
A APPENDIX

This section provides some the experiment details omitted from Section 4, additional experimental
results, and a byproduct. We will release the code and pretrained weights once this paper is accepted.

A.1 EXPERIMENT DETAILS

A.1.1 DATA AUGMENTATION

The specific details are in alignment with the REM settings. For CIFAR-10 and CIFAR-100 datasets,
our data augmentation comprises random flipping, padding by 4 pixels on each side, followed by
random cropping to a size of 32×32. Each image’s pixels are then rescaled to the range [−0.5, 0.5].
In the case of the ImageNet subset, we augment the data using random cropping, resizing the images
to a 224 × 224 dimension, implementing random flipping, and then rescaling every pixel to the
interval [−0.5, 0.5]. Additionally, we perform 40,000 iterations on the CIFAR-10 and CIFAR-100
datasets, and 8,000 iterations on the ImageNet subset.

A.1.2 HYPERPARAMETERS FOR DIFFERENT COUNTERMEASURES

Unless explicitly mentioned, we maintain the following settings in our experiments on different
countermeasures,

Bit-Depth Reduction (BDR). We implement 2 bits to perform BDR transformation.

Grayscale. We first calculate the weighted sum of the three channels and then replicate it across all
three channels.

Adversarial Training (AT). PGD-10 is employed with a step size of 2/255, training the model on
CIFAR-10 for 100 epochs.

Filters. We use a kernel size of 3 for median, mean, and Gaussian smoothing (with a standard
deviation of 0.1).

Gaussian noise. We generate noise for each sample with a distribution of N (0, 0.1).

Cutout. We adjust the sizes of the squared cutout box to match the image sizes of the datasets: 16
for CIFAR-10 and CIFAR-100, and 116 for the ImageNet subset. The cutout box is randomly placed
within each image and maintains a consistent size across all images.

Cutmix. For a given sample, we first generate a square bounding box centered at a randomly chosen
position with a randomly selected size (ranging from 0 to 1). The content within this bounding box is
then replaced with content cropped from another randomly chosen image from the same mini-batch.

Mixup. We randomly select another image and blend it with the current sample using a randomly
chosen weight (ranging from 0 to 1). We retain the original label for the current sample during loss
function computation.

A.2 ADDITIONAL EXPERIMENT RESULTS

A.2.1 ABLATION STUDIES ON DIFFERENT PARAMETERS.

In our experiments, we firstly test the performance when ω1, ω2, and ω3 are set as 0, which means
we just focus exclusively on the hiding loss, denoted as Lhide. The training loss trends for using only
Lhide compared to our complete loss Ltotal are depicted in Figure A. The Ltotal exhibits a notable
initial rise and subsequent decline, attributed to the optimization of the revealing loss. In contrast,
when training with only the hiding loss, the training plot shows the loss remains 0. Since the minimal
amount of information is hidden in the clean images during the first step, with the perturbation
radius staying below the 8/255 threshold, thus fulfilling the optimization objectives without further
optimization needed. Besides, we visualized the perturbations resulting from different designed
losses. As Figure B shows, using only the hiding loss Lhide leads to minimal information being
hidden in clean images and fails to achieve unlearnable performance. Furthermore, our evaluation of
unlearnable examples generated by the model trained only with Lhide reveals that the test accuracy
is close to that of clean images, as shown in Table. K. This indicates that minimal information
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Table A: The experimental results of different settings on parameters of ω1.
Setting ω1 Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean

O
ur

s(
S) 10 16.00 16.35 13.69 17.28 30.86 64.48 23.40 18.34 24.11 13.70 82.03 70.60 48.92 33.83

1(ours) 15.36 10.79 10.00 14.72 17.68 17.00 21.12 17.61 22.78 11.16 80.41 81.03 38.31 27.54
10−1 13.54 17.32 14.11 17.24 29.90 37.61 28.54 19.15 25.25 16.23 81.48 63.96 58.30 32.51
10−2 11.31 12.48 10.01 11.12 17.11 23.48 17.46 13.89 22.41 10.05 80.04 84.38 45.20 27.61

O
ur

s(
C

) 10 11.60 10.10 12.52 10.83 11.92 21.24 17.48 11.45 12.42 10.00 76.42 20.26 17.56 18.75
1(ours) 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31
10−1 10.00 10.00 9.99 10.00 10.11 10.09 12.44 10.00 10.00 10.00 72.36 28.89 10.05 16.46
10−2 10.00 10.00 10.02 10.00 10.09 10.00 16.34 10.00 10.00 10.00 72.45 58.50 10.00 19.03

is hidden in clean images, leading to ineffective unlearnability. Based on the above experimental
results and our analyze, we apply our total loss Ltotal in all experiments.

In our parameters’ ablation studies, we have conducted these experiments on CIFAR10 and tabulated
the results, as shown in Table A B C. The optimal results were obtained when ω1 and ω2 were set
to 1, and ω3 was set to 0.0001. This configuration is effective because the loss associated with ω3 is
typically 1000 times larger than those of ω1 and ω2. Setting ω3 to 0.0001 helps balance the training
process by ensuring that the scales of the losses remain consistent.

Figure A: Traning loss plogs with different loss designs.
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Figure B: Visualization of perturbation maps under different loss designs.

A.2.2 ADDITIONAL EXPERIMENTS ON DIFFERENT HIDDEN SEMANTIC IMAGE

To gain deeper insights into our design methodologies, additional ablation experiments were con-
ducted, each focusing on the removal of a major component. These supplementary studies include:
1) employing clean images from the subsequent class as hidden images, and 2) utilizing natural
semantic images from the CIFAR100 dataset as hidden images. 3) Moreover, to assess the impact
of our CLIP-based clustering approach for text prompts, we implemented a variant using randomly
generated prompts, thereby eliminating controlled inter-class differences. The results, as depicted in
Table D, reveal some critical findings. In the class-wise setting, it appears that any form of semantic
images can facilitate the generation of unlearnable examples. This indicates that the effectiveness
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Table B: The experimental results of different settings on parameters of ω2.
Setting ω2 Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean

O
ur

s(
S) 10 15.12 10.35 10.34 13.58 17.94 23.41 20.41 16.00 24.53 10.01 81.89 80.81 39.88 28.02

1(ours) 15.36 10.79 10.00 14.72 17.68 17.00 21.12 17.61 22.78 11.16 80.41 81.03 38.31 27.54
10−1 16.99 16.81 11.01 12.22 25.72 35.44 26.33 20.33 27.34 16.66 82.40 81.74 69.43 34.03
10−2 10.57 15.16 21.60 14.12 19.67 35.44 22.87 18.17 29.63 10.82 82.99 87.50 76.03 34.20

O
ur

s(
C

) 10 10.00 10.00 11.22 11.94 10.09 10.10 13.27 10.00 10.00 10.08 77.23 22.81 10.12 16.68
1(ours) 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31
10−1 10..04 10.00 11.64 13.81 15.49 10.43 17.09 10.16 10.94 10.05 77.79 25.29 18.35 19.25
10−2 10.00 10.00 10.03 10.28 10.41 10.36 15.29 10.87 10.00 10.00 79.46 29.51 10.00 17.40

Table C: The experimental results of different settings on parameters of ω3.
Setting ω3 Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean

O
ur

s(
S)

10−2 14.09 13.71 10.06 11.50 17.65 28.47 22.44 17.63 22.67 15.79 82.04 76.56 39.96 28.66
10−3 29.41 21.50 17.33 31.99 71.78 71.78 57.44 30.15 48.16 22.85 82.41 84.34 84.63 50.29

10−4(ours) 15.36 10.79 10.00 14.72 17.68 17.00 21.12 17.61 22.78 11.16 80.41 81.03 38.31 27.54
10−5 11.10 14.35 13.08 19.27 23.38 40.61 47.25 28.73 53.54 10.62 83.18 89.32 83.69 39.86

O
ur

s(
C

) 10−2 10.00 10.00 10.00 11.84 10.24 10.10 16.45 10.03 11.29 10.00 74.47 21.16 15.58 17.01
10−3 10.00 10.01 10.11 10.65 12.13 19.81 15.06 15.69 10.21 10.00 77.98 21.37 10.77 17.98

10−4(ours) 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31
10−5 10.00 10.00 10.03 9.99 10.01 10.00 14.52 10.05 10.16 10.00 80.09 73.48 10.54 20.68

of unlearnability stems from the use of semantic images, highlighting robust generalizability across
various countermeasures. For the sample-wise setting, our design demonstrates clear advantages.
Without the inclusion of controlled inter-class differences – that is, simply using next-class images
or random natural images – our proposed methods exhibit suboptimal performance. Similarly, em-
ploying random prompts without managing intra-class distances results in a minor decrease in test
accuracy.

A.2.3 ABLATION STUDIES ON DIFFERENT HIDING MODEL.

We have expanded our research to different image-hiding networks, notably the ISGAN (Zhang
et al., 2019). Our experiments assess the effectiveness of ISGAN-hidden unlearnable examples,
and the results as shown in Table H. The findings reveal that while unlearnability can be achieved
with other deep hiding models like ISGAN, the performance is not as optimal as with our applied
Invertible Neural Network (INN). INN demonstrates superior performance in deep hiding (Xu et al.,
2022; Xiao et al., 2023), which is why we chose it as our baseline model to validate our concepts.
We believe these distinctions, along with our comprehensive evaluations, underscore the unique
contribution of our work in the field of image hiding and data privacy.

A.2.4 TRANSFERABILITY OF THE PROPOSED METHOD

To further validate the effectiveness of the methods proposed in this paper, we conducted more
comprehensive cross-validation. 1. We verify the robustness of our UEs against various counter-
measures under different architectures, and the results as shown in Table E. It supports our claim
that the proposed deep hiding UEs maintain their efficacy against different countermeasures across
architectures. 2. We conducted the transferability study across architectures with limited unlearn-
able examples, and the results as shown in Table F. The test accuracy decreases in a similar trend
when we increase the percentage of the unlearnable examples.

A.2.5 PERFORMANCE ON DIFFERENT UNLEARNABLE PERCENTAGES

We further evaluate the performance of our proposed approach by using varying mixtures of clean
images and unlearnable examples, the results as shown in Table G.

A.2.6 PERFORMANCE ON GENERATED UNLEARNABLE EXAMPLES AGAINST JPEG
COMPRESSION.

We further explore the lower JPEG values, the results as shown in Table I. We found that lower JPEG
values result in even lower test accuracy, which confirms that stronger compression not only damages
the unlearnable example perturbations but also distorts the original image features significantly. We
also show examples of images compressed by different JPEG compression.
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Table D: Table D: Additional experimental results on CIFAR10 by using different hidden semantic
images, including images from the next class, random natural images (CIFAR100), and our semantic
image generation module.

Setting Semantic Images Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean
O

ur
s(

C
) Next Class 10.00 10.00 9.96 10.18 10.47 10.18 10.00 10.00 10.00 10.00 62.91 17.26 10.01 14.69

Random Natural Images 10.00 10.00 11.41 10.00 10.01 11.71 10.00 10.01 10.00 10.00 58.38 10.05 10.00 13.97
Random Prompt 10.00 10.00 10.00 12.32 9.72 10.00 10.00 10.59 10.00 10.00 71.44 30.27 10.00 16.49

Ours 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31

O
ur

s(
S)

Next Class 80.19 75.79 74.79 71.26 60.57 82.25 72.89 67.46 72.38 78.66 82.01 87.68 82.53 76.04
Random Natural Images 94.09 94.34 93.84 94.17 64.55 85.94 88.86 91.81 88.70 94.20 82.84 90.31 85.31 88.38

Random Prompt 10.00 16.53 20.81 17.14 18.51 21.73 24.98 13.85 22.07 10.59 80.09 82.90 46.54 29.67
Ours 15.36 10.79 10.00 14.72 17.68 17.00 21.12 17.61 22.78 11.16 80.41 81.03 38.31 27.54

Table E: Test accuracy (%) of model train on unlearnable examples from CIFAR-10 with five archi-
tectures, including ResNet-18 (R18), ResNet-50 (R50), VGG-19 (V19), and DenseNet-121 (D121),
and Vision Transformer (ViT), against data augmentations, data preprocessing, and adversarial train-
ing.

Settings Model Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean

O
ur

s(
S)

R18 15.36 10.79 10.00 14.72 17.68 17.00 21.12 17.61 22.78 11.16 80.41 81.03 38.31 27.54
R50 13.32 12.42 12.99 11.60 18.70 22.70 23.77 12.62 17.24 16.23 80.70 78.30 37.11 27.52
V19 10.45 17.25 14.37 17.87 23.62 32.27 22.77 17.72 22.28 14.89 80.61 80.64 52.55 31.33

D121 18.88 21.16 12.52 18.81 53.41 53.10 28.10 18.06 12.54 18.22 77.93 76.46 70.58 36.91
ViT 15.80 20.64 21.93 10.67 54.05 54.57 25.40 15.20 22.45 21.38 65.38 64.91 49.50 33.99

O
ur

s(
C

) R18 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31
R50 10.00 10.00 11.02 10.04 10.06 10.45 17.31 10.00 10.00 10.00 74.43 24.15 11.09 16.81
V19 10.58 10.17 10.00 17.46 10.78 12.86 15.79 10.30 10.03 10.03 71.77 24.84 13.44 17.54

D121 10.00 10.00 10.60 10.23 10.49 10.01 11.63 10.00 10.00 10.53 72.85 22.06 10.00 16.03
ViT 10.00 10.01 10.02 10.67 11.23 22.34 12.35 10.12 10.00 10.00 61.92 30.69 18.79 17.55

A.2.7 EVALUATION OF INTER-CLASS AND INTRA-CLASS DISTANCES

We investigate the intra-/inter-class distance in latent features using a trained (for unlearnable exam-
ples) or pre-trained (for clean images) ResNet18. We employ the output of the last CNN layer as the
latent feature for each sample and average these to determine the mean latent feature per class. For
intra-class distance, we compute and report the mean cosine similarity between each sample’s latent
feature and its class mean. For inter-class distance, we calculate the mean cosine similarity between
each class’s mean latent feature and the overall dataset mean.
We present our findings in Table J. It is noteworthy that our unlearnable examples, in both class-
wise and sample-wise settings, exhibit significantly reduced intra-class distances, as evidenced by a
higher cosine similarity approaching 1. Furthermore, by compacting the semantics within each class,
we also achieve an increased inter-class distance. These outcomes suggest that our method success-
fully generates unlearnable examples characterized by minimal intra-class distances and maximized
inter-class distances, thereby enhancing unlearnability.

Clean

Images

Unlearnable 
Examples JPEG2 JPEG4 JPEG8 JPEG10 JPEG50JPEG6

Figure C: Visualization of Clean and Unlearnable Images under Varied JPEG Compression.

A.2.8 GENERATED SEMANTIC IMAGES

We display several generated semantic images for two groups in Figure D and Figure E. Each group
of semantic images, shares similar semantic features but differ in textures, colors, and other low-
level features. Besides, Figure F provides more examples of different semantic images generated for
different classes.
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Table F: Test accuracy (%) of CIFAR-10 on the different models trained by the clean data mixed
with different percentages of unlearnable examples.

Setting Model 20% 40% 60% 80%

O
ur

s(
S)

R18 93.73 92.41 90.08 84.40
R50 94.16 92.82 90.51 85.66
V19 92.11 91.14 88.77 83.48

D121 89.02 87.77 84.94 81.39
ViT 75.95 74.77 74.09 70.50

O
ur

s(
C

) R18 93.53 92.67 89.99 84.47
R50 94.04 92.31 90.58 85.15
V19 92.13 90.23 87.99 80.60

D121 88.28 86.56 83.57 77.79
ViT 75.44 74.58 69.34 64.80

Table G: Test accuracy (%) of CIFAR-10 on the models trained by the clean data mixed with
different percentages of unlearnable examples.

Percentage (%) 20 40 60 80 85 90 92 94 96 98 100
Ours(S) 93.73 92.41 90.08 84.40 84.07 81.37 79.92 77.30 71.93 59.34 10.00
Ours(C) 93.53 92.67 89.99 84.47 84.20 81.41 78.42 75.71 66.90 53.00 15.36

A.2.9 BYPRODUCT OF LOGO HIDING AND EXTRACTION

Benefiting from the invertible performance of the INN model itself, our method is able to recover
hidden semantic images from unlearnable examples. Hence, we further demonstrate a byproduct of
logo hiding and extraction for source tracing. As illustrated in Figure G, we show that our Deep
Hiding scheme could not only achieve unlearnability for data protection but also hide and reveal a
predefined logo for data source tracing.

Figure D: Visualization of ten images of generated semantic images for one class.
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Table H: Test accuracy (%) of model train on unlearnable examples generated by using another
deep hiding model (ISGAN).

ISGAN Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean
Ours(S) 54.05 53.74 55.97 72.61 48.83 85.11 86.77 53.04 88.45 54.25 84.35 90.55 87.22 70.38
Ours(C) 23.99 24.07 28.42 42.69 37.56 79.3 83.64 30.06 87.92 25.24 84.46 90.28 87.46 55.78

Table I: Test accuracy (%) of model train on unlearnable examples from CIFAR10 against JPEG
compression.

JPEG Quality Factor 2 4 6 8 10 50
Ours(S) 68.01 74.35 77.39 78.56 80.41 81.03
Ours(C) 64.53 70.18 72.56 72.72 72.97 23.62

Table J: Evaluation of Inter-Class and Intra-Class Distances.
Data Intra-class Inter-class

Clean images 0.8457 0.8742
Ours(S) 0.9702 0.9030
Ours(C) 0.9882 0.8815

Table K: Evaluation on the different hiding model trained by solely controlling the hiding loss (Lhide)
and using our designed loss (Ltotal). The test accuracy (%) are evaluated on CIFAR-10 in the class-
wise setting.

Method Vanilla Cutout Cutmix Mixup MeanF MedianF BDR Gray GaussN GaussF JPEG10 JPEG50 AT Mean
Clean 94.59 95.00 94.77 94.96 49.70 86.64 89.07 92.80 88.71 94.54 85.22 90.89 84.19 87.78

only Lhide 94.71 95.05 94.68 95.4 38.88 87.39 89.12 93.1 88.55 87.39 85.04 91.04 88.59 86.84
ours 10.00 10.00 11.25 10.02 10.59 10.04 13.53 10.00 10.00 10.00 72.97 23.62 10.00 16.31

Figure E: Visualization of ten images of generated semantic images for one class.

Figure F: Visualization of generated semantic images for ten different classes.
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Figure G: Overview of byproduct. Our proposed DH scheme could hide a predefined logo into a
clean dataset via the forward hiding process to generate unlearnable examples for data protection,
and then extract the hidden logo from the unlearnable examples for source tracing.
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