OMBRL

Humanoid-run 489 ± 9 311 ± 12 197 ± 4 262 ± 13

Humanoid-walk 892 ± 19 588 ± 7 481 ± 7 678 ± 5

Humanoid-stand 907 ± 7 801 ± 14 844 ± 8 769 ± 11
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
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11. Safeguards
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: All our baseline algorithms are evaluated under standard settings, and all
open-source implementations are properly cited.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a
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• The answer NA means that the paper does not release new assets.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?
Answer: [NA]
Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
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approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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