
7 Appendix474

7.1 Finetuning CLIP on in-domain Data475

Figure 10: Captioning precision and re-
call of finetuned CLIP as a function of
the dataset size. The logarithmic trend
suggests that around 103 image-caption
pairs unlock sufficient performance. Val-
ues obtained with � = 0.8.

In our experiments, the dot products between the embed-476

dings of possible captions and of an RGB observation477

from our environment y = �I(ot) · �T (li) were often un-478

informative: correct and wrong pairs obtained very similar479

scores, and varied too little in range. Our goal is to set a480

threshold � to recognise correct and wrong descriptions481

given an image: therefore we need a larger difference in482

score. To tackle this, we collect a dataset of image obser-483

vations with various configurations of the objects and the484

corresponding language descriptions using an automated485

annotator based on the MuJoCo state of the simulation to486

finetune CLIP with in-domain data. The plot on the right487

provides an analysis of our findings: precision and recall488

tend to increase logarithmically with the dataset size. The489

key takeaway message is that, although CLIP is trained on490

around 108 images, just 103 in-domain pairs are enough491

to improve its performance on our tasks.492

In our case, a high precision is more desirable than high493

recall: the former indicates that positive rewards are not494

noisy, while the opposite may disrupt the learning process. A lower recall indicates that the model495

may not be able to correctly identify all successful trajectories, but this simply translate in the need496

for more episodes to learn, and does not disrupt the learning process. We found a value of � = 0.8 to497

be the best performing choice after finetuning.498

7.2 Current Limitations and Future Work499

1) In our current implementation, we use a simplified input and output space for the policies, namely500

the state space of the MDP - i.e. the positions of the objects and the end-effector as provided by the501

MuJoCo simulator - and a pick and place action space, as described in Sec. 3, where the policy can502

output a x, y position for the robot to either pick and place. This choice was adopted to have faster503

experiments iteration and therefore be able to focus our search on the main contribution of the paper:504

the interplay with the LLM and the VLM. Nevertheless, the recent literature has demonstrated that a505

wide range of robotics tasks can be executed through this action space formulation (48; 39).506

Figure 11: Autonomously identifying sub-goals and corresponding rewards becomes especially
important when tasks become prohibitively sparse, like Triple Stack.
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Figure 12: An example of the prompt we used to condition the LLM, and its outputs. Normal text:
user inserted text, bold text: LLM outputs.

Many works from the current literature (25; 40; 5; 14) demonstrate that, in order for the policy to507

scale to image observations as input and end-effector velocities as output, the model only needs508

more data, and therefore interaction time. As our goal was demonstrating the relative performance509

improvements brought by our method, our choice of MDP design does not reduce the generality of510

our findings. Our results will most likely translate also to models that use images as inputs, albeit511

with the need for more data.512

2) We finetune CLIP on in-domain data, using the same objects we then use for the tasks. In future513

work, we plan to perform a larger scale finetuning of CLIP on more objects, possibly leaving out the514

object we actually use for the tasks, therefore also investigating the VLM capabilities to generalise to515

inter-class objects. At the moment, this was out of the scope of this work, as it would have required a516

considerable additional amount of computation and time.517

3) We train and test our environment only in simulation: we plan to test the framework also on real-518

world environments, as our results suggest that 1) we can finetune CLIP with data from simulation519

and it generalises to real images (Sec. 5.4), therefore we can avoid expensive human annotations 2)520

the framework allows for efficient learning of even sparse tasks from scratch (Sec. 5.1), suggesting521

the applicability of our method to the real-world, where collecting robot experience is substantially522

more time expensive.523

7.3 Prompts and outputs of the LLM524

In Fig. 12 we show the prompt we used to allow in-context learning of the behaviour we expect from525

the LLM (33). With just two examples and a general description of the setting and its task, the LLM526

can generalise to novel combinations of objects and even novel, less well-defined tasks, like "Stack527

all three objects", outputting coherent sub-goals.528

14


	Introduction
	Related Work
	Preliminaries
	A Framework for Language-Centric Agents
	Applications and Results
	Exploration - Curriculum Generation through Language
	Extract and Transfer - Efficient Sequential Tasks Learning by Reusing Offline Data
	Scheduling and Reusing Learned Skills
	Learning from Observation: Mapping Videos to Skills

	Conclusion
	Appendix
	Finetuning CLIP on in-domain Data
	Current Limitations and Future Work
	Prompts and outputs of the LLM


