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A ALIASING EXTENDED DISCUSSION

When working with signal f we can write the fourier series

f(k) =
1X

n=�1
F (n)ei2⇡kn/N

where F (n) are the frequency components and the values n are called harmonics. Take the f to be
discretely sampled at uniformly spaced points in a bounded interval [�1, �1 + �, ..., 1 � �, 1], with
� = 1/K. Because the sampling rate is limited, it is impossible to correctly measure components
F (n) where n > K/2. Evaluated only at the grid points, such content could have identical values to
components with lower frequencies, causing fundamental ambiguities:

sin(2⇡(k + nK)t + �) =

⇢
+ sin(2⇡(k + nK)t + �) k + nK � 0
� sin(2⇡|k + nK|t + �) k + nK < 0

The default mechanism for resolving these ambiguities in the reconstruction is to choose the lowest
frequency component for the corresponding observations, leading to the aliasing operation given in
Equation 2.

This operation can also be considered a translation in the frequency domain. Crucially, operations in
frequency domain have corresponding operations in the spatial domain, and thus aliasing can give
rise to recognizable patterns in images with poorly chosen resolutions, for example moire patterns.
This relationship also means aliasing’s effects on translations in frequency space, for example, can
effect translational spatial symmetries.

To make this relationship explicit, let us consider the translational symmetries of the first set of feature
maps in a CNN in two scenarios. In both scenarios the transformation is downward translation of the
input by 10% of its height. First, let us consider the case where this transformation happens to result in
a translation by a discrete numbers of pixels, p in the feature maps. Obviously the pixels at the bottom
of the image become lost to the boundary and thus cannot be recovered from the corresponding
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feature maps, as would be required for equivariance, as illustrated in Figure 1. As the amount of this
translation gets smaller and smaller, however, the effect of the boundary should decrease, and yet the
ability to recover the image can still be strongly affected by innate signal processing properties.

Consider the case where the CNN has a stride of 2. The feature maps will have half the width of the
original image. Therefore the Nyquist frequency will also be half that of the Nyquist frequency of the
image, and there will be aliasing of all the frequencies in between the original Nyquist frequency
and the new value. When we try to reverse the transformation by translating p pixels upwards, the
resulting translation will no longer be the inverse of the translation on the image. Therefore we cannot
achieve perfect equivariance.

As another important subcase, let’s also consider the non-linear activation in the CNN layer by itself.
If we apply the non-linearity to a translated input, we can simply use the fact the result was a discrete
translation in the output space to map the values at the grid points to values at different grid points
under the reverse transformation. In this case there is clearly no issue introduced from the frequency
domain properties of non-linearities on their own.

Now let’s consider a translation of 1/p pixels. In this case, reconstructing the image after the transla-
tion is non-trivial, and we need to perform interpolation to calculate the values of the corresponding
continuous image at the points that will become translated to the evaluation points. In order to perform
this interpolation we must actually consider the full frequency spectrum of the image. Now the
effects of pointwise non-linearities can become apparent. Because non-linearities can introduce high
frequency content, these high frequencies become important when reconstructing the signal using
interpolation. Aliasing makes this reconstruction fundamentally challenging and thus equivariance is
impossible to achieve.

B LIE GROUPS, LIE DERIVATIVES, AND LEE

B.1 LIE GROUPS AND LOCAL/GLOBAL NOTIONS OF EQUIVARIANCE

The key to understanding why the local - global equivalence holds is that (exp(X) � 1) =P1
k=1 Xk/k! has the same nullspace as X (here repeated application of X on a function f is

just the repeated directional derivative, and this is the definition of a vector field used in differential
geometry). Since they have the same nullspace, the space of functions for which exp(X)f = f is the
same as the space Xf = 0. The same principle holds for ⇢(exp(X))f = f and d⇢(X)f = 0
since ⇢(exp(X)) = exp(d⇢(X)) (a basic result in representation theory, which can be found
in (Hall, 2013)) where d⇢ is the corresponding Lie algebra representation of ⇢, which for vec-
tor fields is the Lie derivative d⇢(X) = LX . Hence carrying over the constraint for each ele-
ment 8X 2 g : LXf = 0 is equivalent to 8X 2 g : ⇢(exp(X))f = f which is the same as
8g 2 G : ⇢(g)f = f . Unpacking the representation ⇢12 of f , this is just the global equivariance
constraint 8g 2 G : ⇢2(g)�1f(⇢1(g)x) = f(x).

B.2 LIE DERIVATIVE CHAIN RULE

Suppose we have two functions h : V1 ! V2 and f : V2 ! V3, and corresponding representations
⇢1, ⇢2, ⇢3 for the vector spaces V1, V2, V3. Expanding out the definition of ⇢31,

⇢31(g)[f � h](x) = ⇢3(g)�1f(h(⇢1(g)x))

= ⇢3(g)�1f(⇢2(g)⇢2(g)�1h(⇢1(g)x))

= ⇢32(g)[f ] � ⇢21(g)[h](x).
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From the definition of the Lie derivative, and using the chain rule that holds for the derivative with
respect to the scalar t, and noting that g0 = Id so ⇢(g0) = Id, we have

LX(f � h)(x) =
d

dt

✓
⇢31(gt)[f � h](x)

◆����
0

=
d

dt

✓
⇢32(gt)[f ] � ⇢21(gt)[h](x)

◆����
0

=

✓
d

dt
⇢32(gt)[f ]

��
t=0

◆
� ⇢21(g0)[h](x) +


d(⇢32(g0)[f ])

����
h(x)

�✓
d

dt
⇢21(gt)[h]

��
t=0

◆
(x)

=

✓
d

dt
⇢32(gt)[f ]

��
t=0

◆
� h(x) + df |h(x)

✓
d

dt
⇢21(gt)[h]

��
t=0

◆
(x)

= (LXf) � h(x) + df |h(x)(LXh)(x),

where df |h(x) is the Jacobian of f at h(x) and df |h(x)(LXh)(x) is understood to be the Jacobian
vector product of df |h(x) with (LXh)(x), equivalent to the directional derivative of f along (LXh)(x).
Therefore the Lie derivative satisfies a chain rule

B.3 STOCHASTIC TRACE ESTIMATOR FOR LAYERWISE METRIC

Unrolling this chain rule for a sequence of layers NN(x) = fN :1(x) := fN (fN�1(...(f1(x)))), or
even an autograd DAG, we can identify the contribution that each layer fi makes to the equivariance
error of the whole as the sum of terms Ci = dfN :i+1LXfi, LX(NN) =

PN
i=1 Ci.

Each of these Ci, like LX(NN) measure the equivariance error for all of the outputs (which we define
to be the softmax probabilities), and are hence vectors of size K where K is the number of classes.
In order to summarize the Ci as a single number for plotting, we compute their norm kCik which
satisfy kLX(NN)k 

P
i kCik.

To compute dfN :i+1LXfi, one can use autograd to perform Jacobian vector products (as opposed to
typical vector Jacobian products) and build up dfN :i+1 in a backwards pass. Unfortunately doing
so is quite cumbersome in the PyTorch framework where the large number of available models
are implemented and pretrained. A trick which can be used to speed up this computation is to use
stochastic trace estimation (Avron & Toledo, 2011). Since vector Jacobian products are cheap and
easy, we can compute kCik2 = E[Â] as the expectation of the estimator Â = (1/N)

PN
n (z>

n Ci)2 =

(1/N)
PN

n (z>
n dfN :i+1LXfi)2 with iid. Normal probe vectors zn ⇠ N (0, I), and the quantity

z>
n dfN :i+1 which is a standard vector Jacobian product.

One can see that E[Â] = C>
i E[zz>]Ci = C>

i ICi = kCik2. We can then measure the variance of
this estimator to control for the error and increase N until this error is at an acceptable tolerance (we
use N = 100 probes). The convergence of this trace estimator is shown in Figure 9 (right) for several
different layers of a ResNet-50. In producing the final layerwise attribution plots, we average the
computed quantity kCik over 20 images from the ImageNet test set.

C LEE THEOREMS

C.1 LEE AND CONSISTENCY REGULARIZATION

As shown in Athiwaratkun et al. (2018), consistency regularization with Gaussian input perturbations
can be viewed as an estimator for the norm of the Jacobian of the network, but in fact when the
perturbations are not Gaussian but from small spatial transformations, consistency regularization
actually penalizes the Lie derivative norm. In the ⇧-model (Laine & Aila, 2016) (the most basic form
of consistency regularization), the consistency regularization minimizes the norm of the difference of
the outputs of the network when two randomly sampled transformations T a and T b are applied to the
input,

Lcons = kf(T a(x)) � f(T b(x))k2. (7)
Suppose that the two transformations are representations of a given symmetry group and can be
written as T a = ⇢(ga) and T b = ⇢(gb), and the group elements can be expressed as the flow
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generated by a linear combination of the vector fields which form the Lie Algebra: ga = �P
i aiXi

for
some coefficients {ai}d

i=1 and likewise for gb. We can define the log map, mapping group elements
top their generator values in this basis: log(ga) = a. Then, assuming ai are small (and therefore
the transformations are small), Taylor expansion yields Lcons = kf(x) +

P
i aiLXif(x) + O(a2) �

[f(x) +
P

j bjLXjf(x) + O(b2)]k2. Therefore, taking the expectation over the distribution which a
and b are sampled over (which is assumed to be centered with E[ai] = E[bi] = 0 as well as the input
distribution x, we get that

Ea,b,x[Lcons] = 2E[k
X

i

LXif(x)k2
⌃] + higher order terms, (8)

where kk2
⌃ denotes the norm with respect to the covariance matrix ⌃ = Cov(a) = Cov(b).

When the transformations are not parameter space perturbations such as dropout, but input space
perturbations like translations (which have been found to be far more important to the overall
performance of the method (Athiwaratkun et al., 2018)), we can show that consistency regularization
coincides with minimizing the expected Lie derivative norm. In this sense, consistency regularization
can be viewed as an intervention for reducing the equivariance error on unlabeled data.

C.2 TRANSLATION LEE AND ALIASING

Below we show that spatial aliasing directly introduces translation equivariance error as measured
by the Lie derivative, where the aliasing operation A[·] is given by Equation 2. The Fourier series
representation of an image h(x, y) with pixel locations (x, y) is Hnm with spatial frequencies (n, m),
where the band limited reconstruction

h(x, y) = 1
2⇡

X

nm

Hnme2⇡i(xn+ym) = F�1[H]

and F�1 is the inverse Fourier transform, and the sums range over frequencies of �M/2 to +M/2
for both n and m where M is the image height and width (assumed to be square for convenience).

Applying a continuous translation by tv along vector v = (vx, vy) to the input means resampling the
translated band limited continuous reconstruction h(x, y) at the grid points.

Ttv[h](x, y) = h(x � tvx, y � tvy) = 1
2⇡

M/2X

n,m=�M/2

Hnme2⇡i[(x�tvx)n+(y�tvy)m]

To simplify the notation, we will consider translations along only x and suppress the m index of Hnm,
effectively deriving the result for the translations of a 1d sequence, but that extends straightforwardly
to the 2 dimensional case.

Ttv[h](x) = h(x � tvx) = 1
2⇡

M/2X

n=�M/2

[Hne�2⇡itvxn]e2⇡ixn

Applying the aliasing operation, sampling the image to a new size M 0 (with Nyquist frequency
M 0/2), we have

A[Ttv[h]](x) = 1
2⇡

M/2X

n=�M/2

[Hne�2⇡itvxn]e2⇡ixAlias(n)

= 1
2⇡

M 0/2X

n0=�M 0/2

 X

n=Alias�1(n0)

Hne�2⇡itvxn

�
e2⇡ixn0

where the last line follows from applying a change of variables n0 = Alias(n).

Applying the final inverse translation (which acts on the M 0 sampling rate band limited continuous
reconstruction), we have

T�tv[A[Ttv[h]]](x) = 1
2⇡

M 0/2X

n0=�M 0/2

 X

n=Alias�1(n0)

Hne�2⇡itvx(n�n0)

�
e2⇡ixn0

.
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Taking the derivative with respect to t, we have

Lv(A)(h) = d
dt

��
0
T�tv[A[Ttv[h]]]

= 1
2⇡

M 0/2X

n0=�M 0/2

 X

n=Alias�1(n0)

2⇡ivx(n0 � n)Hn

�
e2⇡ixn0

.

Notably, for aliasing when the frequency is reduced by a factor of 2 from downsampling, there are
only two values of n that satisfy Alias(n) = n0: the value n = n0 and the one that gets aliased down,
therefore when multiplied by n � n0 the sum

 X

n=Alias�1(n0)

2⇡ivx(n0 � n)Hn

�

consists only of a single term.

According to Parseval’s theorem, the Fourier transform F is unitary, and therefore the norm of the
function as a vector evaluated at the discrete sampling points x = 1/M 0, 2/M 0, ... is the same as as
the norm of the Fourier transform:

kLv(A)(h)k2 = kF [Lv(A)(h)]k2

kLv(A)(h)k2 =

M 0/2X

n0=�M 0/2

����
X

n=Alias�1(n0)

2⇡ivx(n0 � n)Hn

����
2

kLv(A)(h)k2 =

M/2X

n=�M/2

(2⇡)2v2
x(Alias(n) � n)2H2

n,

using the fact that only one element is nonzero in the sum. Finally, generalizing to the 2d case, we
have

kLv(A)(h)k2 = (2⇡)2
X

nm

H2
nm

�
v2

x(Alias(n) � n)2 + v2
y(Alias(m) � m)2

�
, (9)

showing how the translation Lie derivative norm is determined by the higher frequency components
which are aliased down.

D LEARNED EQUIVARIANCE EXPERIMENTS

D.1 LAYER-WISE EQUIVARIANCE BASELINES

We use EQ-T and EQ-Tfrac (Karras et al., 2021) to calculate layer-wise equivariance by caching
intermediate representations from the forward pass of the model. For image-shaped intermediate
representations, EQ-T samples integer translations in pixels between -12.5% and 12.5% of the image
dimensions in pixels. EQ-Tfrac is identical but with continuous translation vectors. The individual
layer is applied to the transformed input and then the inverse group action is applied to the output,
which is compared with the original cached output. Many different normalization could be chosen to
compare equivariance errors across layers. The most obvious are 1

N , 1p
N

, and 1
1 (no normalization),

where N = C ⇥ H ⇥ W . As we show in section 5, the normalization method can have a large effect
of the relative contribution of a layer, despite the decision being relatively arbitrary (in contrast to
LEE, which removes the need for doing so as the scale is automatically measured relative to the
contribution to the output).

D.2 SUBNETWORK EQUIVARIANCE ANALYSIS

Another way one might use LEE to study the effects of different layers that make up a network is
to break the network in question down into its constituent subnetworks (networks starting at the
input and ending at every intermediate representation in the network) and calculate the LEE of the
corresponding function. We show the result of this calculation on a ResNet50 in Figure 8.
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As an alternative to our layerwise analysis, this method has a significant drawback that makes
analysis challenging: the functions under consideration have different outputs. In our calculation, we
applied batch normalization over the outputs in order to make their scales comparable. Despite this
rescaling, comparing activations and preactivations, for example, remains challenging. By contrast,
our layerwise breakdown specifically targets a layer’s contribution to a shared output.

Figure 8: LEE calculated over the subnetworks of a ResNet50. Specifically a subnetwork is con-
structed between the input and every intermediate representation in the network’s computation graph.
We use batch normalization of the outputs to make the output scale of different subnetwork compara-
ble. For visual clarity, layer types are broken across the left and right plots, which share the same
axes. Similar to the pattern observed in Figure 4, we see a rapid increase in equivariance error in
the early layers of the network, followed by many smaller increases later in the network. Unlike in
our layerwise decomposition, comparison across layer types is challenging in this setting because
layers have significantly different outputs. For example, comparing activations with preactivations is
complicated by the ReLUs acting as contractions of the input and having potentially many zeroed
values.

D.3 MODEL LIST

The models included in Figure 1 are

• Early CNNs: ResNets (He et al., 2015), ResNeXts (Xie et al., 2017), VGG (Simonyan &
Zisserman, 2014), Inception (Szegedy et al., 2016), Xception (Chollet, 2017), DenseNet
(Huang et al., 2017), MobileNet (Sandler et al., 2018), Blur-Pool Resnets and Densenets
(Zhang, 2019), ResNeXt-IG (Mahajan et al., 2018a), SeResNe*ts (Hu et al., 2018), ResNet-
D (He et al., 2018), Gluon ResNets (Guo et al., 2020; Zhang et al., 2019; 2020), SKResNets
(Li et al., 2019), DPNs (Chen et al., 2017)

• Modern CNNs: EfficientNet (Tan & Le, 2019a; 2021), ConvMixer (?), RegNets (Ra-
dosavovic et al., 2020), ResNet-RS, (Bello et al., 2021), ResNets with new training recipes
(Wightman et al., 2021), ResNeSts (Zhang et al., 2020), RexNet (Han et al., 2021a), Res2Net
(Gao et al., 2019), RepVGG (Ding et al., 2021), NFNets (Brock et al., 2021), XNect (Mehta
et al., 2020), MixNets (Tan & Le, 2019b), ResNeXts with SSL pretraining (Yalniz et al.,
2019), DLA (Yu et al., 2019), CSPNets (Wang et al., 2019), ECA NFNets and ResNets
(Brock et al., 2021), HRNet (Sun et al., 2019), MnasNet (Tan et al., 2019)

• Vision transformers: ViT (Dosovitskiy et al., 2020), CoaT (Dai et al., 2021), SwinViT (Liu
et al., 2021b), (Bao et al., 2021), CaiT (Touvron et al., 2021c), ConViT (d’Ascoli et al.,
2021), CrossViT (Chen et al., 2021), TwinsViT (Chu et al., 2021), TnT (Han et al., 2021b),
XCiT (El-Nouby et al., 2021), PiT (Heo et al., 2021), Nested Transformers (Zhang et al.,
2022)

• MLP-based architectures: MLPMixer (Touvron et al., 2021b), ResMLP (Touvron et al.,
2021a), gMLP (Liu et al., 2021a), MLP-Mixers with (Si)GLU (Wightman, 2019)
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D.4 ALTERNATIVE END-TO-END EQUIVARIANCE METRICS

Discrete Consistency We adopt the consistency metric from Zhang (2019), which simply measures
the fraction of top-1 predictions that match after applying an integer translation to the input (in our
case by 10 pixels). Instead of reporting consistency numbers, we report (1 � % matching), so that
consistency because a measure of equivariance error. Equivariant models should exhibit end-to-end
invariance, high consistency, and low equivariance error.

Expected Group Sample Equivariance Inspired by work in equivariant architecture design (Finzi
et al., 2020; Hutchinson et al., 2021), we provide an additional equivariance metric for comparison
against the Lie derivative. Following (Hutchinson et al., 2021), we sample k group elements in the
neighborhood of the identity group element, with sampling distribution D(G), and calculate the
sample equivariance error for model f as 1

k ||⇢�1
2 (g)f(⇢1(g)x) � f(x)||. For translations we take

D(G) to be Uniform(�5, 5) in pixels.

Versus LEE There are several reasons why the continuous lie derivative metric is preferable over
discrete and group sample metrics. Firstly, it allows us to break down the equivariance error layerwise
enabling more fine grained analysis in a way not possible with the discrete analog. Secondly, the
metric is less dependent on architectural details like the input resolution of the network. For example,
for discrete translations by 1 pixel, these translations have a different meaning depending on the
resolution of the input, whereas our lie derivatives are defined as the derivative of translations as a
fraction of the input size, which is consistently defined regardless of the resolution. Working with the
vector space forming the Lie algebra rather than the group also removes some unnecessary freedom
in how one constructs the metric. Rather than having to choose an arbitrary distribution over group
elements, if we compute the Lie derivatives for a set of basis vectors of the lie algebra, we have
completely characterized the space, and all lie derivatives are simply linear combinations of the
computed values. Finally, paying attention to continuous transformations reveals the problems caused
by aliasing which are far less apparent when considering discrete transformations, and ultimately the
relevant transformations are continuous and we should study them directly.

D.5 LEE FOR ADDITIONAL TRANSFORMATIONS

Beyond the 3 continuous transformations that we study with Lie derivatives above, there are many
more that might reveal important properties of the network. Here we include an three additional
transformations–hyperbolic rotation, brightening, and stretch.

Figure 9 (left) shows that, perhaps surprisingly, models with high accuracy become more equivariant
to hyperbolic rotations. We suspect this surprisingly general equivariance to diverse set of contin-
uous transformations is probably the result of improved anti-aliasing learned implicitly by more
accurate models. LEE does not identify any significant correlation between brightening or stretch
transformations and generalization ability.

D.6 ROTATED MNIST FINETUNING

In order to test the ability of SOTA imagenet pre-trained models to learn equivariance competitive
with specialized architectures, we adapted the example rotated MNIST notebook available in E2CNN
repository (Weiler & Cesa, 2019). We use the base model and default finetuning procedure from (He
et al., 2021), finetuning for 100 epochs, halving the learning rate on loss plateaus.
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Hyperbolic Rot. Brighten Stretch Trace Estimator

Figure 9: (Left): Extending Figure 5 we show the Lie derivate norm for hyperbolic rotation,
brightening, and stretch transformations. We observe that more accurate models are also more
equivariant to hyperbolic rotations and to brighten transformation, to a more limited extent. In
the case of hyperbolic rotations, this result is surprising, as nothing has directly encouraged this
equivariance. One possible explanation is decreased aliasing in models with higher accuracy. Marker
size indicates model size. Error bars show one standard error over the images use to evaluate the Lie
derivative. (Right): Cumulative mean and standard error of the estimator (computed for translations
on a ResNet-50).
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