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Abstract
The Fundamental Theorem of PAC Learning asserts that learnability of a concept class H is equiv-
alent to the uniform convergence of empirical error in H to its mean, or equivalently, to the problem
of density estimation, learnability of the underlying marginal distribution with respect to events in
H . This seminal equivalence relies strongly on PAC learning’s ‘distribution-free’ assumption, that
the adversary may choose any marginal distribution over data. Unfortunately, the distribution-free
model is known to be overly adversarial in practice, failing to predict the success of modern ma-
chine learning algorithms, but without the Fundamental Theorem our theoretical understanding of
learning under distributional constraints remains highly limited.

In this work, we revisit the connection between PAC learning, uniform convergence, and den-
sity estimation beyond the distribution-free setting when the adversary is restricted to choosing a
marginal distribution from a known family P . We prove that while the traditional Fundamental
Theorem fails, a finer-grained connection between the three fundamental notions continues to hold:

1. PAC-Learning is strictly sandwiched between two relaxed models of density estimation, differing only
in whether the learner knows the set of well-estimated events in H.

2. Under reasonable assumptions on H and P , density estimation is equivalent to uniform estimation, a
weakening of uniform convergence allowing non-empirical estimators.

Together, our results give a clearer picture of how the Fundamental Theorem extends beyond the
distribution-free setting and shed new light on the classically challenging problem of learning under
arbitrary distributional assumptions.
Keywords: PAC-Learning, Density Estimation, Uniform Convergence

1. Introduction

Valiant (1984) and Vapnik and Chervonenkis (1974) Probably Approximately Correct (PAC)-Learning
is the foundation of modern learning theory. Traditionally, the model captures learnability of a hy-
pothesis class (X,H), a set X of ‘raw data’ and a family of binary classifiers H , against a worst-case
or ‘distribution-free’ adversary, meaning algorithmic success is always measured against the worst
possible marginal distribution over data. This setting gives rise to an elegant theory of learning
centered around the ‘Fundamental Theorem of PAC Learning’, stating the complexity of learning
H is controlled by uniform convergence, the extent to which the empirical mean of a large enough
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sample uniformly estimates the error of every h ∈ H (Vapnik and Chervonenkis, 1974; Blumer
et al., 1989; Haussler, 1992).

Unfortunately, in practice, distribution-free PAC-learning is overly adversarial. Traditional
lower bounds rely on contrived data distributions not seen in practice, and modern architectures
like deep nets learn much faster than PAC theory predicts (Neyshabur et al., 2014; Zhang et al.,
2021; Nagarajan and Kolter, 2019). At a theoretical level, this raises a natural question:

Can we characterize learnability under a restricted adversary?

We study a foundational variant of this question called the distribution-family model, which restricts
the adversary to choosing data from a known family P of marginal distributions. Characterizing
learnability in this setting is an old and challenging problem (Vapnik and Chervonenkis, 1974, 1971;
Benedek and Itai, 1991; Natarajan, 1992; Dudley et al., 1994), dating back to work of Benedek and
Itai (1991) observing the failure of uniform convergence in the setting. Since that time, progress
on the distribution family model has been largely negative, with Dudley et al. (1994) falsifying a
conjectured characterization of Benedek and Itai (1991) based on metric entropy, and recent work
of Lechner et al. (2023) showing the model has no scale-insensitive combinatorial characterization.

In this work, we revisit the conventional knowledge that the Fundamental Theorem fails beyond
the distribution-free setting and aim to offer a more nuanced view of the connection between uni-
form convergence and its variants and learning under distributional assumptions. Toward this end,
it is constructive to consider a rephrasing of the Fundamental Theorem in terms of a standard sta-
tistical framework: density estimation. Given a triple (P, X,H) and oracle access to a distribution
D ∈ P , the density estimation problem asks the learner to output D′ ∈ P that is close to D in the
total variation metric with respect to H:1

TVH∆H(D,D′) := max
S∈H∆H

(|D(S)−D′(S)|).

This is natural in the context of supervised learning where events in H∆H measure the error be-
tween hypotheses, and is clearly closely related to uniform convergence. Indeed, the following
folklore rephrasing (Yatracos, 1985; Devroye and Lugosi, 2001; Chan et al., 2014; Ashtiani et al.,
2018) of the Fundamental Theorem states that density estimation, uniform convergence, and PAC
learning are all equivalent in the distribution-free model.

Theorem 1 (The Fundamental Theorem of PAC Learning (Informal)) In the distribution-free set-
ting:

Density Estimation = PAC-Learning = Uniform Convergence.

While Benedek and Itai (1991) observe the latter equivalence breaks in the distribution-family
model, their example does not contradict a potential equivalence with density estimation. Indeed,
density estimation is a common strategy in learning with distributional assumptions (see e.g. Blanc
et al. (2023)). We will work with the following weakening (equivalent in the distribution free set-
ting), which is clearly sufficient to learn so long as each (D,X,H) in (P, X,H) is individually
learnable.2

1. Here H∆H := {h∆h′ : h, h′ ∈ H} denotes the set of symmetric differences in H .
2. Formally here we mean the (D,X,H) are learnable in a uniformly bounded number of samples, which Benedek and

Itai (1991) proved is equivalent to (P, X,H) having uniformly bounded metric entropy (see Definition 12). If this
does not hold (P, X,H) is trivially unlearnable, and the problem becomes uninteresting. Throughout this work, we
will always assume this condition.
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Definition 2 (Intermediate Density Estimation (Informal Definition 14)) (P, X,H) has an in-
termediate density estimator (IDE) if there exist a learner and (sample dependent) subset G ⊂ H
satisfying:

1. The learner accurately estimates dD(g, g′) for all g, g′ ∈ G

2. Every fixed h ∈ H lies in G with high probability

3. The learner knows G.

In other words, while standard density estimation requires outputting a good estimate on the measure
of all elements in H∆H simultaneously, intermediate estimation only requires this for G∆G, where
G is known and ‘typically’ contains any fixed hypothesis in the class.

On its surface, necessity and sufficiency of intermediate estimation seems reasonable. It holds
in the distribution-free setting, and it is clear that any PAC learner must infer some information
about the measure of H∆H , or it would not be able to distinguish between good and bad hypothe-
ses. Unfortunately, it turns out such a direct extension fails: even the relaxed intermediate density
estimation is not necessary for PAC learning with arbitrary distribution families.

Proposition 3 (Intermediate Estimation Fails Necessity (Informal Theorem 17)) There exists a
PAC-learnable class (P, X,H) with no intermediate density estimator.

On the other hand, following our prior intuition, there should be some relaxation of density esti-
mation that is necessary for PAC learning. One natural weakening is to drop the condition that the
learner knows the set of well-estimated events. We call this notion weak density estimation:

Definition 4 (Weak Density Estimation (Informal Definition 15)) (P, X,H) has a weak den-
sity estimator (WDE) if there exists a learner and a (sample-and-distribution dependent) subset
G ⊂ H satisfying:

1. The learner accurately estimates dD(g, g′) for all g, g′ ∈ G

2. Every fixed h ∈ H lies in G with high probability.

Unlike the intermediate model, we prove weak estimation is necessary to PAC-learn (see Proposi-
tion 21). One might then hope the condition also remains sufficient, but this turns out to be false in
general as well.

Proposition 5 (Weak Density Estimation Fails Sufficiency (Informal Theorem 22)) There exists
a class (P, X,H) with a weak density estimator that is not PAC-learnable.

Taken together, these results lead to our main theorem: PAC-Learning with distributional assump-
tions is strictly sandwiched between two close models of density estimation.

Theorem 6 (The PAC-Density Sandwich Theorem) In the distribution-family setting:

Weak Density Estimation ⊊ PAC-Learning ⊊ Intermediate Density Estimation

Finally, we return to the topic of uniform convergence and its relation to density estimation and
learning. While uniform convergence is strictly stronger than learning and density estimation in
the distribution family model, a natural relaxation called uniform estimation which allows for non
empirical estimators is more closely related. Indeed, we prove that when (P, X,H) has uniformly
bounded metric entropy, the two notions are equivalent.
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Proposition 7 (Density Estimation ⇐⇒ Uniform Estimation (Informal Theorem 27)) (P, X,H)
has an (intermediate) density estimator if and only if it has an (intermediate) uniform estimator.

We emphasize Proposition 7 only holds under the assumption that each (D,X,H) in the class
is learnable in a uniformly bounded number of samples. Indeed the statement is trivially false
otherwise, see Section 6 for further discussion.

We remark that while this connection is standard in the distribution-free setting (Yatracos, 1985),
the argument in the distribution-family model is more subtle and combines standard methods in
density estimation (Yatracos, 1985; Devroye and Lugosi, 2001) with recent connections between
covering and learning with distributional assumptions (Hopkins et al., 2024). We conjecture that
Theorem 7 should actually fail for the corresponding ‘weak’ estimation variant. Here weak uniform
estimation (estimating error for most hypotheses in the class without knowing the set of ‘good’
estimates) is immediate from Chernoff. On the other hand, weak density estimation asks not just for
a good estimate of most dD(h, h′), but rather for a large set G where every distance dD(g, g′) is well
estimated. This is a more involved condition, and we leave a characterization of classes satisfying
the property as an open problem for future work.

Taken together, Theorem 6 and Proposition 7 provide a finer-grained picture of the classical
connection between supervised learning, uniform convergence, and density estimation. It remains
an interesting open problem to prove further positive results for learning with distributional assump-
tions as well. One promising direction is to ask whether there are natural assumptions on the class
P over which uniform estimation and density estimation are necessary. Another interesting direc-
tion is to explore classical paradigms such as sample compression or stability, known to characterize
learnability in other settings where uniform convergence fails (Shalev-Shwartz et al., 2010; David
et al., 2016).

2. Background and Related Work

2.1. PAC Learning, Uniform Convergence, and Metric Entropy

Let X be a set, H a family of binary classifiers over X , and P a family of distributions over X .

Definition 8 (Distribution Family PAC-learning) We say (P, X,H) is PAC-learnable if there
exists a function n = nPAC(ε, δ) such that for all ε, δ > 0, there is an algorithm A which for
every D ∈ P , and h ∈ H satisfies:

Pr
S∼(D×h)n

[dD(A(S), h) > ε] ≤ δ,

where dD(h, h
′) = Prx∼D[h(x) ̸= h′(x)] is the classification distance.

In general one might also consider an agnostic model allowing arbitrary labelings, but this is statis-
tically equivalent to the above (Hopkins et al., 2024) so we focus on the simpler realizable case.

Characterizations of the distribution-family model are known in several special cases. Most fa-
mously, the ‘distribution-free’ setting where P consists of the set of all distributions is characterized
by uniform convergence (Vapnik and Chervonenkis, 1974; Blumer et al., 1989).

Definition 9 (Uniform Convergence) We say (P, X,H) satisfies the uniform convergence prop-
erty if there exists a function n = nUC(ε, δ) such that for all ε, δ > 0, D ∈ P , and h ∈ H , the
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empirical error of every h′ ∈ H approaches its true error uniformly:

Pr
S∼(D×h)n

[∃h′ ∈ H : |errS(h′)− errD×h(h
′)| > ε] ≤ δ,

where errS and errD×h are the empirical and true error respectively:

errS(h′) =
1

|S|
∑

(x,y)∈S

1[h′(x) ̸= y], errD×h(h
′) = Pr

(x,y)∼D×h
[h′(x) ̸= y].

Bounds on uniform convergence or estimation in the distribution-free case typically depend on a
complexity measure of the class called the growth function ΠH(n) := maxS⊂X:|S|=n |{H|S}|,
where H|S is the family of binary classifiers on the sample S realized by H .

When P consists of just a single distribution, uniform convergence fails to characterize learn-
ability. Here Benedek and Itai (1991) instead give a characterization based on finite covers.

Definition 10 (Covers) For any ε > 0 and class (D,X,H), we say C ⊆ H is an ε-cover if every
h ∈ H is close to some c ∈ C:

∀h ∈ H,∃c ∈ C: dD(c, h) ≤ ε

A class has bounded metric entropy if it has finite covers for every ε.

Definition 11 (Metric Entropy) We say a class (D,X,H) has metric entropy m(ε) if for all ε > 0,
(D,X,H) has an ε-cover of size at most m(ε).

Benedek and Itai (1991) proved (D,X,H) is PAC-learnable if and only if it has finite metric en-
tropy, and conjectured a similar equivalence for the following generalization to (P, X,H).

Definition 12 (Uniformly Bounded Metric Entropy) We say (P, X,H) has uniformly bounded
metric entropy (UBME) if there exists mUB(ε) such that for all ε > 0 and D ∈ P , (D,X,H) has
an ε-cover of size at most mUB(ε). We call minimum such mUB the metric entropy of (P, X,H).

UBME is known to be equivalent to PAC-learnability in the distribution-free setting (Haussler,
1992), but is not sufficient in the general distribution-family setting (Dudley et al., 1994).

2.2. Density Estimation

Our work considers connections between the distribution-family model and several new variants of
density estimation. We first recall the standard model adapted to our setting where the learner wishes
to output an estimate to the adversary’s choice of D ∈ P with respect to the H∆H-distance.

Definition 13 (Density Estimation) We say (P, X,H) has a density estimator (DE) if there exists
a function n = nDE(ε, δ) such that for all ε, δ > 0 there is an algorithm A mapping samples
T ∈ Xn to distributions which for all D ∈ P satisfies:

Pr
T∼Dn

[TVH∆H(A(T ), D) > ε] ≤ δ.

In the context of PAC-learning, standard density estimation (even restricted to H∆H) is need-
lessly strong: the learner really need only estimate the distances for most h ∈ H , provided it knows
the set of well-estimated events. We call this condition intermediate density estimation.
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Definition 14 (Intermediate Density Estimation) A class (P, X,H) has an intermediate density
estimator if there exists a function n = nIDE(ε, δ) such that for all ε, δ > 0 there is an algorithm
mapping samples T ∈ Xn to pairs consisting of an estimator d̃T : H × H → R+ and a subset
GT ⊆ H which for all D ∈ P approximates dD in the following sense:

1. d̃T accurately estimates dD on GT :

Pr
T∼Dn

[∃g, g′ ∈ GT : |d̃T (g, g′)− dD(g, g
′)| > ε] < δ,

2. Any fixed hypothesis occurs in GT with high probability:

∀h ∈ H : Pr
T∼Dn

[h ∈ GT ] ≥ 1− δ.

We will occasionally consider specific values of ε, δ, for which we write (ε, δ)-IDE.

While a weakening of the standard model, requiring knowledge of well-estimated events is still
a strong assumption (and one we exploit in Section 3.1 to construct learnable classes failing IDE).
With this in mind, we introduce weak density estimation (WDE) which drops this constraint.

Definition 15 (Weak Density Estimation) A class (P, X,H) has a weak density estimator if
there exists a function n = nWDE(ε, δ) such that for all ε, δ > 0 there exists an algorithm map-
ping samples T ∈ Xn to estimators d̃T : H ×H → R+ which for all D ∈ P approximates dD in
the following sense:

1. There exists a subset GT,D ⊆ H such that d̃T accurately estimates dD on GT,D:

Pr
T∼Dn

[∃g, g′ ∈ GT,D : |d̃T (g, g′)− dD(g, g
′)| > ε] < δ,

2. Any fixed hypothesis occurs in GT,D with high probability:

∀h ∈ H : Pr
T∼Dn

[h ∈ GT,D] ≥ 1− δ.

We will occasionally consider specific values of ε, δ, for which we write (ε, δ)-WDE.

In other words, the only difference between intermediate and weak density estimation is whether
the set G of ‘good’ elements can depend on the underlying distribution, or equivalently, whether G
is ‘known’ by the learner (which sees the sample but not the distribution).

2.3. Further Related Work

Distribution Family Model. The distribution-family model is implicit in the seminal works of
Vapnik and Chervonenkis (1971, 1974), who studied general models of learning under convergence
of empirical means. These bounds were later sharpened by Natarajan (1992). In 1991, Benedek and
Itai (1991) explicitly introduced the model and conjectured its characterization by UBME which
was falsified by Dudley et al. (1994) several years later. In 1997 Kulkarni and Vidyasagar (1997)
observed the sufficiency of UBME in the finite and distribution-free settings could be slightly gen-
eralized to finitely coverable families and families with an interior point. Recently,3 Lechner et al.

3. A version of this work appeared publicly before Lechner et al. (2023) and has been updated to reflect their result.

6



DO PAC-LEARNERS LEARN THE MARGINAL DISTRIBUTION?

(2023) proved the distribution-family model has no scale-insensitive characterizing dimension.

Density Estimation. Density estimation (also called ‘improper’ distribution learning (Diakoniko-
las, 2016)) is among the most classical problems in statistics. We refer the reader to Devroye and
Lugosi (2001) for the most relevant overview of the area. Our techniques draw from combinato-
rial methods in density estimation due to Yatracos (1985) further developed in Devroye and Lugosi
(2001) and the distribution learning literature (Chan et al., 2014; Diakonikolas, 2016; Ashtiani et al.,
2018). Several of our results leverage ideas from this line, in particular Yatracos’ method of lifting
empirical estimates on covers to full density estimates.

The relation between variants of density estimation and supervised learning is also studied in
Ben-David and Ben-David (2011) under the ‘Known-Labeling Classifier Learning’ (KLCL) model.
This setting, which looks at distribution-free learning when a (non-realizable) labeling is known to
the learner, is incomparable to our own and requires a different set of techniques.

Unsupervised learning. Our work also takes inspiration from unsupervised techniques in ma-
chine learning, especially multi-stage classifiers that infer information from unlabeled data before
applying supervised methods (Balcan and Blum, 2010; Beimel et al., 2013; Alon et al., 2019; Hop-
kins et al., 2020c; Diakonikolas et al., 2022; Blanc et al., 2023), but also by similar techniques from
transfer learning (Pan and Yang, 2009), active learning (Balcan et al., 2007; Hanneke and Yang,
2015; Kane et al., 2017; Hopkins et al., 2020a,b,c), privacy (Beimel et al., 2013; Alon et al., 2019),
and even distribution-free learning of halfspaces (Diakonikolas et al., 2021, 2022). Most recently,
a similar approach was used by Hopkins et al. (2024) to give generic reductions from agnostic to
realizable settings across many variants of supervised learning (including the distribution-family
model). Our notion of weak density estimation draws inspiration from their work.

Learning Beyond Uniform Convergence. Our work also fits into a long line of literature studying
learnability beyond uniform convergence, either through notions of local complexity (e.g. Panchenko
(2002); Bartlett et al. (2005)) or models where uniform convergence and empirical risk minimiza-
tion fail completely (e.g. Shalev-Shwartz et al. (2010); David et al. (2016)). The former works relate
qualitatively to our weakened notions of estimation which only require good estimates for a subset
of hypotheses in the class. Most relevant, however, is work in the latter line of Shalev-Shwartz et al.
(2010), who characterize Vapnik’s General Learning model (which fails uniform convergence and
has no combinatorial characterization (Ben-David et al., 2019)) via stability. Their work differs from
our setting both in that the model is distribution-free, and that stability is a property of a learning
rule while we study direct connections between the class and distribution family themselves.

3. Results and Proof Overview

We now overview our main results and sketch their proofs. In Section 3.1 we show IDE is sufficient
but not necessary for learning. In Section 3.2 we show WDE is necessary but not sufficient. In
Section 3.3 we overview the connections between WDE, UBME, and Uniform Estimation.
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3.1. PAC Learning vs. Intermediate Density Estimation

In this section we study the relation between PAC Learning and intermediate density estimation.
All proofs are sketched or otherwise shortened, and detailed versions can be found in Section 4. We
start with the simple observation that (under UBME), IDE is sufficient to PAC-learn.

Proposition 16 Let (P, X,H) be any class with metric entropy m(ε) and an intermediate density
estimator on nIDE(ε, δ) samples. Then (P, X,H) has a PAC learner satisfying

nPAC(ε, δ) ≤ O

(
nIDE(ε/4, δ/4) +

log(m(ε/4)) + log(1/δ)

ε

)
.

Proof Run the IDE on an unlabeled sample T of size nIDE(ε/4, δ/4) to get the approximate metric
d̃T and set of well-estimated functions GT . We are promised that with probability 1− δ/4:

∀g, g′ ∈ GT : |d̃T (g, g′)− dD(g, g
′)| ≤ ε/4.

Assume this is the case. Because GT is known, we can find D′ ∈ P which realizes these estimates
on GT up to an error of ε/4, and therefore satisfies TVGT∆GT

(D,D′) ≤ ε/2. Since (P, H) has
UBME, there exists an ε

4 -cover CT of GT under D′ of size at most m(ε/4). It is enough to argue
that with probability at least 1 − δ/2, there exists a hypothesis in CT with true risk at most 3ε

4 . In
this case, if we simply draw O( log |CT |+log(1/δ)

ε ) fresh labeled samples and output the hypothesis
with lowest empirical error, a Chernoff and Union bound imply the resulting hypothesis has error
at most ε with probability at least 1 − δ/4. By a union bound, all steps in this process succeed
simultaneously except with probability δ, which gives the desired learner.

It is left to show a good hypothesis exists in CT with high probability. To see this, observe that
if TVGT∆GT

(D,D′) ≤ ε/2 (which occurs except with probability δ/4), CT is a 3ε/4-cover for GT

under the true distribution D. This follows simply from noting that for any g, g′ ∈ GT we have:

dD(g, g
′) = dD(g, g

′)− dD′(g, g′) + dD′(g, g′) ≤ TVGT∆GT
(D,D′) + dD′(g, g′),

so distances in the cover under D change by at most ε/2 from their value under D′. On the other
hand, we are promised by the IDE that h ∈ GT with probability at least 1 − δ/4. If both events
occur, h is covered by CT , meaning ∃h′ ∈ CT such that dD(h, h′) ≤ 3ε/4 as desired.

We note this generalizes the result of Kulkarni and Vidyasagar (1997) that UBME is sufficient
for PAC learning under finitely coverable distribution families as these have simple density estima-
tors. We now show the more involved direction: intermediate density estimation fails necessity.

Theorem 17 There exists a class (P, X,H) which is PAC-learnable in nPAC(ε, δ) ≤ Õ
(
log(1/δ)

ε2

)
samples, but has no intermediate density estimator.

We overview the construction, which is based on dictators on the noisy cube. Let Xn = {0, 1}n
denote the n-dimensional hypercube, and for x ∈ Xn write xi to denote the ith coordinate of x.
Our hypothesis class Hn := {1i : i ∈ [n]} will consist of the set of dictators on the cube:

1i(x) =

{
1 if xi = 1

0 else.
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For every x ∈ {0, 1}n and ρ > 0, let Dρ
x denote the distribution that samples y ∈ {0, 1}n by

independently setting each bit yi to xi with probability 1 − ρ, and otherwise to 1 − xi. Let Pρ
n :=

{Dρ
x}x∈Xn be the family of all such distributions. We argue (Pρ

n, Xn, Hn) is learnable up to error ρ
in Oδ(1) samples, while any IDE requires Ωρ(log(n)) samples. The result then follows from taking
an infinite disjoint union with n → ∞ and ρ → 0. We focus here on fixed n, ρ and give the full
construction in Section 4. We’ll start with learnability, which simply stems from the fact that our
class is ‘almost constant,’ and can therefore be easily approximated by a constant function.

Lemma 18 For any 1
6 ≥ ρ ≥ 0, (Pρ

n, Xn, Hn) is (ρ, δ)-PAC-learnable in O(log(1/δ)) samples.

Proof Observe that by construction, no matter the distribution and hypothesis chosen by the adver-
sary our class is almost constant in the following sense:

∀Dρ
x ∈ Pρ

n, h ∈ Hn,∃z ∈ {0, 1} : Pr
y∼Dρ

x

[h(y) = z] = 1− ρ.

This suggests the following strategy: after O(log 1
δ ) samples, output the majority label as a constant

function.4 For ρ ≤ 1/6, Chernoff promises the learner picks the true majority with probability at
least 1− δ. Since the majority label has mass 1− ρ, this gives the desired (ρ, δ)-PAC-learner.

Density estimation is somewhat more involved. At a high level, our lower bound stems from the
fact that the intermediate estimator must ‘declare’ a set of good elements, but the independent noise
across coordinates inherent in Pρ

n makes this challenging without a large number of samples.

Proposition 19 For all n > 2 and 1
6 > ρ > 12 log(1/ρ)

log(n) , any IDE for (Pρ
n, Xn, Hn) satisfies

nIDE(1/6, 1/8) ≥ Ω

(
log(n)

log(1/ρ)

)
.

Formally, it is convenient to reduce Proposition 19 to showing no algorithm can ‘confidently’ com-
pute even a portion of the string x underlying some Dρ

x ∈ Pρ
n in the following sense.

Lemma 20 For any t ∈ N and 1
6 > ρ > 0, if (Pρ

n, Xn, Hn) has a (1/6, 1/8)-IDE on t samples,
then there exists a (randomized) algorithm A : Xt → {0, 1,⊥} with the following guarantee.
Given t samples drawn from any Dρ

x ∈ Pρ
n, with probability at least 1/8, A outputs a string

x̂ ∈ {0, 1,⊥}n such that:

1. x̂ is ‘⊥’ on at most n/2 coordinates,

2. x̂ agrees with x otherwise.

We call any such A a (1/2, 1/8)-confident learner for Pρ
n.

The proof, which follows from observing that d̃T can be used to compute xi whenever 1i ∈ GT , is
deferred to Section 4 (Lemma 33). It is now enough to show no such learner exists.
Proof [Sketch, Proposition 19] By Lemma 20 and Yao’s minimax principle, it is enough to exhibit a
distribution over Pρ

n such that any deterministic confident learner on t samples fails with probability

4. We note this can be made ‘proper’ simply by adding the all 0’s and all 1’s function to the class. This only makes IDE
harder, so it does not effect the following lower bound.
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at least 7/8. We will use the uniform distribution over Pρ
n, which corresponds to choosing Dρ

x for
a uniformly random x ∈ {0, 1}n. Observe it is sufficient to consider learners A that output ⊥ on
the noisiest n

2 coordinates5 and output the majority bit otherwise, since these maximize the learner’s
success rate (see Proposition 32 for details). The idea is to then observe that unless t is sufficiently
large, for any choice of Dρ

x the following two events almost certainly occur across T ∼ (Dρ
x)t:

1. There is a coordinate i ∈ [n] flipped by noise in every example: ∀y ∈ T : yi ̸= xi

2. There are at least n/2 coordinates i ∈ [n] with empirical density 0 < 1
t

∑
y∈T yi < 1.

A fails on any such input by construction, since it outputs the empirical majority on a flipped
coordinate. The probability that there exists at least one coordinate that is flipped in each of t
samples is 1 − (1 − ρt)n ≥ 15/16 by our choice of constants. On the other hand, the expected
number of coordinates with empirical density 0 or 1 is at most 2n(1 − ρ)t ≤ 2ne−ρt ≤ n

32 by our
assumptions on ρ. By Markov’s inequality and a union bound both conditions hold with probability
greater than 7/8, so the algorithm cannot succeed with more than 1/8 probability as desired.

3.2. PAC Learning vs. Weak Density Estimation

We now show weak density estimation is necessary but not sufficient to PAC-learn. All proofs are
sketched or otherwise shortened, and detailed versions can be found in Section 5.

Proposition 21 Let (P, X,H) be a class that is PAC-learnable in nPAC(ε, δ) samples. Then
(P, X,H) has a weak density estimator satisfying

nWDE(ε, δ) ≤ O

(
nPAC(ε/3, δ) +

log(ΠH(nPAC(ε/3, δ))) + log(1/δ)

ε2

)
,

where we recall ΠH is the growth function ΠH(n) := maxS⊂X:|S|=n |{H|S}|.

Proof Run a PAC-learner L across all labelings of a sample T of size nPAC(ε/3, δ) to generate

CT := {L(T, h(T )) : h ∈ H}.

Hopkins et al. (2024) observed CT is a ‘non-uniform cover’ in the sense that for each h ∈ H , if we
define cT : H → CT by cT (h) := L(T, h(T )), then cT (h) is close to h with high probability:

∀h ∈ H : Pr
T
[dD(h, cT (h)) > ε/3] < δ.

To build our WDE, we directly estimate distances on CT and extend to H via cT . Draw a fresh
sample T ′ of O( log |CT |+log(1/δ)

ε2
) unlabeled examples. By Chernoff and Union bounds, the empirical

estimator d̂T ′(h, h′) := 1
|T ′|

∑
x∈T ′

1{h(x) ̸= h′(x)} is close to dD with high probability on CT :

Pr
T ′

[
∃h, h′ ∈ CT : |d̂T ′(h, h′)− dD(h, h

′)| > ε/3
]
< δ.

5. I.e. coordinates with empirical density closest to 1/2, ties broken arbitrarily.

10
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We can extend d̂T ′ to an approximate estimator over all of H by defining for all h, h′ ∈ H:

d̃T∪T ′(h, h′) := d̂T ′(cT (h), cT (h
′)).

We argue this estimate is accurate across all hypotheses which are close to their image under cT :

GT∪T ′,D := {g ∈ H : dD(g, cT (g)) ≤ ε/3}.

Assuming our empirical estimates on CT are good, note for any g, g′ ∈ GT∪T ′,D we can write:

|d̃T∪T ′(g, g′)− dD(g, g
′)| = |d̂T ′(cT (g), cT (g

′))− dD(g, g
′)|

≤ |d̂T ′(cT (g), cT (g
′))− dD(cT (g), cT (g

′))|+ dD(g, cT (g)) + dD(g
′, cT (g

′))

≤ ε,

Thus we have that each h ∈ H lies in GT∪T ′,D with probability at least 1− δ, and all estimates
in GT∪T ′,D are ε-accurate with probability at least 1− δ, which gives the desired WDE.

Given the closeness of weak and intermediate density estimation, one might hope to amplify
weak estimation to a PAC-learner. Unfortunately, the main barrier to such a proof (lacking knowl-
edge of the well-estimated set) is inherent, and we are able to give a very strong refutation of WDE’s
sufficiency: even a perfect weak estimator (i.e. one with error ε = 0) isn’t sufficient to PAC-learn.

Theorem 22 There exists a class (P, X,H) with metric entropy m(ε) ≤ O(21/ε) and a WDE on
nWDE(0, δ) ≤ O (log(1/δ)) samples which is not PAC-learnable.

We first describe the construction, which is similar in spirit to the UBME counterexample of Dudley
et al. (1994). Let X = {0, 1, 2}N. For each i ∈ N, let εi := 1

log(i+255) , define fi := 1[xi = 0], and
Di to be the distribution over x ∈ X where xi is chosen from {0, 1} uniformly at random and all
remaining coordinates j ̸= i are drawn independently from the categorical distribution

Pr[xj = 0] = Pr[xj = 1] = ϵj , and Pr[xj = 2] = 1− 2ϵj .

Finally, define P = {Di}i∈N and H = {fi}i∈N. We first argue that (P, X,H) has a WDE.

Proposition 23 (P, X,H) has a weak density estimator on nWDE(0, δ) ≤ O(log(1/δ)) samples.

Proof Fix any fj , fk, and observe that across the choices of Di, dDi(fj , fk) depends only on
whether i ∈ {j, k}. Namely, for any j ̸= i we have dDi(fi, fj) =

1
2 , while any i ̸= j ̸= k satisfy

dDi(fj , fk) = ϵj(1 − ϵk) + ϵk(1 − ϵj). Thus we can compute distances simply by checking if
i ∈ {j, k}. With this in mind, given a sample T of size O(log(1/δ)), let µT

ℓ := 1
t

∑
y∈T

yℓ and define:

d̃T (fj , fk) =

{
ϵj(1− ϵk) + ϵk(1− ϵj) if µT

j , µ
T
k < 1/3

1/2 otherwise,

and let GT,D be the set of functions with good empirical averages:

GT,D :=

{
fi :

∣∣∣∣ED[fi]− µT
i

∣∣∣∣ < 1/6

}
.

11
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Fix any Di ∈ P and fj ∈ H . First, observe that by a Chernoff bound, fj ∈ GT,Di with probability
at least 1 − δ. Second, notice that for all functions fℓ ∈ GT,Di , we are assured that µT

ℓ < 1/3 if
and only if ℓ ̸= i (since E[fi] = 1/2, while E[fℓ] ≤ 1/8 for ℓ ̸= i). Since this condition exactly
determines the distances between hypotheses, d̃T has zero error across GT,Di as desired.

Next, we claim (P, X,H) has small metric entropy, which simply follows from observing that for
any fixed Di, most hypotheses are close to the all 0’s function (see Section 5, Proposition 37).

Proposition 24 (P, X,H) has metric entropy at most m(ε) ≤ O(21/ε).

Finally, we argue our class is not PAC-learnable. The proof has a similar flavor to our lower bound
against IDEs: the learner cannot distinguish between ground truth and hypotheses that happen to
look consistent due to a small amount of noise (here generated by the ϵi’s).

Proposition 25 (P, X,H) is not PAC-learnable.

Proof [Sketch] By Yao’s principle it suffices to find for every t ∈ N a randomized strategy for the
adversary over which any deterministic learner on t samples fails with at least constant probabil-
ity. For each n ∈ N, consider the strategy that selects from the set {Di, fi}i∈[n] with probability
Pr[(Di, fi)] ∝ ϵti. For each j ∈ [n], call a sample S consistent with (Dj , fj) if for all (x, y) ∈ S, we
have x ∈ supp(Dj) and fj(x) = y. The idea is to argue that when the learner’s sample is consistent
with multiple coordinates, the posterior choices over consistent (Dj , fj) are uniform and the learner
cannot distinguish the ground truth. On the other hand, for large enough n ≫ t, there are almost
always multiple consistent coordinates. See Section 5 (Proposition 38) for further details.

3.3. Density Estimation, Uniform Convergence, and UBME

Finally, we compare density estimation with prior paradigms in the literature. All proofs are
sketched or otherwise shortened, and detailed versions can be found in Section 6. We start by
introducing a relaxed variant of uniform convergence called uniform estimation.

Definition 26 (Uniform Estimation) We say (P, X,H) satisfies the uniform estimation property
if there exist a family of estimators {ES}S∈(X×{0,1})∗ : H → R+ and a function n = nUE(ε, δ)
such that for all ε, δ > 0, D ∈ P , and h ∈ H:

Pr
S∼(D×h)n

[∃h′ ∈ H : |ES(h′)− errD×h(h
′)| > ε] ≤ δ.

Uniform estimation is the natural supervised analog of density estimation, estimating errD×h(h
′) =

dD(h, h
′) from labeled samples. We formalize this connection by showing the two are equivalent

so long as the underlying class has UBME.6

Theorem 27 If (P, X,H) has a uniform estimator on nUE(ε, δ) samples, then (P, X,H) has a
density estimator satisfying

nDE(ε, δ) ≤ O

(
nUE(ε

′, δ′) +
log(ΠH(nUE(ε

′, δ′))) + log(1/δ)

ε2

)
6. Note unlike the distribution-free case this is trivially false otherwise since uniform estimation implies UBME, but

any triple (D,X,H) has a trivial density estimator.

12
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where ε′ = O(ε), δ′ = O( δ
ΠH(nUE(ε/4,δ/2))). Conversely, if (P, X,H) has a density estimator on

nDE(ε, δ) samples and has metric entropy m(ε), then (P, X,H) has a uniform estimator satisfying

nUE(ε, δ) ≤ O

(
nDE(ε/4, δ/2) +

log(m(ε/4)) + log(1/δ)

ε2

)
.

Theorem 27 implicitly revolves around the fact that under UBME, both uniform and density estima-
tion are equivalent to building a (bounded) uniform ε-cover C and a corresponding covering map
c : H → C such that ∀h ∈ H : dD(c(h), h) ≤ ε. This type of structure allows us to apply Yatracos
(1985)’s trick extending empirical estimates on C to good estimates on all of H . We now overview
the constructions underlying Theorem 27, leaving proof details to Section 6 (Theorem 39).

DE + UBME =⇒ UE: Running the UE outputs a distribution D′ s.t. TVH∆H(D′, D) is small.
UBME promises that D′ has a known cover C and covering map c, which is in turn a covering map
for D as well (as in Proposition 16). We can then define our estimators by drawing a labeled sample
S, and extending the empirical error of S on C to all of H via ES(h) := errS(c(h)).

UE =⇒ DE: Hopkins et al. (2024) showed it is possible to build a cover C for any learnable
class from unlabeled samples (see Section 6, Lemma 40). We show that using the uniform estimator,
it is also possible to construct C’s associated covering map.7 Draw an unlabeled sample T , and
run the uniform estimator across every possible labeling of T by C to obtain {E(T,h(T ))}h∈C . We
define a covering map by sending h ∈ H to its closest element in C according to these estimates:
c(h) := argminh′∈C E(T,h′(T ))(h). Now draw an unlabeled sample T , define d̃T by extending
empirical estimates on C to H as d̃T ′(h, h′) := d̂T ′(c(h), c(h′)), and output any distribution D′ ∈
P approximately satisfying all estimates.

It is left to examine the connection between density estimation and UBME. We show the latter
actually directly implies weak density estimation.

Proposition 28 Any class (P, X,H) with metric entropy m(ε) has a WDE satisfying

nWTV(ε, δ) ≤ O

(
log(m(ε/8)) + log(1/δ)

ε2

)
.

Proof [Sketch] We argue it is sufficient to simply output the empirical distance estimator on a large
enough unlabeled sample T . UBME promises the existence of an (unknown) cover C and covering
map c. Let GT,D be the set of all h ∈ H s.t. dD(h, c(h)) is estimated to within O(ε) error. The idea
is to observe that the empirical distance of any two h, h′ ∈ GT,D can be factorized through their
distances to c(h) and c(h′) without any knowledge of c, since:

|d̂T (h, h′)− dD(h, h
′)| ≤ |d̂T (c(h), c(h′))− dD(c(h), c(h

′))|+O(ε).

Thus as long as we draw a sufficient number of samples to estimate distances on C, just the existence
of this cover is sufficient to imply d̂T is a WDE. See Section 6 (Proposition 43) for details.

Note that while Proposition 28 subsumes Proposition 21 since any PAC-learnable class has UBME
(Benedek and Itai, 1991), they give quantitatively different sample complexity guarantees. Com-
bined with Dudley et al. (1994), Proposition 28 also implies insufficiency of WDEs, but the ap-
proach is inherently lossy and cannot handle the ‘perfect’ ε = 0 case Theorem 22 covers.

7. Note this is not in general possible for any learnable class, as this would refute Theorem 17.
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4. Detailed proofs of Section 3.1

In this section we study the relation between PAC Learning and intermediate density estimation.
We start with the basic observation that (under UBME), intermediate estimation is sufficient to
PAC-learn.

Proposition 29 Let (P, X,H) be any class with metric entropy m(ε) and an intermediate density
estimator on nIDE(ε, δ) samples. Then (P, X,H) is PAC-learnable in

nPAC(ε, δ) ≤ O

(
nIDE(ε/4, δ/4) +

log(m(ε/4)) + log(1/δ)

ε

)
samples.

Proof Fix D ∈ P and h ∈ H . At a high level, we will use the IDE to find a small subset
C ⊂ H that almost certainly contains some h′ close to h, then learn C directly via empirical risk
minimization.

More formally, run the IDE on an unlabeled sample T of size nIDE(ε/4, δ/4) to get the ap-
proximate metric d̃T and set of well-estimated functions GT . With probability at least 1 − δ/4, all
distances within GT are well-estimated:

∀g, g′ ∈ GT : |d̃T (g, g′)− dD(g, g
′)| ≤ ε/4.

Assume this is the case. Because GT is known, we can find a distribution D′ ∈ P which realizes
these estimates on GT up to an error of ε/4, and therefore satisfies TVGT∆GT

(D,D′) ≤ ε/2. Since
GT ⊂ H and (P, H) has UBME, there exists an ε

4 -cover CT of GT under D′ of size at most
m(ε/4). It is enough to argue that with probability at least 1− δ/2, there exists a hypothesis in CT

with small true risk:
∃h′ ∈ CT : errD×h(h

′) ≤ 3ε

4
.

In this case, if we simply draw O( log |CT |+log(1/δ)
ε ) fresh labeled samples and output the hypothesis

with lowest empirical error, a Chernoff and Union bound imply the resulting hypothesis has error
at most ε with probability at least 1 − δ/4. By a union bound, all steps in this process succeed
simultaneously except with probability δ, which gives the desired learner.

It is left to show a good hypothesis exists in CT with high probability. To see this, observe that
if TVGT∆GT

(D,D′) ≤ ε/2 (which we argued occurs except with probability δ/4), CT is a 3ε/4-
cover for GT under the true distribution D. This follows simply from noting that for any g, g′ ∈ GT

we have:

dD(g, g
′) = dD(g, g

′)− dD′(g, g′) + dD′(g, g′)

≤ TVGT∆GT
(D,D′) + dD′(g, g′),

so distances in the cover under D change by at most ε/2 from their value under D′. On the other
hand, we are promised by the IDE that h ∈ GT with probability at least 1 − δ/4. If both events
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occur, then h is covered by CT , meaning there exists h′ ∈ CT such that dD(h, h′) ≤ 3ε/4 as
desired.

We note that this observation generalizes the result of Kulkarni and Vidyasagar (1997) that
UBME is sufficient for PAC learning under finitely coverable distribution families as these have
simple density estimators. With this out of the way we move to the more involved direction, showing
intermediate density estimation fails necessity.

Theorem 30 There exists a class (P, X,H) which is PAC-learnable in

nPAC(ε, δ) ≤ Õ

(
log(1/δ)

ε2

)
samples, but has no intermediate density estimator.

We first overview the construction, which is based on learning dictators on the noisy hypercube.
Let Xn = {0, 1}n denote the n-dimensional hypercube, and for x ∈ Xn write xi to denote the
value of the ith coordinate of x. Our hypothesis class Hn := {1i : i ∈ [n]} will consist of the set of
dictators on the cube:

1i(x) =

{
1 if xi = 1

0 else.

Finally, for every x ∈ {0, 1}n and ρ > 0, let Dρ
x denote the distribution that samples y ∈ {0, 1}n

by independently setting each bit yi to xi with probability 1 − ρ, and otherwise to 1 − xi. We
equivalently think of y as being generated by applying independent noise to each bit of x, hence the
relation to the noisy cube.

Let Pρ
n := {Dρ

x}x∈Xn be the family of all such distributions. We argue that (Pρ
n, Xn, Hn) is

learnable up to error ρ in Oδ(1) samples, while any IDE requires Ωρ(log(n)) samples. The result
then follows from taking an appropriate infinite disjoint union with n → ∞ and ρ → 0.

We start with the easier of the two, learnability, which simply stems from the fact that our class
is ‘almost constant,’ and can therefore be easily approximated by a constant function.

Lemma 31 For any 1
6 ≥ ρ ≥ 0, (Pρ

n, Xn, Hn) is (ρ, δ)-PAC-learnable in O(log(1/δ)) samples.

Proof Observe that by construction, no matter the distribution and hypothesis chosen by the adver-
sary our class is almost constant in the following sense:

∀Dρ
x ∈ Pρ

n, h ∈ Hn,∃z ∈ {0, 1} : Pr
y∼Dρ

x

[h(y) = z] = 1− ρ.

This follows from the fact that for all x ∈ {0, 1}n and i ∈ [n]:

Pr
y∼Dρ

x

[yi = xi] = 1− ρ,

and every fixed h ∈ Hn depends only on the value of a single coordinate.
This suggests the following strategy: after O(log 1

δ ) samples, simply output the majority label
as a constant function.8 For any ρ bounded away from 1

2 , a Chernoff bound promises that the learner

8. We note this can be made ‘proper’ simply by adding the all 0’s and all 1’s function to the class. This only makes
density estimation harder, so it does not effect the following lower bound.
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picks the true majority label with probability at least 1− δ. Since the majority label has mass 1− ρ,
this gives the desired (ρ, δ)-PAC-learner.

Density estimation is somewhat more involved. At a high level, our lower bound stems from the
fact that the intermediate estimator must ‘declare’ a set of good elements, but the independent noise
across coordinates inherent in Pρ

n makes this challenging without a large number of samples.

Proposition 32 For all n > 2 and 1
6 > ρ > 12 log(1/ρ)

log(n) , any IDE for (Pρ
n, Xn, Hn) uses at least

nIDE(1/6, 1/8) ≥ Ω

(
log(n)

log(1/ρ)

)
samples.

The crux of Proposition 32 lies in the fact that, given a few samples from a random Dρ
x, while it may

be easy to output some x′ close to x with high probability it is impossible to do so confidently. In
other words, the learner should not be able to identify a large set of coordinates on which it knows
it is correct due to the inherent noise in Dρ

x.9 We formalize this connection to confident learning via
the following reduction.

Lemma 33 For any t ∈ N and 1
6 > ρ > 0, if (Pρ

n, Xn, Hn) has a (1/6, 1/8)-IDE on t samples,
then there exists a (randomized) algorithm A : Xt → {0, 1,⊥} with the following guarantee.
Given t samples drawn from any Dρ

x ∈ Pρ
n, with probability at least 1/8, A outputs a string

x̂ ∈ {0, 1,⊥}n such that:

1. x̂ is ‘⊥’ on at most n/2 coordinates,

2. x̂ agrees with x otherwise.

We call any such A a (1/2, 1/8)-confident learner for Pρ
n.

Proof Consider the following algorithm for generating x̂. Draw a sample T of t elements from Dρ
x,

and run the IDE to get d̃T and GT . Pick any 1i ∈ GT (if no such hypothesis exists output the all
‘⊥’ string), and randomly guess the value of its corresponding coordinate in x:

x̂i ∼ Ber(1/2).

For every other 1j ∈ GT , define x̂j by its approximate distance to 1i:

x̂j =

{
x̂i if dT̃ (1i,1j) < 1/2

1− x̂i otherwise.

Output “⊥” in all other circumstances.
At a high level, this generation procedure works because x̂i is correct half the time, and the

true value of any xj is reflected in its indicator’s distance dDρ
x
(1i,1j). More formally, observe that

whenever xi = xj , the distance between the indicators of i and j is

dDρ
x
(1i,1j) ≤ 2ρ < 1/3,

9. Algorithms with this type of guarantee are well-studied in the learning literature under a variety of names such
as “Reliable and Probably Useful” (Rivest and Sloan, 1988), “Confident” (Kane et al., 2017), or “Knows What It
Knows” (Li et al., 2001).
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whereas whenever xi ̸= xj , we have

dDρ
x
(1i,1j) ≥ 1− 2ρ > 2/3.

With probability at least 7/8, d̃T is 1/6-accurate on GT , meaning we can distinguish between these
two cases and correctly identify whether xi = xj . Then as long as x̂i = xi (which occurs with
probability 1/2), the above procedure correctly labels all indices whose indicators are in GT . Thus
as long as |GT | ≥ n

2 , our output x̂ satisfies the desired properties. Since every hypothesis lies in GT

with probability at least 7/8, this occurs with probability at least 3/4 by Markov. Union bounding
over all events, our algorithm succeeds with probability at least 1/8 as desired.

We are now ready to prove Proposition 32 by showing Pρ
n has no confident learner.

Proof [Proof of Proposition 32] It is enough to prove Pρ
n has no (1/2, 1/8)-confident learner on

t = 2 log(n)
5 log(1/ρ) samples. By Yao’s minimax principle, it is enough to show there is a distribution over

Pρ
n such that any deterministic algorithm on t samples fails with probability at least 7/8. We will

use the uniform distribution over Pρ
n, which corresponds to choosing Dρ

x for a uniformly random
x ∈ {0, 1}n.

To simplify the proof, we first argue it is sufficient to consider learners that adhere to the fol-
lowing ‘noisy majority rule’, that is mappings A such that:

1. A outputs ⊥ on the noisiest10 n
2 coordinates,

2. A outputs the majority bit otherwise.

To see this, we argue any learning rule can be updated to satisfy the above constraints in a way that
only improves its success probability. For any x, let Wx ⊂ {0, 1,⊥}n denote the set of ‘winning’
strings, that is those that label at least half the coordinates and always agree with x. Thinking of the
choice of x and T as a jointly distributed variable, expand the success probability of A as:

Pr
x∼{0,1}n,T∼(Dρ

x)t
[A(T ) ∈ Wx] =

∑
T0∈Xt

n

Pr
x,T

[T = T0] Pr
x,T

[A(T0) ∈ Wx|T = T0].

Thus we may make any update to the algorithm’s output A(T0) which cannot decrease the condi-
tional success probability Pr[A(T0) ∈ Wx|T = T0]. We argue that we can always locally update the
output of the algorithm to one following noisy majority without decreasing the success probability.

First, note we may assume without loss of generality that A(T0) labels (answers ‘1’ or ‘0’ on)
exactly half the coordinates. If A(T0) labels more than half, replacing labels with ⊥ up to n

2 can
only increase the probability A(T0) ∈ Wx, while if A(T0) labels fewer than half, we automatically
have A(T0) /∈ Wx so replacing ⊥ even with arbitrary labels up to n/2 also only increases this
probability. With this in mind, let LT0 denote the set of n/2 labeled coordinates in A(T0). Notice
that even after conditioning on T = T0, the coordinates of x in the posterior remain independent

10. I.e. coordinates with empirical density closest to 1/2, ties broken arbitrarily.
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random variables, so we can expand the conditional success probability as:

Pr
x,T

[A(T0) ∈ Wx|T = T0] = Pr
x,T

 ∧
i∈LT0

{A(T0)i = xi}

∣∣∣∣∣∣T = T0


=
∏

i∈LT0

Pr
x,T

[A(T0)i = xi|T = T0].

The posterior probability of any particular xi is maximized by the coordinate’s majority value
maj
y∈T0

{yi}, so we can always set A(T0)i to the majority value without decreasing the overall suc-

cess probability.
To ensure we only label the noisiest coordinates, observe further that the posterior probability

of the majority value increases the further its empirical mean µT0
i = 1

t

∑
y∈T0

yi is from 1/2. Since

all the coordinates are identically distributed conditioned on having the same empirical mean by
symmetry, any coordinate pair (i, j) satisfying

1. A(T0) labels j but not i:
A(T0)i = ⊥, A(T0)j ∈ {0, 1}

2. Coordinate j is noisier than i: ∣∣∣∣µT
j − 1

2

∣∣∣∣ < ∣∣∣∣µT
i − 1

2

∣∣∣∣
can be swapped to setting A(T0)i to its majority label and A(T0)j to ⊥ without decreasing the
success probability. Iteratively applying these updates leads to satisfying noisy majority.

It is left to show that any algorithm following the noisy majority rule fails with high probability.
To see this, observe that unless t is sufficiently large, for any choice of Dρ

x the following two events
almost certainly occur:

1. There is a coordinate whose value is flipped by noise in every example:

∃i,∀y ∈ T : yi ̸= xi

2. There are at least n/2 coordinates with empirical density 0 < µT
i < 1.

Noisy majority fails on any such input by construction, since it outputs majority label of a flipped
coordinate. The probability there exists at least one coordinate that is flipped in each of t samples
is 1 − (1 − ρt)n ≥ 15/16 by our choice of constants. On the other hand, the expected number of
coordinates with empirical density 0 or 1 is at most 2n(1− ρ)t ≤ 2ne−ρt ≤ n

32 by our assumptions
on ρ. By Markov’s inequality and a union bound both conditions hold with probability greater than
7/8, so the algorithm cannot succeed with more than 1/8 probability as desired.

Finally we argue that taking the disjoint union of infinitely many such instances gives the full
result.
Proof [Proof of Theorem 30] Consider the sequence {ρn}n∈N where ρn = Θ

(
log log(n)
log(n)

)
. For the

correct choice of constant (and large enough n), note that the following two conditions hold:
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1. ρn satisfies the conditions of Proposition 32: 1
6 > ρ > 12 log(1/ρ)

log(n)

2. tn := 2 log(n)
5 log(1/ρn)

is increasing.

Consider the disjoint union of classes
⋃

n∈NHρn
n . We first prove this class is PAC-learnable. Given

any ε, δ > 0, we consider two cases. In the first case, the adversary selects a distribution/hypothesis
pair indexed by n such that ρn ≤ ε. In this case, PAC-learnability follows exactly the same argument
as in Proposition 32. Otherwise, the adversary selects n such that ρn > ε. By definition of ρn it must
therefore be the case that n = |Hρn

n | ≤ O
((

1
ε

)1/ε), so standard arguments show that outputting

any empirical risk minimizer over O(
log 1

δ
ε +

log 1
ε

ε2
) samples is a PAC-learner. Finally note these

cases can be distinguished by the learner in one sample, since each instance space is ‘marked’ by
its corresponding index (value of n).

On the other hand, it is easy to see there cannot be any bounded (1/6, 1/8)-IDE for this class.
For any fixed sample size t, the adversary can always choose n such that tn > t (since {tn} is
increasing), and corresponding ρn satisfying the conditions of Proposition 32. Since Hρn

n then has
no (1/6, 1/8)-IED on t samples, this completes the proof.

We note it is possible to improve the sample complexity of the learner to Õ(1ε ) if one only
wishes to refute density estimation (or equivalently uniform estimation, see Section 6), since the
assumption ρ > Ω( log(1/ρ)log(n) ) can be removed in this simpler case.

5. Detailed proofs of Section 3.2

In this section, we show that weak density estimation is necessary but not sufficient to PAC-learn.
We start with necessity.

Proposition 34 Let (P, X,H) be a class that is PAC-learnable in nPAC(ε, δ) samples. Then
(P, X,H) has a weak density estimator on

nWDE(ε, δ) ≤ O

(
nPAC(ε/3, δ) +

log(ΠH(nPAC(ε/3, δ))) + log(1/δ)

ε2

)
samples.

Proof The proof appeals to the non-uniform covering technique of Hopkins et al. (2024). In partic-
ular, draw an unlabeled sample T of size nPAC(ε/3, δ) and run a PAC-learner L across all possible
labelings of T to generate the set

CT := {L(T, h(T )) : h ∈ H}.

HKLM (Hopkins et al., 2024, Lemma 5.2) observed CT non-uniformly covers H in the following
sense:

∀h ∈ H : Pr
T
[∃h′ ∈ CT : dD(h, h

′) < ε/3] > 1− δ.

Our WDE relies on a refinement of this fact implicit in their proof. Define a mapping cT : H → CT

by
cT (h) := L(T, h(T )),
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and observe that since L is an (ε/3, δ)-PAC-learner, for any fixed h ∈ H , cT (h) is close to h with
high probability:

∀h ∈ H : Pr
T
[dD(h, cT (h)) > ε/3] < δ.

To build our WDE, this means we can simply estimate distances on CT , and extend to H via cT .
Formally, draw a fresh sample T ′ of O( log |CT |+log(1/δ)

ε2
) unlabeled examples. By Chernoff and

Union bounds, the empirical estimator d̂T (h, h′) := 1
|T |
∑
x∈T

1{h(x) ̸= h′(x)} is close to the true

distance metric dD with high probability across elements of CT :

Pr
T ′

[
∃h, h′ ∈ CT : |d̂T ′(h, h′)− dD(h, h

′)| > ε/3
]
< δ.

We can extend d̂T ′ to an approximate estimator over all of H by defining for all h, h′ ∈ H:

d̃T,T ′(h, h′) := d̂T ′(cT (h), cT (h
′)).

We argue this approximate metric is accurate across all hypotheses which are close to their image
under cT . With this in mind, define

G(T,T ′),D := {g ∈ H : dD(g, cT (g)) ≤ ε/3}.

Assuming our empirical estimates on CT are good, for any g, g′ ∈ G(T,T ′),D we can write:

|d̃T,T ′(g, g′)− dD(g, g
′)| = |d̂T ′(cT (g), cT (g

′))− dD(g, g
′)|

≤ |d̂T ′(cT (g), cT (g
′))− dD(cT (g), cT (g

′))|+ dD(g, cT (g)) + dD(g
′, cT (g

′))

≤ ε,

where the first inequality follows from noting that dD(g, g′) = Prx∼D[g(x) ̸= g′(x)] and dD(cT (g), cT (g
′)) =

Prx∼D[cT (g)(x) ̸= cT (g
′)(x)] can only differ on elements x where g(x) ̸= cT (g)(x) or g′(x) ̸=

cT (g
′)(x).

Putting everything together, we have that each h ∈ H lies in G(T,T ′),D with probability at least
1 − δ, and that all estimates in G(T,T ′),D are ε-accurate with probability at least 1 − δ giving the
desired WDE.

Given the closeness of weak and intermediate density estimation, one might hope there is some
way to amplify weak estimation to a PAC-learner. Unfortunately, the main barrier in modifying the
proof (lacking knowledge of the well-estimated set) turns out to be inherent, and we are able to give
a very strong refutation of WDE’s sufficiency: even a perfect weak estimator (i.e. one with error
ε = 0) isn’t sufficient to PAC-learn.

Theorem 35 There exists a class (P, X,H) with metric entropy m(ε) ≤ O(21/ε) and a WDE
with

nWDE(0, δ) ≤ O (log(1/δ))

samples, but is not PAC-learnable.
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We first describe the construction, which is similar in spirit to the UBME counterexample of Dudley
et al. (1994). Let X = {0, 1, 2}N, and {ϵi}i∈N be the sequence εi :=

1
log(i+255) . For each i ∈ N, let

fi denote the indicator that xi = 0:

fi(x) =

{
1 xi = 0

0 otherwise,

and define Di to be the distribution over x ∈ X where the ith coordinate is chosen from {0, 1}
uniformly at random

Pr[xi = 0] = Pr[xi = 1] =
1

2
,

and all remaining coordinates j ̸= i are drawn independently from the categorical distribution

Pr[xj = 0] = Pr[xj = 1] = ϵj , and Pr[xj = 2] = 1− 2ϵj .

Finally, define P = {Di}i∈N and H = {fi}i∈N. We first argue that (P, X,H) has a WDE.

Proposition 36 (P, X,H) has a weak density estimator on

nWDE(0, δ) ≤ O(log(1/δ))

samples.

Proof The idea is to observe that for any fixed hypotheses fj , fk, the distance dDi(fj , fk) depends
only on whether i ∈ {j, k}. Further, fixing Di for any particular ℓ it is easy to check whether ℓ = i
by looking at the empirical mean of fℓ. This allows us to define an estimator just based on empirical
means which is correct across any two well-estimated hypotheses.

Formally, observe that any distribution Di and hypotheses fj , fk where i, j, k are distinct satisfy:

dDi(fj , fk) = Pr
x∼Di

[(xj = 0 ∧ xk ̸= 0) ∨ (xk = 0 ∧ xj ̸= 0)]

= ϵj(1− ϵk) + ϵk(1− ϵj)

On the other hand, hypotheses fi, fj for i ̸= j satisfy:

dDi(fi, fj) = Pr
x∼Di

[(xi = 0 ∧ xj ̸= 0) ∨ (xj = 0 ∧ xi ̸= 0)]

=
1

2
(1− ϵj) +

ϵj
2

= 1/2.

Given a sample T of size O(log(1/δ)), denote the empirical density of fj under T by µT
j . We define

the following approximate distance estimate on H:

d̃T (fj , fk) =

{
ϵj(1− ϵk) + ϵk(1− ϵj) if µT

j , µ
T
k < 1/3

1/2 otherwise.

We argue that d̃T satisfies the conditions of a (0, δ)-WDE. Let GT,D be the set of functions with
good empirical averages:

GT,D :=

{
fi :

∣∣∣∣ED[fi]− µT
i

∣∣∣∣ < 1/6

}
.
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Fix any Di ∈ P and fj ∈ H . First, observe that by a Chernoff bound, fj ∈ GT,Di with probability
at least 1 − δ. Second, notice that since µi := EDi [fi] = 1/2 and any other µj ≤ 1/8, for all
functions fℓ ∈ GT,Di , we are assured that µT

ℓ < 1/3 if and only if ℓ ̸= i. Since this condition
exactly determines the distances between hypotheses, d̃T has zero error across GT,Di as desired.

Next, we exhibit a small cover for every distribution in (P, X,H) based on the fact that for any
fixed Di, most hypotheses are close to 0.

Proposition 37 (P, X,H) has metric entropy at most

m(ε) ≤ O(21/ε).

Proof Observe that for any fixed Di and ε > 0, the following set of hypotheses forms an ε-cover:

1. All hypotheses fj for which E
Di

[fj ] ≥ ε/2,

2. The first hypothesis fk such that E
Di

[fk] ≤ ε/2,

since for any k′ > k, k′ ̸= i we have

dDi(fk, fk′) ≤ ϵk ≤ ε

by construction. Moreover, by our choice of {ϵj}j∈N, we have k ≤ O(21/ε) which gives the desired
bound on metric entropy.

Finally, we argue our class is not PAC-learnable. The proof has a similar flavor to our lower bound
against intermediate density estimation: the learner cannot distinguish between ground truth and
hypotheses that happen to look consistent due to a small amount of noise (here generated by the
ϵi’s).

Proposition 38 (P, X,H) is not PAC-learnable.

Proof By Yao’s minimax principle it suffices to find for every t ∈ N a randomized strategy for
the adversary over which any deterministic learner on t samples fails with at least constant proba-
bility. For each n ∈ N, consider the adversary strategy that selects from the set {Di, fi}i∈[n] with
probability:

Pr[(Di, fi)] ∝ ϵti.

Denote this adversary distribution by A and for each j ∈ [n], call a sample S consistent with
(Dj , fj) if for all (x, y) ∈ S, we have x ∈ supp(Dj) and fj(x) = y. For every W ⊂ [n], let
EW denote the event that the learner’s sample S is consistent with (Dj , fj) for all j ∈ W and
inconsistent for every j ∈ [n] \ W . The idea is to argue that when S is consistent with multiple
coordinates, the learner cannot distinguish the ground truth and fails with constant probability, and
further that this almost always occurs for large enough n. More formally, we will show the following
claims:

1. If EW holds for any |W | > 1, the learner must have constant error with probability 1/2,

2. With probability at least 1/2, EW holds for some |W | > 1.
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Since the learner’s probability of success can be broken into conditional probabilities over EW

(which exactly partition the sample space), the result then follows.
To prove the first claim, we show that, conditioned on EW , the posterior probability of any

adversary choice j ∈ W is uniform. To see this, first observe that fixing the choice of (Dj , fj), a
coordinate i ̸= j of our sample S is consistent if and only if every example (x, y) ∈ S satisfies
xi = xj , which occurs with probability ϵti. Then by Bayes’ rule for any j ∈ W we can write:

Pr
A,S

[(Dj , fj)|EW ] ∝ Pr
A,S

[EW |(Dj , fj)] Pr
A
[(Dj , fj)]

∝

(∏
i/∈W

(
1− ϵti

))
·

 ∏
i∈W\{j}

ϵti

 · ϵtj

=

(∏
i/∈W

(
1− ϵti

))
·

(∏
i∈W

ϵti

)

which is independent of j.
We want to show that conditioned on EW for |W | > 1, any learner has constant error with

probability at least 1/2. By construction, it is enough to argue that any learner fails to select the
adversary’s choice fi itself with probability at least 1/2 (since fi has average 1/2 and all other
options have average at most 1/4, any other choice incurs constant error). Since the posterior over
possible ground truths fj is uniform for j ∈ W , any strategy correctly outputs fi with probability
at most 1

|W | ≤
1
2 , which gives the desired result.

It is left to show that some EW holds for |W | > 1 with high probability. Given a fixed choice
of Di, observe the probability |W | = 1 is exactly

Pr[EW : |W | = 1] =
∏

j∈[n]\{i}

(
1− ϵtj

)
≤

n−1∏
j=1

(
1− ϵtj

)

≤ e
−

n−1∑
j=1

ϵtj
.

Since we chose ϵj = 1
log(j+255) to decay sufficiently slowly, the sum in the exponent diverges. Thus

for any fixed t there is a sufficiently large n for which Pr[EW : |W | = 1] ≤ 1/2 which completes
the proof.

6. Detailed proofs of Section 3.3

In this section, we give a detailed comparison between our notions of density estimation and clas-
sical notions in learning theory such as uniform estimation, uniform convergence, and UBME. This
allows us to give a direct comparison of our new conditions to prior work on the distribution-family
model.
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6.1. Density vs. Uniform Estimation

We first discuss the close connection between density estimation and uniform estimation. Intuitively,
it is clear the notions are intimately related. In fact, they essentially only differ in their quantification:
the former promises that with a large enough sample from any fixed D ∈ P , we can estimate
dD(h, h

′) for all pairs h, h′ ∈ H , while the latter promises that with a large enough sample from
any fixed pair (D,h), we can estimate dD(h, h

′) for all h′ ∈ H .
With this in mind, one might hope to show density and uniform estimation are equivalent. In

general this cannot be true since uniform estimation implies the class has uniformly bounded metric
entropy, while density estimation does not (any fixed-distribution class has a trivial density estima-
tor!). We show this is the only barrier: assuming UBME, density and uniform estimation are indeed
equivalent.

Theorem 39 If (P, X,H) has a uniform estimator on nUE(ε, δ) samples, then it has a density
estimator on

nDE(ε, δ) ≤ O

(
nUE(ε

′, δ′) +
log(ΠH(nUE(ε

′, δ′))) + log(1/δ)

ε2

)
samples, where ε′ = O(ε), δ′ = O( δ

ΠH(nUE(ε/4,δ/2))).
Conversely, if (P, X,H) has a density estimator on nDE(ε, δ) samples and has metric entropy

m(ε), then it has a uniform estimator on

nUE(ε, δ) ≤ O

(
nDE(ε/4, δ/2) +

log(m(ε/4)) + log(1/δ)

ε2

)
samples.

The proof of Theorem 39 revolves (implicitly) around the fact that under UBME, both density
and uniform estimation are equivalent to the ability to build a (bounded) uniform ε-cover C and a
corresponding covering map, that is a function c : H → C such that:

∀h ∈ H : dD(c(h), h) ≤ ε,

where D is the adversary’s choice of distribution. We call (C, c) a covering-map pair. This type of
structure is useful since it allows us to apply Yatracos (1985)’s trick of extending empirical estimates
on C (which is finite), to good estimates on all of H via the covering map. With this in mind we
prove the backward direction of Theorem 39 which follows similarly to Theorem 35, replacing the
non-uniform cover with a true covering-map pair.
Proof [Proof of Theorem 39: DE+UBME =⇒ UE] Draw a sample T of size nDE(ε/4, δ/2) and
run the density estimator to get a distribution D′ ∈ P such that

Pr
T
[TVH∆H(D,D′) > ε/4] < δ/2.

Since (P, X,H) has bounded metric entropy, the distribution D′ has a bounded (ε/4)-covering-
map pair (CD′ , cD′) with |CD′ | ≤ m(ε/4). If it is truly the case that TVH∆H(D′, D) ≤ ε/4, then
(CD′ , cD′) is also an (ε/2)-covering-map pair for (D,X,H). To build a uniform estimator, we lift
empirical estimates from CD′ to all of H using the covering map cD′ .
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More formally, draw a sample S of O(
log |CD′ |+log(1/δ)

ε2
) fresh labeled examples to estimate the

error of every hypothesis in CD′ . We define our estimator over H as

ES(h) := errS(cD′(h)).

So long as (CD′ , cD′) is truly an (ε/2)-covering-map pair under D, the error of h and c(h) can
differ by at most ε/2. Thus if the empirical errors on CD′ are accurate up to ε/2, ES is within ε of
the true risk on all hypotheses by construction. By a Chernoff and Union bound this latter guarantee
also holds with probability at least 1− δ/2, which completes the result.

To prove the forward direction of Theorem 39, we will need the following related lemma of
Hopkins et al. (2024) that shows how to build a finite cover of any learnable class.

Lemma 40 (Learnable Classes are Coverable (Hopkins et al., 2024, Theorem G.9)) For any ε, δ >
0 and PAC-learnable class (P, X,H), there is an algorithm using nPAC(ε

′, δ′) samples that con-
structs an ε-cover of H of size ΠH(nPAC(ε

′, δ′)) with probability at least 1 − δ where ε′ = O(ε)
and δ′ = O( δ

ΠH(nPAC(ε/2,1/2))
).

Note that this algorithm does not produce a corresponding covering map (indeed this would imply
necessity of density estimation, which we refuted in Section 3.1). In this case, we will use the
uniform estimator to build a corresponding covering map, from which it is then easy to deduce a
density estimate.
Proof [Proof of Theorem 39: UE =⇒ DE+UBME] First, observe that any (ε/2, δ)-uniform
estimator immediately implies a PAC-learner by taking any minimizer of the output estimator ES(·)
on H . By Lemma 40, this means we can build an (ε/16)-cover C of size ΠH(nUE(ε

′, δ′)) with
probability at least 1− δ/3 using nUE(ε

′, δ′) labeled samples.
We now use the uniform estimator to build C’s associated covering map. In particular, draw an

unlabeled sample T of size nUE(
ε
16 ,

δ
3|C|) from the marginal distribution D, and consider the family

of estimators obtained by looking at all labelings of T across our cover C:

{Eh}h∈C , Eh := E(T,h(T )).

We define our covering map by sending any h ∈ H to its closest element in C by these estimates:

c(h) := argminh′∈C Eh′(h),

breaking ties arbitrarily. Notice that as long as no run of the estimator fails (i.e. each Eh′ has valid
estimates within ε/16) and C is indeed an ε/16-cover, then for every h ∈ H:

1. There exists h′ ∈ C such that
Eh′(h) ≤ ε

8
,

2. Every h′ ∈ C such that Eh′(h) ≤ ε
8 satisfies

dD(h
′, h) ≤ 3ε

16
.
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Thus (C, c) is an 3ε
16 -covering-map pair. Further, these conditions hold except with probability 2δ/3.

Now that we have identified a covering-map pair, we can empirically estimate distances on C

and extend to H via c. Draw a sample T ′ of O( log |C|+log(1/δ)
ε2

) fresh unlabeled examples to directly
estimate the distance between all hypotheses in C. By Chernoff and Union bounds, we have that
all empirical distance estimates on C are accurate up to ε/8 with probability at least 1 − δ/3. We
extend these estimates to all of H via the covering map similar to our approach in Proposition 34:

d̃T ′(h, h′) := d̂T ′(c(h), c(h′)).

Since (C, c) is a 3ε
16 -covering-map pair and distances in C are well-estimated:

∀h, h′ ∈ H : |d̃T ′(h, h′)− dD(h, h
′)| ≤ ε/2.

Finally, output any D′ ∈ P approximately satisfying the estimates for all pairs h, h′ ∈ H:

|dD′(h, h′)− d̃T ′(h, h′)| ≤ ε/2.

Such a distribution is guaranteed to exist by validity of the estimates, and satisfies TVH∆H(D,D′) ≤
ε by construction. Union bounding over all events, the algorithm succeeds with probability at least
1− δ which completes the proof.

We note that (as stated in Theorem 7) it is possible to give an equivalence between intermediate
density estimation and a corresponding relaxed form of uniform estimation through exactly the same
argument (we omit the details). This is likely not the case for weak density estimation, where the
situation is more subtle. In particular the natural notion of weak uniform estimation (where the error
of most hypotheses must be well-estimated, but the learner does not know which ones) is essentially
trivial for any class by Chernoff. On the other hand, weak density estimation asks for more than just
a good estimate on most pairs (which would follow similarly), but rather for the existence of a large
subclass where all estimates are good. We leave the characterization of classes satisfying this latter
property as a problem for future work.

Since uniform estimation characterizes learnability in the distribution free setting,11 Theorem 39
immediately implies that density estimation is an equivalent characterization of the traditional PAC
model.

Corollary 41 In the distribution-free setting, (X,H) is PAC-learnable if and only if it has UBME
and a density estimator.

Proof If (X,H) is PAC-learnable, then it satisfies uniform convergence (Vapnik and Chervonenkis,
1974; Blumer et al., 1989) which implies the existence of a density estimator by Theorem 39. If
(X,H) has a density estimator and has UBME, then it is PAC-learnable by Proposition 29.

We remark that in the distribution-free case, one does not have to factor through uniform estimation,
and could instead use a more classical approach by arguing H∆H has finite VC and therefore
satisfies fast convergence of empirical densities in H∆H-distance (see e.g. (Anthony et al., 1999,
Theorem 4.9)). This approach fails in our setting since H∆H need not have finite VC.

11. Unlike the general setting, uniform estimation and uniform convergence are equivalent in the distribution-free case.
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6.2. Uniform Convergence and UBME

We now discuss the relation between density estimation and prior conditions considered in the
distribution-family model: uniform convergence (for sufficiency) and uniformly bounded metric
entropy (for necessity). First, we show that density estimation strictly contains uniform conver-
gence.

Proposition 42 In the distribution-family model:

Uniform Convergence ⊊ DE + UBME.

Proof Containment is immediate from the characterization of DE + UBME as uniform estimation
(Theorem 39). Strictness follows from Benedek and Itai (1991)’s example of a learnable class that
fails uniform convergence. Let D be the uniform distribution over [0, 1], and let H consist of all sets
of finite support and the all 1’s function. It is easy to see uniform convergence fails, since choosing
h = 1, for any finite sample T there is always a completely consistent hypothesis with error 1,
namely the indicator 1T . On the other hand, since P is just a single distribution, density estimation
is trivial.

Finally, we discuss the connection between weak density estimation and UBME.

Proposition 43 Any class (P, X,H) with metric entropy m(ε) has a weak density estimator on

nWDE(ε, δ) ≤ O

(
log(m(ε/8)) + log(1/δ)

ε2

)
samples.

Proof We argue it is sufficient to simply output the empirical distance estimator on an unlabeled
sample T of size O( log(m(ε/8))+log(1/δ))

ε2
). Fix any D ∈ P , and let (C, c) denote an (ε/8)-covering-

map pair promised by UBME. Note that (C, c) is not known to the learner, and is used only in the
analysis.

By Chernoff and Union bounds, we have with probability at least 1−δ that the empirical distance
estimator d̂T is within ε/8 of its true value for all pairs in C. Now consider the set GT,D ⊂ H of
hypotheses whose distance to their cover representative is well estimated:

GT,D :=
{
h ∈ H : |d̂T (h, c(h))− dD(h, c(h))| ≤ ε/8

}
.

For any two elements h, h′ ∈ GT,D, we have

1. The distances dD(h, h′) and dD(c(h), c(h
′)) are close:

|dD(h, h′)− dD(c(h), c(h
′))| ≤ ε/4

2. The empirical distances d̂T (h, h′) and d̂T (c(h), c(h
′)) are close

|d̂T (h, h′)− d̂T (c(h), c(h
′))| ≤ ε/2
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since h∆h′ and c(h)∆c(h′) can only differ on h∆c(h)∪h′∆c(h′), both of which have true measure
at most ε/8 and empirical measure at most ε/4 by assumption. Thus as long as the empirical
distance estimates on C are indeed accurate up to ε/8, we have

|d̂T (h, h′)− dD(h, h
′)| ≤ |d̂T (c(h), c(h′))− dD(c(h), c(h

′))|+ 3ε/4

≤ ε

as desired. Since any fixed h ∈ H lies in GT,D with probability at least 1− δ by a Chernoff bound
and distances in C are also well estimated with probability at least 1 − δ, this gives the desired
estimator.

Note that if one is not interested in relative sample complexities, this subsumes Proposition 34 since
any PAC-learnable class has UBME (Benedek and Itai, 1991). Proposition 43 also implies that the
counter-example of Dudley et al. (1994) shows weak estimation fails sufficiency as well. However,
our construction in the previous section gives a stronger separation since the above approach is
inherently lossy and cannot handle ε = 0.
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